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ABSTRACT

Capability architectures for memory safety have traditionally re-
quired expanding pointers and radically changing microarchitec-
tural structures throughout processors, while only providing su-
perficial hardening. We hence propose Cryptographic Capability
Computing (C3) - the first memory safety mechanism that is state-
less to avoid requiring extra metadata storage. C* retains 64-bit
pointer sizes providing legacy binary compatibility while imposing
minimal touchpoints. Pointers are encrypted to unforgeably (within
cryptographic bounds) reference each object. Data is encrypted
even in caches and entangled with pointers for both spatial and
temporal object-granular protection. Pointers become like unique
keys for each allocation. C* deploys a novel form of prediction
for address translation that mitigates performance overheads even
when addresses are partially encrypted. Use of a low-latency, low-
area cipher from the NIST Lightweight Cryptography project avoids
delaying loads by readying a data keystream by the time data is
returned from the L1 cache. C3 is compatible with legacy binaries.
Simulated performance overhead on SPEC CPU2006 is negligible
with no memory overhead, which is a big leap forward compared
to the overheads imposed by past memory safety approaches. C3
effectively replaces inefficient metadata with efficient cryptography.

CCS CONCEPTS

« Security and privacy — Security in hardware; - Computer
systems organization — Architectures; - Software and its en-
gineering — Software safety.
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1 INTRODUCTION

Memory safety vulnerabilities have afflicted computer systems for
decades, accounting for ~70% of vulnerabilities [37], and the loosely-
typed programming languages that give rise to them remain popular.
Spatial memory safety vulnerabilities include buffer overflows to
adjacent and non-adjacent allocations, or to fields within a single
allocation. Use-After-Free (UAF) and uninitialized use are common
examples of temporal memory safety vulnerabilities.

Many memory safety solutions have been proposed in the past,
but they either suffer from high overheads and extensive touch-
points due to metadata storage and accesses or they only provide
limited protections. For example, some approaches rely on fat point-
ers (e.g. 128 bits) containing bounds information and other metadata.
These drastically increase the memory footprint of software and
require the use of tagged memory to protect the integrity of meta-
data within the fat pointers [38, 54]. Other approaches assign a
separate copy of metadata to every granule of each allocation for
some fixed granule size, e.g. ARM® Memory Tagging Extension
(MTE) with four tag bits for every 16-byte granule of data [44, 46].
Still other approaches assign separate metadata for every copy of a
pointer, such as Intel® MPX that associates bounds with pointers
in a multi-level table with high overheads [42, 57].

Authenticating or encrypting pointers to mitigate pointer cor-
ruption is an approach that avoids the need for separate metadata,
but that does not protect data directly [9, 33]. For example, Heart-
bleed disclosed private keys without corrupting any pointers [17].
Authentication of base addresses for pointers can be used to gen-
erate keys for hash tables containing bounds to enforce spatial
safety, and those can be invalidated when allocations are freed to
enforce temporal safety as in Always-On memory Safety (AOS) [25].
However, this reintroduces the overheads of in-memory metadata.
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Figure 1: Every allocation is assigned a unique Crypto-
graphic Address (CA), which is the basis for isolating each
allocation cryptographically from all other allocations. The
radix is required to be a power-of-two so that pointers can
be represented with a 64-bit, binary legacy-compatible en-
coding.

Furthermore, pointer authentication consumes pointer bits that
could otherwise be used for memory addressing, and it provides
weak protection based on small authentication codes.

In this paper we propose Cryptographic Capability Computing
(C3) - the first stateless mechanism that enforces memory safety in
a fully flexible memory layout without relying on any additional
metadata besides what is encoded in a 64-bit pointer. It replaces
inefficient metadata memory accesses with efficient cryptog-
raphy by assigning a unique and distinct cryptographically
isolated space for each allocation.

The isolated space for each allocation is identified by informa-
tion encoded in a novel Cryptographic Address (CA) format. No
additional metadata is needed. The CA format is illustrated in Fig-
ure 1. Each CA specifies a radix to identify what portion of the
address is constant throughout the entire allocation. We will show
that this pair of attributes is sufficient to uniquely identify every
allocation throughout the linear address space, and that they can
also distinguish allocations temporally. Cryptography mitigates
forgery or corruption of the CA portion uniquely identifying the
allocation. CAs have a legacy-compatible binary encoding usable
with ordinary pointer arithmetic instructions to avoid requiring
software recompilation. The linear memory layout is completely
unchanged by C3. C3 encrypts data in memory and throughout the
entire cache hierarchy. It entangles the data encryption for each
allocation to the unforgeable (within cryptographic bounds) iden-
tity specified in its authorized CA. This makes pointers like unique
keys for each allocation to enforce both spatial and temporal safety.

Many prior approaches emphasize generating exceptions for
memory safety violations. This is undeniably useful for bug hunt-
ing. However, a novel aspect of C? is the observation that simply
preserving data confidentiality and avoiding adversarial plaintext
injection is adequate to enforce memory safety. C3 does this with-
out relying on the costly metadata needed for prior approaches that
insist on generating exceptions.

Encrypting pointers rather than authenticating them as in past
approaches avoids limiting address space sizes and strengthens the
cryptographic protections for mitigating pointer corruption and
forgery by permitting address bits to be encrypted. Pointers do
not require special protections or tags beyond the cryptographic
encoding itself.

Encrypting data in the cache holds the potential of more strongly
mitigating physical attacks and threats from erroneous or compro-
mised IP within SoCs.
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C? contributes innovative techniques for avoiding disruptions
from encrypted pointers and cache data to performance critical mi-
croarchitectural flows involving Translation Lookaside Buffer (TLB)
lookups and the generation of keying material on the critical load
path. We show that C3 can be built on a modern high performance
processor while causing negligible performance overheads.

This paper demonstrates that C is a stateless mechanism that
strongly mitigates prevalent categories of vulnerabilities.

The novel contributions of this paper include:

(1) First stateless spatial and temporal safety mechanism appli-
cable to entire address space with no extra storage demands
for metadata, no added restrictions on memory layouts, and
no pointer size increases.

(2) Compact cryptographic pointer encoding that generates a
unique encoding for every simultaneously active allocation
and an expansive space for distinguishing allocations tem-
porally. Up to 1 million times as strong as memory tagging.

(3) Microarchitectural optimizations for hiding the latency of
pointer decryption, resulting in negligible 0.01% geomean
overhead on a simulated subset of SPEC CPU2006.

(4) Legacy compatibility with no requirement for recompilation
or kernel changes as demonstrated by running all 19 simu-
lated C/C++ SPEC CPU2006 workloads on a Simics®-based
functional simulator.

(5) Validated against relevant tests in the NIST Juliet suite, demon-
strating the security efficacy of C3.

The rest of this paper is organized as follows: §2 provides back-
ground, §3 enumerates requirements and the threat model, §4 de-
scribes the design of C3 including microarchitectural optimizations,
§5 evaluates C3, §6 discusses related work, §7 describes limitations
and future work, and §8 concludes this paper.

2 BACKGROUND
2.1 Memory Safety

Memory safety vulnerabilities have long been a major affliction
for software written in loosely-typed languages such as C and
C++. Data from Microsoft® and Google® LLC show around 70%
of vulnerabilities fitting this category [7, 37], at least at the high
severity level, with most of those vulnerabilities affecting heap
allocations.

The most prevalent vulnerabilities violate either spatial or tem-
poral safety. Spatial safety violations include buffer overflows and
underflows, whereas temporal safety violations encompass UAF, in
which a dangling pointer is used to reference a region of memory
that was freed after the pointer to that region was generated, and
uninitialized use. Type confusion is an additional type of vulnera-
bility, in which data is processed as though it has a different type.
For example, treating data as a pointer may permit pointer forgery.
Some other type confusion vulnerabilities operate at the level of
types defined in high-level programming languages.

