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ABSTRACT
Demands for efficient computing among applications that use high-
dimensional datasets have led to multi-dimensional computers—
computers that leverage heterogeneous processors/accelerators
offering various processing models to support multi-dimensional
compute kernels. Yet the front-end for these processors/accelerators
is inefficient, as memory/storage systems often expose only en-
trenched linear-space abstractions to an application, and they often
ignore the benefits of modern memory/storage systems, such as
support for multi-dimensionality through different types of parallel
access.

This paper presents N-Dimensional Storage (NDS), a novel, multi-
dimensional memory/storage system that fulfills the demands of
modern hardware accelerators and applications. NDS abstracts
memory arrays as native storage that applications can use to de-
scribe data locations and uses coordinates in any application-defined
multi-dimensional space, thereby avoiding the software overhead
associated with data-object transformations. NDS gauges the appli-
cation demand underlying memory-device architectures in order
to intelligently determine the physical data layout that maximizes
access bandwidth and minimizes the overhead of presenting objects
for arbitrary applications.

This paper demonstrates an efficient architecture in supporting
NDS. We evaluate a set of linear/tensor algebra workloads along
with graph and data-mining algorithms on custom-built systems
using each architecture. Our result shows a 5.73× speedup with
appropriate architectural support.
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1 INTRODUCTION
As the dimensionality of compute kernels in data-intensive applica-
tions grows and Dennard scaling discontinues, modern computers
must support processing models in multiple dimensions. The pro-
cessing model of a conventional CPU core operates on 0-order
scalar data, graphics processing units (GPUs) provide 1-order vec-
tor processing capabilities, while Nvidia’s Tensor Core Units (TCUs)
and Google’s Tensor Processing Units (TPUs) compute on 2-order
tensors (multi-dimensional matrices). The internal structures of
memory and non-volatile storage devices in heterogeneous com-
puters are also multi-dimensional; memory chips typically contain
multiple internal planes or banks, while a typical modern comput-
ing device contains multiple chips and organizes chips into parallel
channels and banks to maximize access bandwidth.

Though hardware accelerators, memory architectures, and appli-
cations are multi-dimensional, data-storage and memory systems
still leverage an entrenched, one-dimensional addressing mode that
requires applications to serialize high-dimensional data along a
selected dimension (e.g., column or row) before storing data in a
memory device. When another application needs to retrieve data,
the application must also marshal, or say, deserialize, the raw data
to objects in the structures and dimensions that compute kernels re-
quire. Such abstraction leads to low utilization of high-dimensional,
data-intensive compute kernels in hardware accelerators due to the
processing overhead of changing data layouts and the inefficient
use of interconnect and memory-device bandwidths.

Conventional wisdom holds that using application-defined, more
efficient data storage formats [9, 84] and optimized algorithms [1,
102] can address the mismatch between memory/storage abstrac-
tions and compute kernels. However, finding the most appropriate
storage format is exceedingly challenging. First, the data-object
structures that maximize throughput compute kernels on hard-
ware accelerators may not match the layout that maximizes storage
bandwidth; such a mismatch can lead to inefficient data-storage
and memory-device access. Second, because modern memory and
storage interfaces hide hardware details from applications and/or
dynamically relocate physical data locations, the logical layout
upon which an application relies may not reflect the use of physical
memory space. Third, even if data are presented in some optimal,
high-dimensional data layout that maximizes storage and accelera-
tor performance for an application, the desired structures still differ
among applications.

This paper proposes NDS, N-Dimensional Storage, to address the
aforementioned memory-abstraction mismatch and the demand
of modern hardware-accelerated, high-dimensional compute ker-
nels/applications. NDS provides an interface that allows applica-
tions acting as either dataset producers or consumers to define their
own views (desired abstractions) of storage-data dimensionality.
The NDS space-translation layer (STL) gauges application demands
and memory/storage-device characteristics to break down datasets
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into building blocks that match the optimal granularity in devices.
The STL also maintains data structures that record the dimensional-
ity for each dataset and the mapping of the dataset’s building blocks.
Upon receiving an access request for a dataset, the STL presents
the dataset as an application-defined abstraction by dynamically
decomposing or constructing data into/from the building blocks.

NDS offers several benefits while resolving the aforementioned
issues. NDS mitigates the computation overhead of serialization
or deserialization in applications because NDS does not require
applications to transform datasets from/to the lowest, linear di-
mension that the conventional linear memory abstractions require.
NDS maximizes the utilization of system-interconnect bandwidth
and processing elements in hardware accelerators by allowing for
unique, application-specific datasets and by interacting with ap-
plications through optimally structured data objects. Further, NDS
takes a multi-dimensional approach to underlying memory arrays
and building blocks to take advantage of device-level parallelism,
thereby achieving high performance for arbitrary access patterns.

This paper describes a prototype NDS system built to investigate
the trade-offs of NDS features in different system components. In
the software-only implementation, NDS demonstrates the effective-
ness of the building blocks in lowering the overhead of constructing
multi-dimensional objects that compute kernels desire and achieves
a 5.07× speedup for a broad range of applications, including large-
scale, dense matrix/tensor algebra applications, graph traversal
applications, and high-dimensional data applications. With archi-
tectural support, specifically, a controller implementing the NDS
interface with STL features inside the storage device makes such
a speedup possible; NDS efficiently utilizes internal parallelism,
reduces the number of commands crossing the I/O interface, and
lowers overhead on a host computer. The hardware implementation
of NDS goes even further, achieving a 5.73× speedup for the same
set of applications.

In presenting NDS, this paper makes the following contribu-
tions: (1) It is the first work to present an application-defined,
multi-dimensional memory/storage abstraction as an alternative
to the entrenched linear memory abstraction. (2) It demonstrates
that granularities and dimensionalities of data accesses are differ-
ent among devices and that simply optimizing application-based
file-storage formats is insufficient. (3) It presents an efficient data-
allocation strategy that gives programmers and applications an
agnostic memory/storage data layout while allowing arbitrary data-
access patterns to fully utilize interconnect/device bandwidth and
efficiently construct multi-dimensional application objects. (4) It
evaluates different NDS system architectures and shows the perfor-
mance gains from each system architecture.

2 BACKGROUND
The dimensionality mismatch among hardware accelerators, mem-
ory devices, and abstractions is a primary source of processing
inefficiency. This section explains the effects of mismatching dimen-
sionalities on application performance, the challenges of tackling
suchmismatches, and the limitations of current research attempting
to address the problem.
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Figure 1: The blocked-matrix-multiplication datapath in a
hardware-accelerated computing system having a conven-
tional storage-system hierarchy with non-volatile memory
(NVM)

2.1 Modern accelerator-based architectures
Figure 1 shows the key hardware components for processing high-
dimensional datasets in a modern heterogeneous computer. Such a
computer typically uses hardware accelerators (e.g., GPUs in Fig-
ure 1) to perform compute kernels on high-dimensional datasets.
Modern GPUs provide two types of processing elements: (1) con-
ventional GPU cores that operate on vectors and (2) TCUs that
operate on matrices to more efficiently process high-dimensional
datasets.

To provide high-performance data storage, a computer may use
a solid-state drive (SSD) that stores data in non-volatile memory
technologies such as NAND flash memory and phase-change mem-
ory (PCM). All non-volatile memory technologies have their own
basic access granularities (e.g., page in flash memory). This is true
for newer byte-addressable devices like PCM [90]. To improve band-
width, modern SSD controllers use channel-level and bank-level
parallelism. Modern SSDs typically organize their memory arrays
into channels, with all parallel channels capable of accepting unique
requests simultaneously. Each channel also contains multiple banks
that allow free banks to accept requests while other banks are busy.
Commercialized non-volatile memory technologies have limited
program-erase cycles, so SSD controllers must carefully manage
mapping between the logical addresses that software uses and phys-
ical addresses in memory.

Because modern storage systems still expose linear address
spaces such as logical block addresses (LBAs) for use, produc-
ers of high-dimensional datasets must reduce data dimensionality
to 1-dimensional representations, typically with row-oriented or
column-oriented storage formats. If a hardware-accelerated com-
pute kernel needs to compute on datasets, an application invoking
the compute kernel must first fetch each piece of necessary data
from the storage system. The application then assembles each re-
ceived data chunk into memory objects with a layout that satisfies
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Figure 2: The relative execution time of matrix multiplica-
tions using row-store format (sequential) and sub-block for-
mat, with (a) data already in main memory and (b) from the
SSD.

the demands of the target accelerator’s architecture. Finally, the
application copies the created memory object from the host main
memory to the accelerator’s device memory so compute kernels
can use the object.