The spatial safety category can be subdivided further into adja-
cent and non-adjacent overflows, with the former extending from
an allocation into adjoining allocations and the latter skipping over
adjoining allocations or randomly access memory to reach non-
adjoining allocations. Non-adjacent overflow vulnerabilities have
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become more common than adjacent overflow vulnerabilities start-
ing in 2014 [37]. Spatial safety hardening approaches can vary in
their effectiveness at mitigating each of these types of vulnerabili-
ties.

Examples of both types of spatial vulnerabilities as well as UAF
are provided in the following sample code listing. These are the
types of vulnerabilities that we focus on in this paper. For the
purposes of this example, assume that the heap allocator places each
allocation at the lowest available address, including immediately
reclaiming memory that is freed. Also assume that it stores allocator
metadata separately from allocations, e.g. rather than interspersing
it between allocations.

void vulnerable_function () {

int =allocl = (int +)malloc(8+sizeof (int));
int «alloc2 = (int «)malloc(8«sizeof(int));
int «alloc3 = (int «)malloc(8+sizeof (int));

alloc1[9] = 5; // adjacent overflow
alloc1[16] = 5; // non—adjacent overflow
free (allocl);

int =alloc4 = (int +)malloc(8+sizeof (int));
alloc1[2] = 5; // UAF

Memory safety vulnerabilities may lead directly to information
leakage or data corruption, or they may be used as just one or more
links in an overall exploit chain that may lead to Control-Flow
Integrity (CFI) violations and the execution of arbitrary code [37].
Thus, mitigating memory safety vulnerabilities offers a way to
disrupt a wide variety of possible exploits.

Other types of software vulnerabilities outside of the memory
safety category are also common, but they are often outgrowths
from logic errors in high-level applications, languages, or frame-
works, and thus not readily addressable by hardware.

The goal of memory-safety enforcement mechanisms is to pre-
vent information leakage and adversarial control due to memory
safety violations. A variety of mechanisms have been proposed,
and we will next describe the category of mechanisms that includes
3.

2.2 Memory and Pointer Encryption and
Authentication

There has been a progression of encryption being applied more
pervasively and deeply over time as hardware support has matured.
Instructions for accelerating symmetric encryption have led to near-
universal encryption of web traffic [19, 28]. Many storage devices
have acceleration for full device encryption, if not also based on
the acceleration instructions in the processor to which the device
is attached. Hardware-accelerated total memory encryption has
recently attained wide availability even on consumer-level devices
to mitigate physical attacks on memory [40], but that does not
extend into caches.

Pointers have been encrypted and authenticated in caches and
registers in prior work. This mitigates attempts to use pointers
corrupted via memory safety violations, which indirectly mitigates
some memory safety violations. PointGuard encrypts entire point-
ers so that corrupting a pointer will result in a garbled linear address
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when that pointer is decrypted [9, 51]. PARTS authenticates point-
ers to generate an exception when a corrupted pointer is used [33].

The drawback of pointer authentication compared to pointer
encryption is that a Pointer Authentication Code (PAC) consumes
pointer bits whereas pointer encryption preserves pointer bit val-
ues that can be recovered later via decryption. Pointers have few
unused bits that can be repurposed for a PAC, which limits the
cryptographic strength of that PAC.

On the other hand, pointer authentication detects pointer corrup-
tion with a predictable probability, whereas the ability of pointer
encryption mechanisms to detect pointer corruption depends on
multiple factors that determine the likelihood of garbled, decrypted
pointers referencing unmapped or inaccessible memory that leads
to page faults: 1) how many pointer bits are encrypted, 2) the en-
cryption algorithm, and 3) the process-specific density of accessible
data pages.

AOS uses a PAC to lookup bounds for an allocation to directly
enforce spatial and temporal safety, but it does not encrypt data.

C? is the first mechanism that entangles data encryption with
encoded CAs, and it does so in the cache. Bringing data encryption
into the cache in this way is both a logical progression and a radi-
cal advance, since it integrates stateless, object-granular (we use
the terms “object” and “allocation” interchangeably) control over
encryption with memory access instructions for the first time. This
converges software attack protections with physical attack miti-
gations and directly enforces both spatial and temporal memory
safety.

3 REQUIREMENTS AND THREAT MODEL

The program is assumed to be initially benign but vulnerable to
malicious inputs, e.g. from network packets or files.

We initially evaluate C3 for protecting heap allocations due to
the prevalence of heap vulnerabilities, and since we want to avoid
requiring recompilation. Most exploits target the heap [3]. However,
C3 can also be used to harden stack and global allocations.

C3 supports encrypted allocations up to 16GiB. Larger allocations
can be handled without encryption, and pointers to them could
not be abused to access encrypted allocations. Furthermore, C3 can
be extended to protect larger allocations by supporting additional
pointer encoding options with a wider range of radixes.

C3 meets or exceeds the exploit detection probabilities of other
memory safety techniques, e.g. the 1/16 chance of an adversary
bypassing memory safety checks in memory tagging.

Since C3 is a capability architecture, if an adversary is directly
able to harvest a valid (i.e., non-stale) pointer, then accesses to the
allocation referenced by that pointer are not considered memory
safety violations.

Side channels and vulnerabilities or malicious behavior in privi-
leged software or the heap allocator are considered out-of-scope
for this paper, although invalid speculative overflows will similarly
access ciphertext.

The focus of this paper is on hardening unprivileged, usermode
software, but C3 could be applied to privileged kernels and VMMs
with system software support.
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Figure 2: Best-fit assignment of allocations to power-of-two-
aligned slots. Each radix implies a distinct set of naturally-
aligned power-of-two slot boundaries to be used throughout
the linear address space. Every slot is encrypted uniquely
to isolate all allocations, even if they overlap in the linear
space. C3 does not disrupt the memory layout; allocations
do not need to be padded to fill slots.

4 DESIGN

This section describes how C? mitigates both spatial and temporal
vulnerabilities by binding stateless, object-granular data encryption
in caches to CAs that are unique to each allocation.

4.1 Object-Granular Cryptographic Isolation

Each allocation is assigned a distinct Cryptographic Address (CA),
which results in every allocation being uniquely encrypted. To
understand how every allocation is distinguished spatially from
all other simultaneously-valid allocations, it is helpful to think of
each CA effectively defining a naturally-aligned power-of-two slot
that contains the allocation in its entirety as depicted in Figure 2.
Allocations do not need to be aligned to a power-of-two, i.e. there
is no requirement for an allocation to fill its assigned slot.

To ensure that each allocation is assigned to a distinct slot, a
“best-fit” criterion should be used to select the smallest slot that com-
pletely contains a given allocation, which will have the minimum
space in the slot that is outside of the actual allocation. Consider
that every allocation will then cross the midpoint of its assigned
allocation slot. Only a single allocation can cross any particular
slot’s midpoint. If the allocation fits within some slot, but it does
not cross that slot’s midpoint, then it must fit more tightly in some
smaller slot, and hence the best-fit algorithm would have selected
that smaller slot. Therefore, for a given spatial memory layout, only
a single allocation can be assigned to any slot.

The memory layout of allocations is not disrupted. The best-fit
power-of-two slot of a particular allocation can overlap with other
allocations, as we don’t require padding to fill the slot. Even in this
case, the data for the separate allocations remains cryptographically
isolated due to the allocations each being assigned unique CAs to
which the data encryption is bound. Using a pointer to an allocation
in some slot to read or overwrite a different allocation within the
bounds of the same slot results in the data for the second allocation
being garbled. This preserves the confidentiality of that data and
makes data corruption unpredictable to adversaries. Figure 3 shows
how the flow of processing for C3 mitigates covered memory safety
violations.
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Table 1: Comparison of mitigation levels provided by Point-
Guard [9, 51], PARTS [33], MTE [44], AOS [25], and C3. Leg-

end: <: Unmitigated, L Mitigated with detection iff a cor-
rupted pointer is used later, [ Mitigated with detection,
o. Cryptographic mitigation plus possible detection.