Figure 1 also shows matrix multiplication (MM) performed using
a modern GPU. The GPU kernel delivers maximum computation
throughput if the MM kernel is performed on 8K×8K submatrices.
The origin dataset presents its matrix inputs using a row-oriented
storage format, which is generally considered the most efficient for
CPU-based compute kernels. Each raw input matrix is 16K×16K.
The SSD has 8KB pages and 8 parallel channels; each SSD page
stores 2K elements encoded in IEEE-754 32-bit floating-point format,
and each matrix row occupies 8 pages that are logically consecutive
in the SSD’s LBA. In conventional SSD design, these consecutive
pages are typically striped across different channels to enable se-
quential parallel accesses in LBAs; such striping is needed because
most file systems and applications assume that underlying stor-
age devices are more efficient when the devices perform accesses
sequentially. As a result, each of the aforementioned 8 pages that
belongs to a single row will be physically located in a distinct
channel.

To maximize the efficiency on machines that have only limited
high-speed memory capacity available for hardware accelerators,
an application must create a pipeline to logically partition input
matrices into submatrices and perform multiplications on pairs of
submatrices. In each pipeline, the application first creates a subma-
trix by retrieving necessary elements from all required rows into a
destination location in system main memory. Once all elements of
a submatrix have arrived, the application copies the created subma-
trix to the accelerator’s device memory and launches the compute
kernel on the copied submatrix.
[P1]: The overhead of marshalling input data. To restructure
stored data into the dimensionality hardware accelerators need, an
application must use CPU instructions to calculate the mapping
between the raw-data offset and the target memory locations. Then
the application must issue I/O requests through the system software
stack, again using CPU instructions, to fetch pieces of raw data and
place (and potentially convert) the received data chunks in their
designated memory locations. In Figure 1, if the application needs
to fetch an 8K×8K submatrix, the row-store format will require

the program to issue 8,192 I/O requests—to fetch 8,192 rows that
contain the submatrix items.

Figure 2(a) illustrates the CPU overhead, with the raw data al-
ready in system main memory before the compute kernel launches.
The system uses an AMD RyZen 3700X CPU and Nvidia’s RTX 2080
GPU. The baseline comprises pipelined matrix multiplications—that
is, the multiplication of two 32K×32K matrices using sub-blocks of
8K×8K matrices. As the source dataset uses sequential row-store
format, the baseline needs an additional stage to form 8K×8K ma-
trices before the compute kernel starts. In contrast, the alternate
configuration with sub-block format already has 8K×8K submatri-
ces stored in main memory and does not require the CPU to prepare
data for compute kernels. In figure 2(a), the sequential baseline con-
figuration requires 2.11× more time to avoid CPU overhead than
the sub-block configuration does.
[P2]: Underutilization of interconnect bandwidth. As a result
of the mismatching data layouts between storage and compute
kernels, I/O requests to fetch data chunks are typically smaller than
the sizes that can amortize the overhead of each I/O transaction,
leading to underutilized interconnection bandwidth on the I/O side.
In modern NVMe [6] interface, interconnect bandwidth saturates
if each request is larger than 2 MB. However, when fetching a row
containing 8K elements for an 8K×8K submatrix (Figure 1), each
I/O request is for 32 KB of data, and the interconnect only achieves
66% of the peak bandwidth.

To maximize I/O bandwidth, an application may be designed
to fetch consecutive chunks of storage data into a large memory
buffer and gradually copy the buffered data into designated memory
locations. However, the latter approach creates three performance
issues: (1) it generates traffic from copying small data blocks on the
CPU-memory bus, (2) it wastes precious main-memory capacity for
memory buffers, and (3) it fetches data elements that the application
might not use immediately and might need to fetch again due to
limited buffer memory capacity and so wastes I/O bandwidth.
[P3]: Underutilization of device bandwidth. One-dimensional
LBA space requires that an application materialize the original
multi-dimensional data structure when presenting the data in stor-
age. If the data dimensionality or the access pattern does not fit
the storage device’s internal structure, the application consuming
the materialized data is likely to underutilize the device’s internal
bandwidth. As in Figure 1, when fetching 8K×8K submatrices, a
program can only utilize 50% of the available parallel channels (de-
vice internal bandwidth) since the requesting data only reside in 4
of the 8 channels.

Figure 2(b) shows the impact of such underutilized bandwidth in
a real application by extending the situation in Figure 2(a) for data
placed in an SSD with 32 parallel channels. Besides the CPU over-
head of transforming rows into submatrices, the baseline spends
1.92× more time fetching data compared to an SSD configuration
with optimal data layout for the workload by storing 8K×8K sub-
matrices consecutively due to the underutilized bandwidth.