Mechanism | OOB | UAF | Uninitialized use | Physical

PointGuard | I [ Il O <&
PARTS 1 0 < &
MTE [ BN R O
AOS | I B &
3 ([ J (] (] (]

Examples of how OOB and UAF vulnerabilities are mitigated
by the object-granular cryptographic isolation in C? are shown
in Figure 4. Example (a) shows a pointer overflowing Allocation
1 into Allocation 2. Example (b) shows a pointer skipping from
Allocation 1 all the way into Allocation 3. Allocation 3 has the
same radix (64) as Allocation 1, but it has a different value for its
least-significant radix-64 digit. Example (c) shows a stale pointer
to Allocation 1 after it has been freed being used when the same
underlying linear memory has been reused for Allocation 4. Note
that Allocation 4 crosses a radix-64 boundary, so it requires a radix-
128 slot. Since that is a different radix than was used for Allocation 1,
they are cryptographically isolated even though the linear memory
for Allocation 1 is reused in Allocation 4. In all of these cases, data
will be garbled. Example (b) may generate an exception even before
the data can be accessed, as will be explained below.

Furthermore, data encryption is distinctly well-suited to compre-
hensively mitigating uninitialized use throughout an entire alloca-
tion. C? breaks adversaries’ control over uninitialized data values by
encrypting stale data from previous allocations when read through
a fresh CA with a different radix or version. This applies separately
to every byte of the allocation, such that even a single remaining
uninitialized byte is still mitigated by C3. In contrast, the overheads
of per-byte initialization metadata would be prohibitive.

Note that pointer authentication or encryption alone [9, 33, 51]
is unable to mitigate some of the types of vulnerabilities addressed
by C3, which additionally entangles data encryption with unique,
per-allocation CAs. For example, Heartbleed illustrates this benefit
of C3, since it only performs OOB reads that disclose data without
corrupting pointers [17]. Fundamentally, the limitation of prior
approaches based solely on pointer authentication or encryption is
that unencrypted data in memory remains accessible.

In contrast, when a C3 pointer is dereferenced that is corrupted,
stale, or references an uninitialized allocation, the data will be gar-
bled with high probability if the decrypted pointer even references
accessible memory in the first place. We compare the types of vi-
olations that can be mitigated by C3 and closely related memory
safety mechanisms in Table 1. The "Physical" column represents
threats to data confidentiality and pointer integrity from physical
attacks and erroneous or compromised IP. C3 can detect certain
physical pointer corruptions and provides data confidentiality via
encryption.
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Figure 3: The flow of processing for C3 includes CA decryption (§4.3) to obtain the Linear Address (LA) followed by data
encryption or decryption based on a generated keystream (§4.4). In-scope memory safety violations result in garbled encryp-
tion or decryption with high probability. This enforces cryptographic isolation between different allocations both spatially
and temporally, even within overlapping slots. Additionally, OOB accesses outside of the authorized slot for the pointer or
other pointer corruption or forgery result in garbled linear addresses. This will secondarily generate a page fault with high
probability assuming a sparse address space, hence leading to detection of the violation.

(c) Blocked, since Alloc. 4 has a different radix than Alloc. 1
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ocation aaix
T safety

Stale pointer originally generated for Allocation 1 violation

3 Allocations 1, 2, and 3 freed; Allocation 4 created
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Time (leading to memory reuse)

derived from Allocation1 | Alloc.2 | Allocation 3
pointer to (Radix 64) (R:32) (Radix 64)
Allocation 1
Spatial safety  (3) Blocked, since more than just the least-
violations

significant Radix-64 address digit changed
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Linear space

Figure 4: Examples of how object-granular cryptographic
isolation in C3 mitigates attempts to corrupt a pointer for
OOB accesses (a and b) or to reuse it after the linear memory
for its authorized allocation has been reallocated (c). The lin-
ear memory layout is completely unchanged by C3. Only the
radix-specific slot boundaries that are relevant to these ex-
amples are illustrated.

4.2 Pointer Encoding

C3 preserves the 64-bit pointer width and ordinary pointer arith-
metic support, although any pointer size may be supported. Each
pointer is divided into distinct fields as illustrated in Figure 5 to
represent a CA in a binary encoding.
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The power field specifies the offset field width, with the value of
all zeroes reserved to represent unencoded userspace pointers that
point to unencrypted data. Even single-byte slots can be specified,
which would impose too much overhead for memory tagging ap-
proaches that need to duplicate the tag for every granule (e.g. four
tag bits per one-byte data granule would impose 50% memory over-
head). Power binds the pointer to an object of a particular memory
slot with the corresponding power-of-two size. The object is not
required to completely fill the slot, so there is no requirement for
padding.

The optional version field can be assigned randomly or in se-
quence for a given power-of-two slot as the slot is reused to prevent
the encrypted data from being bound to the same CA across distinct
allocations for temporal safety. Alternatively, the allocator could
seek to avoid reusing linear memory with identical radixes while
still permitting the memory to be reused and assigned different
radixes so that there is no wasted memory. However, that may
introduce more allocator complexity. The decrypted version field is
ignored by the processor.

Both the encrypted address bits and the fixed address bits are
immutable. If software attempts to change any of them or to forge
a pointer, that will be detected with high probability when the
corrupted pointer is used in a memory access. A change to an
encrypted address bit is likely to change half of the decrypted bits
of the decrypted address slice due to the diffusion property of the
pointer encryption cipher as will be explained below. This incorrect
decryption is likely to point to an unmapped or inaccessible page,
generating a page fault, or to some uncontrollable page address.
Certain paging modes treat some of the address bits in the encrypted
address field as reserved, which causes them to serve as an implicit
authentication code by being required to have some predictable
value, e.g. all zeroes. Keep in mind that C3 preserves object-granular
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Power-1 " 0

Offset

57 54
111

Version

53 L 34 Power

Encrypted address

33 111
Fixed address

Figure 5: CA encrypted pointer format. “Power” is an ex-
ponent encoding the power-of-two radix/slot size that best
fits the allocation the pointer is authorized to reference. Op-
tional “Version” introduces cryptographic diversity, but an
alternative is to avoid reusing a given power-of-two slot
by changing the power used for the same underlying lin-
ear memory (i.e. no wasted memory). “Encrypted addr. (ad-
dress)" contains the upper address bits that are both im-
mutable and within the encrypted portion of the pointer.
“Fixed address” contains plaintext bits indicating which slot
with the specified power best fits the allocation. “Off set” bits
are also plaintext, and software can modify them to point to
different portions of the referenced allocation.

cryptographic isolation even when pointer corruption or forgery
does not generate an exception.

Since the pointer bits are encrypted rather than being authenti-
cated, the values of the underlying pointer bits can be recovered by
decrypting the pointer. In contrast, pointer authentication as used
in some previous approaches prevents the pointer bits containing
the authentication code from being used for addressing [25, 33].

To detect changes to the fixed address bits, C3 incorporates them
as a tweak during pointer encryption. We describe the details of this
below. Briefly, an identical tweak must be supplied during decryp-
tion as was supplied during encryption, or the decryption will be
incorrect with a resulting random value with a high probability. We
also incorporate the power bits in the tweak to detect unauthorized
modifications of those fields.

Software is free to modify the offset bits. Since the supported
radixes are all powers of two, the least-significant address digit of
the specified radix can be represented as the corresponding number
of offset bits.

If there are any allocations that do not fit into a 16GiB-aligned
slot, they can be left unencrypted. The source of the 16GiB limit is
that the offset field covering the allocation must be kept as plaintext.
Thus, 34 plaintext pointer bits can represent at most an 16GiB-
aligned slot. The fixed address bits field will not be present when
the pointer refers to a 16GiB slot, since the entire 34 plaintext bits
will be used as the offset.

Furthermore, a special power field value can be designated that
represents 16GiB adjusted slots that are offset by 8GiB from 16GiB
alignment boundaries, i.e. are shifted by half of their width. This
can accommodate allocations spanning 16GiB alignment bound-
aries. Although the radix for such adjusted slots would match that
for maximally-sized unadjusted slots, those would still effectively
reside in separate, isolated cryptographic address spaces.

Unencoded pointers indicate to the processor that the access
should be performed with data encryption and decryption disabled.
Unencoded pointers can be detected in constant time, since the
equivalent bit locations for the power field will be set to all zeroes
or ones for userspace or supervisor pointers, respectively, to match

258

LeMay, Rakshit, Deutsch, and Durham, et al.

Upper address

1l

[Sign extension

Version

Fixed address]| Offset |

~>
[Power [ Padded fixed address] |[24 bits]
Y
ﬂ [_Plaintext | )
n Pointer
Tweak| _ K-cipher | Key |
Ciphertext key
¥ 124 bits] Y

[Power [ Version | Encrypted address | Fixed address| Offset |

Figure 6: Flow for generating a CA given a plaintext in-
put pointer and object context. Object context specifies the
power-of-two slot fitting the object and its version to distin-
guish it from other allocations occupying the same slot at
different times.

conventional address formats. Those power field values are not
used for encoded pointers. Unencrypted accesses can be restricted
to particular address ranges, e.g. using page table entry bits.

4.3 Pointer Encryption

C3 encrypts pointers using a tweakable block cipher that provides
diffusion and confusion and is resistant to known ciphertext attacks.
It is named “K-cipher” [27]. No small block ciphers are currently
standardized, although several are being considered for a standard.
Other suitable small block ciphers with the same or different block
sizes can be used in place of K-cipher. For example, 32-bit SIMON
could be used if C? encrypted 32 pointer bits [2]. Existing state-
of-the-art industry solutions like ARM® Pointer Authentication
(PAuth) also use non-standard small block ciphers. Other prior arts
incorporate this as well. For example, AOS uses a 16-bit Pointer Au-
thentication Code (PAC), which is weaker than the 24-bit encrypted
pointer slice in C3.

Known ciphertext resistance makes K-cipher adequate for our
threat model, since we assume that adversaries are constrained
to be unable to generate or decrypt arbitrary encrypted pointers.
They are only able to observe the encrypted pointers returned by
the allocator in response to allocation requests. Those pointers do
not reveal the underlying upper address bits, since those bits are
encrypted.

The procedure for generating a CA is illustrated in Figure 6. It has
the following inputs: 1) Plaintext input pointer, 2) Pointer encryp-
tion key, and 3) Object context operand specifying the following
information: (a) Power indicating the exponent for the power-of-
two-aligned slot containing the allocation, and (b) Optional version
field.

The pointer encoding algorithm may be implemented by a soft-
ware routine or as a new instruction. Implementing it as an instruc-
tion enables the processor to protect the pointer encryption key by
storing it in a register inaccessible from untrusted software (e.g. a
write-only MSR) and enables hardware optimization of the pointer
encoding algorithm.

If implemented as an instruction, the instruction may accept
the plaintext input pointer and the object context operand as ex-
plicit instruction operands. It will also implicitly load the pointer
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Figure 7: Data decryption during load execution of C3 with
parallel keystream generation to avoid delays. Data encryp-
tion during stores is similar, except that the flow of data
through the XOR operation is reversed. Every allocation is
uniquely encrypted due to each allocation being assigned a
unique CA. The 64-bit CA itself is the only access-specific
security input; no additional metadata is needed.

encryption key from the register that contains it. The OS would
initialize the pointer encryption key register with a per-process
key analogous to a per-process PAuth key. Other key management
mechanisms may be employed to support various threat models.

The tweak input to the pointer encryption comprises all of the
plaintext pointer components that need to be protected from being
modified by the software. The fixed address bits field from the
plaintext input pointer is padded to always have a width of 34 bits
and to maintain the relative positions of each bit in the padded field
(i.e. padding on the right). An XOR fold operation (or some other
more sophisticated approach such as a lightweight permutation)
for generating the tweak is needed due to the input fields being
wider (40 bits) than the 24-bit block size of the pointer encryption
cipher.

The pointer decode flow is the reverse of the pointer encode
flow with the requirement that the same tweak value be supplied.
Decoding also drops the optional version field, since it does not
affect the generated linear address.

4.4 Data Encryption

We investigated cryptographic literature to identify minimal latency
keystream generation techniques. An implementation analysis for
Gimli reported a fully unrolled permutation with a 715.9 psec crit-
ical path, which results in a depth-4 pipeline that supports up to
a 4.5Ghz clock [21]. We have implemented a similar keystream
generator to minimize the cryptographic load and store latency
and hence minimize overall performance overhead of the proposed
C3 technique. Other candidates from the NIST Lightweight Cryp-
tography project [41] could similarly be used, e.g. Subterranean or
Xoodyak [12, 13].

For a load, the keystream generation is started as soon as the
Address Generation Unit (AGU) generates the CA for the instruction.
In other words, a load execution pipeline and respective keystream
generation pipeline proceed in parallel. Once both pipelines finish,
the encrypted data fetched from the data-cache gets XORed with
the keystream and returned to the respective load port as depicted
in Figure 7. This avoids delays in the critical load path. Each process
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is assigned a unique data encryption key analogous to a per-process
PAuth key.

One extra XOR latency in 7 nm FinFET is 4.5ps [49], which
should fit in the final data cycle of L1 hit that typically just has
data rotation. If there is a timing issue there, the extra XOR can
be absorbed in the bypass network (before data is given to the
consumers by the load). We are hence confident that this will not
increase L1 latency. However, in case there are designs that cannot
absorb this latency, an extra cycle would be needed on the L1 hit
data-path for encrypted loads. We evaluate this possibility in §5.2.

4.5 Mitigation Strength

The 24-bit encrypted slice in the pointer provides a great deal more
potential variation between pointers than is possible with the four-
bit tag in MTE, for example, which strengthens UAF mitigation.
This results in 1M times as many possible pointer encodings for the
encrypted pointer slice compared to the tag value that serves the
analogous role of mitigating UAF in MTE. Even within a given slot,
the version field can provide cryptographic diversity. Furthermore,
the allocator can make slot assignments unpredictable. The pointer
encoding is unpredictable even if the slot location and version
are known, since the pointer key may be assigned fresh for each
process.

The strength of MTE to mitigate non-adjacent overflows drops
back to the basic probability of guessing the tag for the targeted
memory. In this instance as well, C? offers much greater strength
due to its larger encrypted pointer slice.

This fundamental advantage of C3 compared to MTE extends to
other types of vulnerabilities such as pointer forgery and physical
attacks.

4.6 Microarchitecture

In this section, we describe the microarchitecture to support the
C3? security capability in a performant manner within state-of-
the-art processor designs. C> enforces temporally and spatially
unique encryption of pointers and therefore the memory engine
receives encrypted addresses for the load/store operations. Since the
load/store pipeline and the cache hierarchy addressing circuitry is
unmodified in C> and operates on plaintext addresses, it necessitates
timely pointer decryption by the memory engine. In addition to
pointer encryption, C? also enables data encryption. Therefore,
during a load operation, the encrypted data needs to be decrypted
before the write-back into the registers. Similarly, plaintext data
from the core needs to be encrypted before being stored in the
caches. We describe how the load and store pipelines are architected
to induct C® in modern microprocessors.