2.2 Challenges
Given the observations in Section 2.1, the data layout of an input
dataset from memory/storage must fulfill the following require-
ments to fundamentally address the locality and dimensionality
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mismatch between storage data and compute kernels on hardware
accelerators: (1) The layout must minimize the overhead of re-
structuring data in compute kernels and hardware accelerators. (2)
The layout must allow the application to fully utilize the internal
bandwidth of the storage device. (3) The layout must maximize the
granularity of I/O commands and thus minimize the number of I/O
requests.

Under the linear address space that a conventional storage sys-
tem exposes, designing an optimal data layout that satisfies the
above three requirements is challenging, for the reasons given be-
low.
[C1]: Unavailability of internalmemory-device architecture
to applications. A storage device abstracts memory locations into
LBAs without informing applications about the device structure.
Existing NVMe commands allow an application to query the param-
eters of an underlying device and to optimize the LBA layout for an
individual device; however, garbage collection and wear-level func-
tions in the SSD management layer (including the flash-translation
layer [FTL] and PCM translation layers [33, 76, 99]) can lead to
data-location shuffling and suboptimal performance.

In addition, the application is unable to optimize the LBA lay-
out for all storage devices because internal designs and hardware
structures differ among devices. Consider Figure 3, which shows
the data-processing rate or I/O bandwidth of each hardware com-
ponent. For two flash-based SSDs, one with 32 channels and the
other with only 8 channels, the 32-channel SSD can utilize the max-
imum bandwidth with the 512×512 matrices that the application
fetches (4 GB data sequentially from the SSD’s LBA space), but the
8-channel SSD only achieves its own maximum bandwidth (again,
with 4 GB data fetched sequentially). Figure 3 thus underscores the
extreme difference in optimal data sizes due to different internal
device architectures.
[C2]: Unpredictability of optimal dimensionality in compute
kernels. Because any applications can share a dataset, and a com-
pute kernel can execute on a variety of computing resources, there
exists no optimal layout that can maximize the efficiency of all ap-
plications or accelerators. For example, a row-oriented or column-
oriented pair-wise matrix can maximize GPU computation, but
cannot be efficient for matrix-multiplication kernels.

Figure 3 also compares the data-processing rates and input-
data sizes for processors/accelerators using different computation
models—the vector processing model (used with general matrix
multiply, GEMM, from Nvidia’s cuBLAS [63] library) on conven-
tional GPU cores (CUDA cores), and the 2-D matrix-processing

model used with Nvidia’s Tensor Cores. To measure pure compute-
kernel performance, we made all matrices available on the GPU
device memory before the GEMM functions were invoked. Setting
aside the significant performance lead in Tensor Cores, the optimal
submatrix size that maximizes performance on the CUDA cores
was found to be 2048×2048, whereas the optimal submatrix size for
the Tensor Cores was 512×512.
[C3]: Demand mismatch between storage devices and com-
pute kernels. Even though a user can narrow down the use of a
dataset to a specific type of compute kernel, hardware accelerator,
and dedicated storage device, there is no guarantee that the optimal
input data for the hardware accelerator will match the layout that
can fully utilize the internal bandwidth of the storage device. For
the situation covered in Figure 3, our matrix-multiplication kernel
worked best on 512×512 submatrices, but the bandwidth for the
consumer SSD is maximized if each I/O request fetches 16K×16K
submatrices.

2.3 Alternatives
Prior work has addressed mismatching dimensionalities in mod-
ern computers through (1) more efficient data storage formats, (2)
libraries supporting high-dimensional addressing, and (3) offload-
ing of I/O operations to intelligent storage devices. Unfortunately,
none of the three approaches tackles the challenges mentioned in
Section 2.2.
File formatsMuchwork has focused on dense data storage. Apache’s
Parquet [8] and ORC [9] offer efficient columnar storage formats,
and Arvo [7] offers row stores for Hadoop. To reduce the CPU
processing overhead of deserializing objects, Google’s protocol
buffers [87] and JSON’s binary representation (BSON) [68] propose
binary-encoded internal data representations. Albis [84] fuses fea-
tures of columnar/row-major stores with binary-encoded formats
to exploit both spatial locality and low-overhead deserialization.
Domain-specific file formats are also available to address the de-
mand of popular compute kernels in application subsets: aggregate
genomic data (AGD) [19] for biological applications, G-Store [47]
for graph applications, and JSOI [70] and ONNX [83] for machine
learning models. Frameworks that automatically generate data lay-
out for GPU kernels [51, 57] also exist. None of these formats can
address challenges posed by [C1] and [C3], leading to problems
[P2] and [P3].
High-dimensional software I/O libraries To reduce the over-
head in applications that create high-dimensional data objects,
cloud storage systems such as N5 [73] and Zarr [5] use n-dimensional
addressing modes and chunk raw data to better utilize I/O band-
width. Zarr [5] also uses data compression to maximize the effective
I/O bandwidth. These software libraries still only access abstracted
linear memory/storage address spaces, which leads to problems
[P2] and [P3].
In-storage processing (ISP) To present data objects in a way that
compute kernels require and improves the bandwidth/memory de-
mand and CPU overhead, near-data processing (NDP) or ISP models
can use a device’s internal bandwidth by working on the controller
within the device. Existing ISP frameworks can transform rawdata
into application objects for general-purpose compute kernels [85],
mixed-precision/approximate computing workloads [35] or spe-
cialized applications like large graphs [58]. However, the above
approaches are all lacking in that ISP cannot efficiently produce
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Figure 4: An overview of NDS data-access operations

application objects by fully utilizing interconnect bandwidth ([C3])
unless the in-device data layout fits the access patterns of ISP code.

3 OVERVIEW OF NDS
To address the issues and challenges outlined in Section 2.1 and
Section 2.2, NDS follows three key design principles.
Provide commands in multi-dimensional addressing
modes. As noted, linear address space forces applications to trans-
form multi-dimensional data into one-dimensional data and leads
to [P1], [P2] and [P3]. In contrast, NDS offers multi-dimensional
storage and I/O commands that enable a single I/O request to man-
age data in arbitrary dimensions. NDS thus minimizes the number
of I/O requests while maximizing the data volume that each request
moves.
Indicate compute-kernel demand through application-
defined, multi-dimensional address spaces. In NDS, each ap-
plication can define its own view of a data object’s dimensionality,
regardless of (1) the original data layout and dimensionality in data
storage and (2) the view of the data object from other applications,
to address [C2]. NDS automatically and implicitly transforms a
data object into an application’s required dimensionality. As an ap-
plication accesses data objects using its natural view of the address
space, NDS further reduces the conversion overhead of data dimen-
sionality ([P1]), and the compute kernel can work more efficiently
because NDS presents data using an optimized memory layout.
Make software agnostic to storage-device characteristics.NDS
decouples storage-device granularity and data layout from an ap-
plication’s view, thereby reducing programming complexity and
broadening data-layout applicability, addressing [C1], [C2] and
[C3]. NDS uses the dimensionality that a dataset producer provides
to help determine storage space; NDS intelligently restructures stor-
age data into building blocks—collections of basic access units (e.g.,
pages) in the memory device. These building blocks serve as inter-
nal structures that maximize internal access bandwidth and allow
low-overhead conversion into different dimensionalities.

Figure 4 shows, on a conceptual level, how NDS presents an ar-
chitecture to support multi-dimensional data accesses. By working
between the software stack and storage hardware, NDS receives
optimal access granularities and serves as an intermediary to fill the
demands of both application and device. In NDS, each in-storage
and in-application address space is determined by three properties:
• Space identifier : the identifier of the target address space, typi-
cally the starting address of the space in the linear view of the
storage/memory

• Element size: the volume of each data element in the space
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• Dimensionality: the number of dimensions and the size of each
dimension, combined
Following the numbering system in Figure 4, an NDS dataset

producer creates amulti-dimensional space using the three essential
properties ( 1○). The STL then parses the data structure, determines
the dimensionality of building blocks in the address space, and
returns the space identifier to the software. When transferring data
into NDS ( 2○), an application passes the source memory location
and the address-space data position using two parameters:
• Coordinate: the position of each data chunk within the defined
address space

• Sub-dimensionality: the dimensionality of each coordinate of a
fixed-size partition within the defined address space
Next, the STL fetches data from the source location and uses a

set of building blocks to store data ( 3○). The STL assigns memory
locations for each data portion to maximize access performance.
The high-level allocation-policy guideline is to find the minimum
overlap of basic access units from all available forms of parallelism
in the device. When an application needs to consume data from
NDS, the application notifies NDS of its view of the dimensionality
( 4○) and requests the data-chunk coordinate and associated sub-
dimensionality that the application will use for its data location ( 5○).
(Note that the dimensionality in the consumer program need not
match the dimensionality of the dataset producer’s address space,
as long as the volumes of these two dimensionalities match.) The
STL will then transform the coordinate, the sub-dimensionality, and
the dimensionality to locate and fetch building blocks ( 6○). Finally,
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NDS assembles the fetched building blocks in a structure aligned
with the consumer’s view and delivers the assembled object into
the consumer’s address space ( 7○).