4.6.1 Load pipeline.

Pipeline stages. Figure 8 illustrates the common pipeline stages
for a load operation found ubiquitously in modern out-of-order
processors [10, 23]. Firstly, the address generation unit (AGU) com-
putes the virtual address (VA) of the load operation. Secondly, the
translation-lookaside-buffer (TLB) is looked up for translating the
virtual to physical address. Most processors use virtually-indexed
and physical-tagged (VIPT) data caches, since it allows the L1 cache
set read to be done in parallel to TLB lookup [31, 34, 58]. Thirdly,
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Figure 8: The load pipeline of the unsecure baseline, C3 with-
out PredTLB, and C3 with PredTLB.

we have the L1 cache hit/miss decision, depending on the physical
address provided by the TLB (on a TLB hit). Fourthly, on a L1 cache
hit, the data is read out from the selected way in the set-associative
L1 cache and the data is written back to the required consumers of
the load.

TLB does not store cryptographic address translation. With C3
enabled in a system, the AGU performs arithmetic on pointers
in the same format used by software, i.e. as Cryptographic Ad-
dresses (CAs) for encrypted allocations and as unencoded pointers
otherwise. However, the rest of the load pipeline works on plain-
text addresses. The TLB does not store address translations for
CA for the following reasons: (i) The TLB caches the page table
entries, which are in turn populated by the OS; hence page tables
are left in plaintext for legacy compatibility. (ii) A page may be
shared between 2 different allocations. Since the CAs for these 2
allocations are different, we would need to allocate 2 separate TLB
entries for the same translation. This would incur high TLB over-
head which is difficult to accommodate since TLBs employ area-
and power-hungry CAMs.

Predictive TLB lookup. The load pipeline in the presence of C3
requires decryption of the CAs before the TLB lookup. The K-cipher,
which is used for pointer encryption, is also used for pointer de-
cryption. Decryption of CA introduces a 3 cycle K-cipher latency
between the AGU and the TLB lookup directly on the critical path
of the load pipeline. This additional latency incurs a significant 5%
performance loss over our considered evaluation configuration (re-
fer to Section 5.2). To mitigate this performance loss, we use a
Predictive TLB (PredTLB) lookup which removes the constant
decryption latency from the critical path to improve performance.

PredTLB is based on the insight that bits 33:0, i.e., the lower
34 bits of the CA are actually in plaintext, which can be used for
partial TLB lookup. With a page size of 4KiB, bits 11:0 denote the
page offset of the address. PredTLB looks up the TLB structure
with bits 33:12 (i.e., 22 bits) of the CA, which are in plaintext, and
performs a partial tag match. PredTLB predicts a TLB hit if any
entry has a tag whose lower 22 bits match with bits 33:12 of the CA
and provides the physical page number stored in that TLB entry
as the corresponding translation. The L1 cache tag match uses this
translation for hit/miss decisions and data lookup.
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Since PredTLB does not wait for pointer decryption before TLB
lookup, it completely bypasses the constant 3 cycle decryption
latency from the critical path. However, PredTLB predicts a TLB
hit/miss based on partial tag match, and it can result in a mispredic-
tion due to aliasing between 2 different virtual page numbers (VPNs)
which have the same lower 22 bits. The result of the prediction
from PredTLB is known after the decryption is completed, i.e., be-
fore the data writeback. On a PredTLB misprediction, we cancel
the load operation and re-dispatch it through the load pipeline.
During this second try, the decrypted address is already available
from the first pipeline dispatch of the load, and hence, the load pro-
ceeds through the pipeline and completes successfully. Therefore,
a PredTLB misprediction incurs the latency of a useless pipepass.
From our evaluations, we observe that PredTLB has a high success-
ful prediction rate of 99.85% (refer Figure 10(b)), thereby enabling
C3 to bypass the constant decryption latency for 99.85% of the loads.

No performance overhead for data decryption. Since all the inputs
for data keystream generation including the encrypted pointer
are available right after the AGU, the generation is initiated after
the AGU pipeline stage and happens in parallel with rest of the
load pipeline. The keystream generation completes at the end of
the write-back stage, when data is actually written back to the
registers. The generated keystream is XORed with the encrypted
data fetched from the L1 cache before the write-back. Essentially,
the data decryption latency during a load operation is overlapped
with the load pipeline, rendering no performance impact.

4.6.2  Store pipeline. All modern out-of-order processors split the
store instruction into 2 independent sub-operations: store address
(SA) and store data (SD); this split enables parallel/OoO execution
of SA and SD, presenting performance improvement.

With C3, the SA sub-operation gets a CA from the AGU. The SA
needs to perform a TLB lookup to retrieve the physical address for
the VA, which is encrypted. Therefore, we have a situation similar
to the load pipeline, and we employ PredTLB for SA as well in order
to prevent the addition of a constant decryption latency before the
TLB lookup. The data to be stored also needs encryption. Hence, the
keystream generation is started as soon as the CA is available and
XORed with the data in the store-buffer (if available). In case the
data is not present, the keystream is kept in the space of data, and
XORed with the incoming data, when available. Similar to loads,
the decryption is overlapped with the SA/SD pipelines and has no
performance impact.

4.6.3 Memory engine microarchitecture. In this section, we describe
the overall microarchitecture of the memory engine to support C3.
Addresses output by the AGU in CA format are decoded by the
Pointer Decryption module. The CA is also used by the Data
Keystream module to generate the keystream for data decryp-
tion (during loads) or encryption (during stores). The plaintext
address is stored in the Load Buffer (LB) and Store Buffer (SB). The
LB and SB entries are extended in C3 to store the 24 bits of en-
crypted slice from the CA; these 24 bits can be concatenated with
the lower 34 bits of the plaintext address to re-create the CA. This is
especially necessary for timely load/store forwarding and memory
disambiguation decisions. Either the load or store might not have
the plaintext address available during the address comparisons.
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architecture.

Hence, we can perform the address comparisons on the CAs for
the corresponding load/store pair.

On a load, the L1 data cache returns encrypted data stored in the
cache which is XORed with the already generated data keystream
for retrieving the plaintext data. The forwarded data from a store
to a younger load is encrypted, which is decrypted with the same
data keystream. On a store, the store address operation provides
the CA, which is used to generate the keystream for encrypting the
data to be stored in cache. If the keystream is generated before the
data is available (due to OoO execution of SA before SD), it is stored
in place of the data in SB. Each SB entry is also extended to include
a Keystream Available (KeyAv) bit which denotes whether the
keystream is stored in the space for data. When the data is available,
if KeyAv=1, it is XORed with the available keystream to generate
the encrypted data, and stored in the L1 cache.

5 EVALUATION

5.1 Legacy Compatibility

We verified legacy compatibility with Simics®, which is a functional
full-system simulator [36]. We used the instrumentation API of the
Quick-Start Platform for x86 (QSP-x86) CPU model to functionally
simulate handling of encoded addresses and encryption of data in
memory.

The C3 Simics® model intercepts load and store instructions
and decrypts encrypted virtual addresses before the address trans-
lation. In addition, the model generates a keystream for the data
by using the CA as input. Once the data is written to (read from)
memory, it is XORed with the keystream to perform encryption
(decryption). Loads and stores using an unencoded address bypass
this instrumentation.