Figure 5 revisits the request shown in Figure 1 using NDS. In
Figure 5, the producer application creates a three-dimensional space
with a size of 8,192×8,192×4. After gauging the device capabilities
and the dimensionality of the space, NDS uses 16,384 building
blocks, where each building block is sized as 128×128, for a total
of 8 pages from 8 different channels in the same bank. In this way,
NDS maximizes the access bandwidth during the store operation.

For an application that treats the dataset in the space as four
8,192×8,192 sub-blocks and requests the [1,0] sub-block—that is,
elements [8192, 0] through [16383, 8191] in a 16,384×16,384 ma-
trix—the consumer simply needs to send one I/O command describ-
ing the location of the sub-block in the space. NDS translates this
single request into accesses to 4,096 (64×64) building blocks. As
each building block consists of pages from different channels in the
same bank, each access to the building block can fully utilize the
internal bandwidth of the device. NDS can issue an access request
to a building block in another bank in the next cycle to pipeline
building-block accesses, whereas the non-NDS approach in Figure 1
consistently wastes approximately 50% of the internal parallelism
when accesses are fully pipelined.

Upon receiving each building block, NDS dynamically assembles
the datasets into 8,192×8,192 sub-matrices that the compute kernel
requires. NDS delivers each consecutive data chunk to the host
computer as soon as the chunk is assembled. The application does
not need additional code to restructure the object because the data
are now presented to the compute kernel in the kernel’s required
layout. The complete process requires only one I/O command from
the host computer. In contrast, the process in Figure 1 requires the
host computer to either intensively access the CPU memory bus
and use CPU instructions (to relocate data) or issue an excessive
number of I/O requests (e.g., in the thousands).

4 THE STL
The STL is the core of NDS. The STL creates multi-dimensional ad-
dress spaces and determines how building blocks are used. The STL
receives access requests using coordinates in arbitrary dimension-
alities and translates these requests into hardware commands to
access the physical data locations of building blocks. Using building
blocks, the STL dynamically transforms and presents the address
space in the desired application view. In contrast, conventional FTLs
and other block abstractions only present data in linear addressing
modes and rely on applications to adjust data dimensionality.

4.1 Building blocks
In NDS, a building block is a fixed-size logical chunk of data storage.
NDS considers a building block as the basic unit of data-storage ele-
ments that are colocated in their original address space. A building
block contains a set of physical memory-access units (e.g., pages
in NAND flash-based storage). The STL determines the size of a
building block and assigns memory units into a building block by
considering the efficiency of accessing the building block.

To minimize the latency of its retrieval, a complete building
block stores its data in units available through all parallel channels.

Therefore, STL determines the address space of a building block by
finding the minimum building-block size (BB_Sizemin ) allowable
for the underlying storage device as

BB_Sizemin = MaxNumber of Parallel Requests ×

GranularityBasic Access
(1)

whereMaxNumber of Parallel Requests represents the maximum
number of parallel requests a memory device can perform (typically
the number of parallel device channels), and
GranularityBasic Access represents the fine-grained structure of
the aforementioned basic-access units. For example, if an SSD con-
tains flash chips having 4 KB pages and 8 parallel channels, the
building block will be defined as a multiple of 32 KB (4 KB × 8)
using Equation 1. A minimum building block will consist of 8 pages,
each from a different parallel channel in the device. BB_Sizemin is
identical for devices that share the same internal architecture but
can vary among devices with different architectures.