On top of the C3 Simics® hardware model, we run an unmodified
Clear Linux OS. To enable C? support in software, we modified
the glibc v2.30 heap memory allocator to encrypt heap pointers
before they are returned to the user application, while the actual
memory management code is unchanged. In addition, realloc()
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and free() are modified to decrypt encrypted pointers provided
as input. An application linked to such a library receives encrypted
pointers upon dynamic memory allocation (e.g., malloc()) and can
perform regular pointer arithmetic on them as if they were legacy
pointers (e.g., array indexing).

Moreover, we modified system calls in glibc that use pointers
as input arguments, e.g. pointers to buffers for exchanging data
between the application and the kernel. An analogous challenge
arose in the context of MTE, and various possible approaches for
handling it have been proposed [26]. Since the application may
provide a CA as input to a system call and the kernel only accepts
addresses in the conventional (i.e. unencoded) format via system
calls, we allocate an unencrypted buffer to serve as an interface
between the application and the kernel. Before a system call, data is
copied (with implicit decryption) into the temporary buffer and the
pointer to the buffer is passed down to the system call. After return-
ing from the system call, the data is copied back to the application’s
buffer, which encrypts the data if the application references that
buffer using a CA.

Several memory and string routines, such as memcpy, strlen(),
and strcmp(), needed to be adjusted to prevent benign OOB vio-
lations. Such functions are typically optimized to process strings
in blocks using SIMD instructions, resulting in fetching data be-
yond the allocated region. We replaced these functions with an
alternative implementation that avoids looking ahead beyond the
allocation bounds in string buffers. Google® LLC observed a fun-
damentally similar challenge with MTE, which motivated them to
modify various routines in the Android C library as well [8].

We used SPEC CPU2006 C and C++ workloads to verify the
functionality of the model. The FORTAN-based workloads were
excluded from this experiment, since they do not use the memory
allocator in the C standard library. We compiled the unmodified
workloads, linked them with the modified glibc shared library and
executed the workloads inside the Simics® simulation.

In addition, we generated traces from the workloads running
inside Simics® for an in-house, cycle-accurate simulator for perfor-
mance evaluation.

5.2 Performance

In this section, we discuss the evaluation methodology and contrast
microarchitectural simulation results for C* with state-of-the-art
solutions like MTE and AOS. MTE has not yet been released in any
processor implementations, so we are making assumptions about
how metadata is stored, accessed, and cached in our model that
may not correspond to future MTE releases.

We have done an optimistic evaluation of the prior work AOS,
with geomean overheads lower than the 8.4% reported in the origi-
nal AOS paper. Our core configuration is deeper than in the origi-
nal AOS paper [25], reflecting current commercial processors. The
bounds table resizing operation, which increases associativity, in-
curs no latency overhead. Similarly, searching each way, which may
span multiple cachelines, is executed with zero latency overhead.

5.2.1 Evaluation Methodology. We simulate an x86 core using a
cycle-accurate simulator that models a dynamically-scheduled OoO
core clocked at 4GHz. The core parameters in our model are set
to be similar to the Intel® Ice Lake processor [55]. We performed
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4GHz, 5-wide fetch+decode, TAGE/ITAGE branch
predictors [47], 32KiB, 8-way L1 instruction cache,
5-wide rename into OoO with macro and micro
fusion.

384 ROB entries, 128 Load Queue entries, 72 Store
Queue entries and 168 Issue Queue entries. 8 Execu-
tion units (ports) including 2 load ports, 2 store ad-
dress ports, 2 store-data port, 4 ALU ports, 3 FP/AVX
ports, 2 branch ports. 8 wide retire and full support
for bypass. Aggressive memory disambiguation pre-
dictor. Out of order load scheduling to L1.

48KiB, 12-way L1 data caches with 5 cycles latency,
512KiB 16-way L2 cache (private) with round-trip
latency of 17 cycles. 8 MB, 16-way shared LLC
with 47 cycles round-trip latency. Aggressive multi-
stream prefetching into L2 and LLC. PC based stride
prefetcher at L1. The TLB configuration follows Ice
Lake TLB configuration [11].

Two DDR4-2133 channels, two ranks per channel,
eight banks per rank, 64 bits data-width per channel.
15-15-15-36 (tCAS-tRCD-tRP-tRAS) timing.

Front End

Execution

Caches

Memory

Table 2: Core parameters used in our simulator.

these simulations in April 2021, reflecting the best known Ice Lake
configuration. The primary core parameters are tabulated in Table 2.
AOS mentions using an L1 bounds cache, i.e. basically a separate
cache at L1 for metadata (L1-M). Since C? does not store/access
any additional metadata, we first evaluate the proposals without
an L1-M, and then discuss the impact of a separate L1-M on MTE
and AOS. MTE imposes additional allocator overheads for updat-
ing duplicated, stateful tag metadata that this evaluation does not
capture, which results in that aspect of our MTE evaluation being
optimistic. We show our microarchitecture evaluations on all C/C++
workloads in the SPEC CPU2006 suite.

5.2.2  Performance impact of C3. We first discuss the performance
overhead of C3, as shown in Figure 10(a) with and without PredTLB
to illustrate its effectiveness. The average (GeoMean) performance
overhead of C? over all workloads is 4.9% without the PredTLB opti-
mization. This is primarily because C3 inserts a constant decryption
latency in the load pipeline, delaying the writeback of critical data
to the core and stalling all dependent instructions. A successful pre-
diction from PredTLB means the partial tag match by PredTLB will
give the correct hit/miss decision and translation, i.e., same as a full
tag match in the baseline. Due to a high successful prediction ratio
of 99.85% over all workloads, as shown in Figure 10(b), PredTLB is
able to overlap this pointer decryption delay with the load pipeline
for a majority of the loads. Across all workloads, we observed a neg-
ligible performance overhead of 0.01%. PredTLB enables providing
the superior security guarantees of C> with negligible performance
overhead. Figure 10(a) also illustrates the performance overheads of
C3+PredTLB with an extra delay cycle on the L1 hit data-path for
the XOR. The overheads are 0.7% with no large outlier workloads.
However, we are confident that will not be needed as we explained
in §4.
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Figure 10: (a) Simulated performance overhead of C3 with-
out and with PredTLB. PredTLB reduces the performance
overhead of C3 significantly. Lower (i.e. more negative) per-
centages indicate more overhead. We evaluated an extra cy-
cle of L1 latency to accommodate the XOR between the
data and keystream for completeness, but it is unlikely to
be needed. (b) The prediction success ratio of PredTLB. A
higher success ratio means lower load/store cancellation
and re-dispatching, resulting in lower performance impact.

5.2.3 Comparison against MTE/AOS without L1-M. We compare
the performance overhead of C3+PredTLB against competing mem-
ory safety proposals like MTE and AOS. Both MTE and AOS store
and access required metadata at a separate physical address space
than the data and require an additional metadata load for any mem-
ory access to the protected address regions in memory. Whereas the
additional metadata address space needs to be cached in the data
caches during execution, the additional metadata loads consume
critical L1 cache bandwidth. Therefore, MTE and AOS performance
is dependent on the metadata hit rate and available L1 bandwidth.
C3 offers a significant contrast to MTE and AOS since it neither
stores metadata in a separate physical address space, nor does it
need to spawn additional loads to fetch and verify this metadata.

Figure 11 illustrates the difference in performance overhead of 3,
MTE, and AOS. Whereas C? shows negligible performance overhead
for all workloads, MTE and AOS have an average overhead of 7%
and 3.6%, respectively, which are significantly high. Furthermore,
MTE and AOS have large outliers. The performance overheads
from existing security solutions are clearly extremely costly. On
the contrary C? has negligible overheads, making it an even more
attractive security solution.
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Figure 11: Simulated performance overhead comparisons of
C3 with PredTLB against MTE and AOS, without a dedicated
metadata cache. Lower (i.e. more negative) percentages indi-
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Figure 12: Simulated performance overhead comparisons of
MTE and AOS with a dedicated metadata cache. Even with
an L1-M, MTE and AOS have significant performance over-
head. Lower (i.e. more negative) percentages indicate more
overhead.