The STL creates a multi-dimensional address space
using dimensionality parameters as well as a mapping between
multi-dimensional coordinates and building blocks. Since
MaxNumber of Parallel Requests andGranularityBasic Access can
represent two dimensions of the building block in a modern NVM
storage device, the STL uses each building block to store a two-
dimensional sub-block if the space has at least two dimensions.
To balance the unpredictable demands of access patterns from dif-
ferent compute kernels, the STL maintains equal-size sub-block
dimensions whenever possible. The STL will therefore determine
the building-block size, BB, of the address space as

BB = N × (2 ⌈
loд2

BB_Sizemin
N

2 ⌉ )2 (2)

where N is the size of each element in the space, and with each

dimension in the building block storing 2 ⌈
loд2

BB_Sizemin
N

2 ⌉ elements.
For example, when BB_Sizemin is 32 KB, and the application creates
a 2-D space to store 4-byte elements, the STL will use 64 KB as the
size of each building block. Each building block will contain 2 pages
from each channel and store 128 elements in each dimension.

If the address space has more than 2 dimensions, the STL can
use banks to construct a 3-D sub-cube as a building block. In this
case, the STL determines the minimum 3-D building-block size as

3D_BB_Sizemin = BB_Sizemin × Numbanks (3)

where Numbanks is the number of banks. Similarly, the STL deter-
mines building block size for a 3-D space as

BB = N × (2 ⌈
loд2

BB_Sizemin
N

3 ⌉ )3 (4)

where each dimension stores 2 ⌈
loд2

BB_Sizemin
N

3 ⌉ elements.
If the memory device provides another level of parallelism, NDS

can further extend Equation 3 to make a building block. Note, how-
ever, that because modern volatile/non-volatile devices only exploit
bank-level and channel-level parallelism, and hardware accelera-
tors only support 1-D or 2-D operations (e.g., TPUs [39] and Tensor
Cores), NDS as yet supports only 1-D, 2-D, or 3-D building blocks.

In the rest of this paper, we use (bb1, bb2, ..., bbn ) to represent
the dimensionality of a building block in an n-dimensional space
where bbi represents the size of the ith-order dimension in the
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Figure 6: An exemplary B-tree structure of STL

space. Since NDS currently supports 1-D to 3-D building blocks,
NDS sets the bbi value to 1 when i > 3. We use (d1, d2, ..., dn ) to
represent the size of an n-dimensional (N-D) space where di stands
for the size of the ith-order dimension.

4.2 Locating and allocating building blocks
An NDS is based on building blocks, so the STL maintains a B-tree
structure for each N-D space to locate a building block. The STL
maintains an N-level tree data structure for an N-D space. In each
B-tree, the root node corresponds to the highest order in the N-
D space, the second-level from the root node corresponds to the
second-highest order in the space, and the leaf node corresponds
to the lowest order of the space. In each level of B-tree nodes, the
node degree is di

bbi
, where di represents the size of the ith order

spatial dimension. For a non-leaf node, each entry is a pointer to
a next-level leaf node in the STL’s memory space. For a leaf node,
each entry points to a list of physical memory locations for basic
access units (e.g., pages in an SSD) that belong to the corresponding
building block. The list of access-unit locations is sorted according
to the sequential order of the units in the building block.

Figure 6 illustrates such a B-tree structure for a 3-D space with
2-D building blocks; the multidimensional space is an (8192, 8192,
4) space that uses (128, 128) building blocks. Since the space has
three dimensions, the B-tree has three levels. If a request goes to a
building block with coordinate (6, 0, 1), the tree will visit the 1st
entry in the root node to reach the next level and use the 0th entry
in the 2-D node to reach the 1-D/leaf node. The leaf node points to
a list of pages in storage. When accessing a building block, the STL
will issue requests to fetch all pages in the list in parallel.

When a valid request leads to an unallocated entry in the B-
tree structure, the request reaches an unallocated physical memory
location. The STL will allocate all necessary tree nodes along the
traversal path from the STL’s memory space. If the request tries to
overwrite an existing access unit in a building block, the STL simply
picks a page from the same channel and bank as the overwritten
unit.

If the STL attempts to reach an unallocated-entry leaf node, the
STL must find a free physical memory location that maximizes

parallelism when accessing the associated building block in the
device’s data arrays. In a typical NVM storage device, the STL can
take several different approaches to access-unit selection, as follows:
(1) If the STL has not created the building block, the STL randomly
chooses an access unit from a channel and a bank. Alternatively,
(2) if the building block exists, the STL picks an access unit from
a parallel channel that the building block uses the least (a least-
used channel); in this case, the unit is from the same bank as the
most recently allocated unit in the building block. (3) The STL can
also select an access unit from an unused or least-used bank if the
building block has used a unit from every channel in the bank. (4)
If the STL cannot find a page through the above rules because the
building block has used a unit from every channel and bank, the
STL chooses one of the least-used banks and repeats (1) through
(3).