Since AOS has lower metadata footprint than MTE, it achieves
higher metadata hit rates in the data cache, rendering its per-
formance better than MTE. This is especially evident in 470.lbm,
462.]libquantum, 433.milc.

5.24 Comparison against MTE/AOS with L1-M. We evaluate the
performance overhead of MTE and AOS in the presence of a dedi-
cated metadata cache, called L1-M cache. L1-M shifts the metadata
caching out of the data caches into the L1-M, providing better meta-
data hit rates and additional bandwidth at the L1 level to serve
metadata loads. However, these benefits are obtained by incurring
the area/power overhead of an additional cache. Since C? does not
store metadata, it does not need a costly metadata cache. Figure 12
illustrates the performance overheads of MTE and AOS with an
8KB L1-M are 6.5% and 2.9%, respectively. 456.hmmer in particular
gains significantly with L1-M primarily because its baseline is band-
width constrained, and therefore L1-M alleviates the bandwidth
pressure by providing additional metadata bandwidth. Further, in-
creasing L1-M even to 32KB improves metadata hit rates only by
1.5% with no tangible performance improvements. In conclusion,
even with an L1-M, the performance overheads of MTE and AOS
are significantly higher than C3.
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5.3 Efficacy

The NIST Juliet Test Suite for C/C++ contains 28,881 test case pairs
of good and bad program behavior organized under 118 respec-
tive Common Weakness Enumerations (CWEs) [4]. These CWEs
are subdivided in Common Vulnerabilities and Exposures (CVE)
Variants. Each CVE variant is a unique behavior that is duplicated
dozens of times with increasing levels of obfuscation towards static
analysis tools. The test suite is designed to test static analysis tools;
however, portions of Juliet still provide a reasonable evaluation
of runtime defenses. We evaluated C3 using tests for two relevant
CWEs: CWE 122 “Heap Based Buffer Overflow” and CWE 416
“Use After Free”. The object-granular cryptographic isolation
provided by C3 mitigates all of the relevant sample vulnera-
bilities in Juliet for these two CWEs. We will now describe our
evaluation methodology and show detailed results.

5.3.1 Heap Buffer Overflow Evaluation Methodology. We sepa-
rately report two possible types of overrun protection, either of
which is an effective mitigation for each sample vulnerability: 1)
exceptions generated due to detection of corrupted addresses, and
2) silent prevention of plaintext access via data encryption. The
first type of protection is apparent when running the test, and we
determined when the second type of protection is applicable via
source code review of each CVE variant. Note that the second type
of protection is adequate for effectively mitigating a vulnerability
even if C* does not generate an exception. The cryptographic isola-
tion between allocations still protects the data. A CVE variant is
listed as detected (i.e. via an exception being generated) if and only
if all of the workloads within it are detected. The results are shown
in Figure 13a.

As Juliet was designed for static analysis, not every test case
is applicable for testing a runtime defense. Some only generate
memory unsafe behavior during an unpredictable subset of runs,
and others never actually generate memory unsafe behavior on the
heap at runtime. Intra-object overflows are out-of-scope for many
memory safety mechanisms, including C3, since the entire struct is
allocated using one malloc(). These overflows only account for 1%
of actual observed vulnerabilities reported in a recent analysis and
are hard to exploit [24]. We filtered out such inapplicable test cases.

6.9% of the buffer overrun workloads already crash due to mem-
ory corruption even without C3. Adding C? raised this crash/de-
tection rate to 87.2%. Source code review concluded that 100% of
in-scope variants are protected with the added consideration of
data encryption.

5.3.2  Heap UAF Evaluation Methodology. The crucial property for
mitigating UAF is actually to prevent access to a region of memory
via a dangling pointer after the region has been reallocated [3].
However, all UAF tests in Juliet follow the pattern malloc() —
write some data — free() — print the data — exit(), which only
accesses a dangling pointer without ever reallocating the memory.
We focused our analysis on what would happen if Juliet were to
exhibit behavior more like realistic exploits by reallocating memory
and then accessing a dangling pointer. Source code review deter-
mined that C* would mitigate this in all cases by allocating data
with varying slots or versions. The results are shown in Figure 13b.
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Total Crash/Detect Count Protected with
Count | without CC with CC Data Encryption
Workloads 2104 | 146 || 6.9% | 1834 87.2% | 2104 |100.0%
CVE Variants | 46 0 0% 40 | 87.0% | 46 100.0%

(a) CWE 122: Heap buffer overrun detection and protection rates. The 6 vari-
ants not detected in the final row are all cases where the overflow amount is
so small that it stays within the alignment boundary of eight bytes imposed
by the glibc allocator. Thus, those overflows never cross a slot boundary. This
also means that no other data can be allocated in the locations accessed by the
overflow, so it is not an actual security vulnerability.

Total Count| Protected with Varying Slot or Version
Workloads 520 520 100.0%
CVE Variants 21 21 100.0%

(b) CWE 416: Heap UAF protection rates.

Figure 13: Efficacy of C3 on NIST Juliet tests for CWEs 122
and 416.

6 RELATED WORK

This paper has mostly focused on comparing C* to past memory
tagging approaches and AOS. Tagging associates a tag with each
granule of memory, e.g. each 16-byte-aligned region [44, 46]. This
tag duplication leads to high memory and performance overheads.
AOS uses an authentication code of heap allocation base addresses
as a hash key into a table of bounds, and that metadata access also
leads to performance overheads [25]. The overheads for these ap-
proaches were analyzed in detail in earlier sections. C* completely
avoids overheads due to metadata tables and introduces negligible
cryptographic overheads instead.

We will now compare C? to other memory safety mechanisms
besides MTE and AOS. Unless otherwise noted, this related work
covers stack, heap, and globals, whereas per-allocation stack and
global protection using C3 is future work.

Pointer Authentication, Encryption, and Tagging. Some prior mech-
anisms authenticate pointers (e.g. PARTS [33]) or encrypt pointers
(e.g. PointGuard [9, 51]) without relying on separate bounds meta-
data, but they only mitigate indirect effects of a limited subset of
memory safety violations that happen to corrupt pointers used later
as discussed in §4.1 with reference to Table 1. C3 entangles data
encryption with unique, per-allocation CAs to directly protect data
confidentiality.

PARTS imposes 19.5% performance overhead and no memory
overhead [33]. PointGuard pointer encryption imposes ~2% per-
formance overhead in hardware and no memory overhead [51].
Pointer Tagging relies on tag bits rather than pointer authentica-
tion to detect pointer corruption [6].

PTAuth precedes each allocation with an ID incorporated as
context when authenticating data pointers to enforce temporal
safety with performance overhead of 26.5% (generating PACs in
software) and memory overhead of 2% [18]. To support pointer
offsets when checking accesses, it searches backwards for some
distance until it finds a candidate ID that results in successful pointer
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authentication. This introduces non-constant overhead, whereas
C3 introduces no new metadata in memory.

Address Sanitizer. Address Sanitizer (ASan) associates a bit with
each byte of memory indicating whether it is currently valid [45].
ASan inserts redzones marked as invalid to enforce spatial safety.
To enforce temporal safety, ASan quarantines memory from freed
allocations. However, ASan exhibits high memory (3.4X total) and
performance (73% average) overheads with poor locality, and the
lack of a tag value weakens its strength against non-adjacent over-
flows and pointer forgery. C* offers stronger protection than ASan
by virtue of its large, encrypted pointer slice unforgeable within
cryptographic limits to which data encryption is bound, and it
avoids introducing costly metadata.

Metadata Tables Indexed by Storage Location of Pointer. Intel®
MPX stores a 256-bit bounds table entry for every pointer, even
when many pointers reference the same allocation. A previous
analysis showed that this resulted in substantial performance over-
heads and an average 1.9-2.1X memory overhead [42]. Associating
a separate bounds table entry with each pointer prevents direct
temporal memory safety enforcement, since it is not feasible to di-
rectly identify all pointers that reference an allocation being freed.
Subsequent work has shown that temporal safety can be enforced
indirectly by unmapping some portions of the bounds table [57],
but with overheads of 60% for performance and 36% for memory.
BOGO does not enforce temporal safety on the stack. HardBound
is another approach that uses a table of bounds to enforce spatial
safety, although it also uses a compressed representation when
possible, even inlining the bounds in some pointers [14]. C* avoids
the memory and performance overheads due to storing metadata
in memory and it directly enforces temporal safety.

SoftBound+CETS is a combined approach for enforcing spatial
and temporal safety in software with a performance overhead of
116% [39]. It uses a bounds table analogously to MPX with an ad-
ditional level of indirection through the bounds table entries to a
slot containing a value that is shared across all copies of pointers
to a particular allocation. Watchdog used the same fundamental ap-
proach for storing and checking metadata, but it extended hardware
to reduce the performance overhead to 24% [38]. The indirection in
these approaches further increases overhead, whereas C* enforces
both spatial and temporal safety without relying on metadata stored
in memory.

Metadata Tables with Index Embedded in Pointer. CUP places
a bounds table index in upper pointer bits, which avoids dupli-
cating bounds table entries and supports direct temporal safety
enforcement with a performance overhead of 1.58X [5]. The use of
a separate table has poor cache locality, especially in comparison
to C3 that does not rely on metadata in memory.

Capabilities with Metadata Embedded in Pointer. Capabilities al-
low software to prove its authorization by providing an unforgeable
token to that effect [32]. The ability to cover an entire allocation
using a single capability rather than requiring a copy of the tag for
each granule of memory makes it more feasible to encode expres-
sive security policies into capabilities, e.g. deterministically checked
bounds that are byte-granular for many allocations, permissions,
type specifiers, etc.
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Numerous capability machine architectures have been imple-
mented over several decades [32], and CHERI is one recent ex-
ample with 128-bit pointers [54]. For pointer-intensive software,
even doubling the pointer size can impose substantial memory and
performance overheads, and it is incompatible with legacy binary
code. Furthermore, indicating for each word of memory and register
whether it contains a capability or ordinary data (i.e. using a tag
bit) imposes additional overhead in memory and elsewhere in the
design as well as extra software enabling burden.

It is difficult to revoke tagged capabilities to freed allocations,
since the capabilities may be scattered widely. For example, this
may involve quarantining freed heap allocations until they can be
swept up, e.g. as in CHERIvoke and Cornucopia [20, 56]. Those
impose added overheads on performance (additional 4.7% and 5.8%,
respectively) and heap memory usage (e.g. additional 33%), which
C3 avoids.

Approaches that do not expand the pointers trade off expres-
siveness and flexibility, e.g. by requiring even moderately-sized
allocations to be aligned to coarse-grained boundaries and limiting
address space size [29].

CHEx86 hybridizes capabilities and bounds tables, and it main-
tains the bounds tables for heap allocations beneath the ISA layer
to obviate the need for recompilation [48]. This introduces substan-
tial processor complexity, as well as the overheads from separate
bounds tables that C avoids by not relying on metadata in mem-
ory. CHEx86 imposes 14% performance overhead and 38% memory
overhead.

Tripwires. Tripwire mitigations place special markers within
memory regions that should never be accessed.

REST inserts a relatively large tripwire at the L2 level and deeper
in aligned memory regions and tags corresponding regions at the
L1 level [50]. There is a tension between memory overheads from
large tripwires and an increased probability of a legitimate data
value colliding with a small tripwire.

Califorms uses an inline header specifying such "dead" memory
regions with byte-granularity, but it requires even more tag bits
at the L1 level and even a per-cacheline tag bit at L2 and deeper
levels as well as recompilation [43]. The primary limitation of trip-
wire approaches is that exploits may bypass tripwires. Recall that
non-adjacent overflows have become more common than adjacent
overflows [37]. C? cryptographically isolates allocations to mitigate
both adjacent and non-adjacent overflows.

MemTracker associates metadata with each word of memory,
as does MTE, but MemTracker is not a memory tagging mecha-
nism [53]. MemTracker stores metadata in a linearly-mapped table.
A variety of state machines can be programmed, e.g. to enforce heap
spatial safety by marking chunk headers delimiting heap alloca-
tions as tripwires. This imposes an average performance overhead
of 1.4% for SPEC CPU2000 with one bit of memory overhead per
eight-byte word of data, 1.6%. C3 provides stronger protections
than MemTracker by mitigating non-adjacent buffer overflows and
UAF.

Temporal Safety Mechanisms Inspired by Garbage Collection.
MarkUs sweeps memory to identify dangling heap pointers, and
it prevents freeing memory referenced by dangling pointers [1].
It imposes 10% performance overhead and 16% memory overhead.
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pSweeper sweeps memory concurrently, with performance over-
heads of 12.5% and memory overheads of 112.5% when sweeping is
performed continuously on spare cores [35]. False negatives can oc-
cur in either approach when dangling pointers are hidden, whereas
C3 would still mitigate UAF in such scenarios.

Other Memory Safety Mechanisms. The CheckedPtr3 approach
for Chromium places metadata just prior to each allocation and
encodes the distance from metadata into the pointer [22]. However,
the distance field can overflow rendering memory safety checks
impossible. The field also needs to be separately updated each time
the pointer is updated, whereas the upper encoded portions of C3
pointers remain constant.

Duck et al. showed how address bits can be overloaded to encode
sizes for enforcing spatial safety, but that imposes a rigid layout in
the linear address space [15, 16].

C3 directly mitigates UAF without needing to track object rela-
tionships unlike DangNull and DangSan [30, 52].

7 LIMITATIONS AND FUTURE WORK

We are now investigating how to implement C3 in actual processors.
Other potential areas of future work are described below, as well
as limitations.

C3 can be paired with compiler enhancements to harden stack
and global variables. The enhanced compiler can insert instructions
to encrypt pointers to those variables.

The current lack of encryption for shared data and IO buffers lim-
its mitigating vulnerabilities involving that memory. However, C3
surpasses prior approaches by encrypting process private memory
to help address threats from untrusted processes and accelerators.

Future work can support key sharing for those regions across
contexts and with accelerators. For example, C3 can extend to ac-
celerators to provide a unified cryptographic addressing layer to
enforce memory safety atop Shared Virtual Memory (SVM).

8 CONCLUSION

C3 is the first stateless technique to enforce memory safety without
requiring any additional metadata or memory layout changes. It
binds data encryption to a cryptographically protected, radix-bound
pointer encoding that is unique to each allocation. The use of low-
latency ciphers replaces computationally expensive and storage-
hungry metadata checks with efficient cryptographic computations.
The encrypted pointer format mitigates pointer corruption and
forgery without consuming large numbers of pointer bits, in con-
trast to pointer authentication approaches. C? strongly mitigates
prevalent categories of vulnerabilities, and it can be extended to
mitigate even more with a unified cryptographic approach. C3,
by encrypting pointers and data, goes further by fundamentally
extending protections against even physical adversaries and vulner-
abilities in hardware by exposing only ciphertext across caches and
memory. Detailed performance evaluation shows that C3 can be im-
plemented in modern high performance processors with negligible
performance overheads.
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