Note that if the number of free units for any combination of
channel and bank is lower than a specified threshold (typically
10%), the STL triggers garbage collection to reclaim invalidated
memory locations. Garbage collection in NDS is similar to that of a
conventional NVM storage device, except that NDS can maintain
a reverse lookup table that records the building blocks associated
with the erasing unit (i.e., a block in flash SSD). The look data
structure can use 8 bytes of the spare out-of-band area for each
access unit to speeds up mapping updates between building blocks
and the physical memory locations.

4.3 The space translator
NDS can present data locations to an application as coordinates in
an arbitrarily dimensioned space, and so decouples the application’s
view of dimensionality from actual storage. The STL’s space trans-
lator makes this possible by dynamically remapping coordinates to
the building blocks in a designated address space.

As Section 3 describes, an application can work with its own
multi-dimensional space of size δ1, δ2, ..., δm regardless of that
space’s representation in storage. With thism-dimensional space,
an application can access NDS using a coordinate (x1, x2, ..., xm ) and
the sub-dimensionality (β1, β2, ..., βm ) that represents the partition
of the requested data.

For an n-dimensional space in NDS with dimension sizes (d1,
d2, ..., dn ) and each building block having dimensions (bb1, bb2, ...,
bbn ), the STL will remap the data request to a set of building blocks,
with each building block having the n-dimensional coordinates (y0,
..., yn ), where each yi belongs to a set of numbers in Yi , and Yi is
defined and calculated dynamically as

Yi = {a ∈ Z : a ≥ ⌊

∑m
j=2[(x j × βj )

∏j−1
k=1 δk ] + x1 × β1∏i−1

k=1 bbi
⌋

and a ≤ ⌊

∑m
j=2{[(x j + 1) × βj )]

∏j−1
k=1 δk } + (x1 + 1) × β1∏i−1

k=1 bbi
⌋}

(5)

4.4 Data accesses, assembly, and composition
While the space translator decomposes a request into
building-block coordinate accesses, the STL walks through the
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B-tree structure to issue requests (and allocate space if necessary)
to each access unit, as described in Section 4.2.

For a write request, the STL fetches the writing partition from
the application and fills corresponding data chunks into one or
more building blocks. When an application’s sub-dimensionality is
larger than a building block, the fetched partition contains content
for several building blocks that are spatially colocated. The STL
can easily optimize the sequence of programming storage arrays
by writing to building blocks that the fetched partition covers. If
the fetched partition is smaller than a building block, the STL will
try to keep the partition in STL memory space and write to storage
whenever the collected data is sufficient for a basic access unit in
any building block.

For a read request, the STL will access a set of building blocks
and creates a buffer in STL’s memory space to place the received
data into logical locations—from the application’s perspective—with
object assembly determined by the translation process described in
Section 4.3. As soon as a segment of the assembled object reaches
the optimal data-exchange volume for the system interconnect, NDS
starts to move the assembled data. Once the STL has assembled all
data for an application request and has moved the assembled multi-
dimensional object to application’s memory space, NDS designates
the request as complete and returns to processing other application
requests.

5 THE NDS PROTOTYPE
In this section, we describe a proof-of-concept storage system that
demonstrates the validity and value of NDS. This prototypical NDS
system includes an application programming interface (API) and
implements the core of NDS—the STL functions. To fundamentally
address the issues and challenges in Section 2, we implemented a
hardware-assisted NDS and a software-only design for comparison
by extending a baseline SSD.

5.1 APIs
Because NDS accepts high-dimensional coordinates instead of con-
ventional 1-D offsets, NDS needs system-level API functions for
front-end interactions. Our API allows applications, file systems,
and programming-language libraries to access user-space and kernel-
space functions that fall into the three categories below.
Space creation/management API functions in this category re-
ceive arguments that describe dimensionality parameters such as
the number of dimensions, the size of each dimension, and the
size of each element. If a function call passes null as the address
identifier, then the function considers the call a request to create
a new address space and will trigger the STL to determine the
building-block size, create corresponding data structures, and allo-
cate/return an identifier for the space. If the caller passes an existing
valid address identifier, NDS triggers the STL to expand, shrink,
or restructure the existing space. When necessary, the callee can
return a different address/identifier.
Open/close Functions in this category do not perform real data
accesses; rather, they hand over the application view of the address
space to NDS and terminate application use of a space. These func-
tions resemble the open and close calls in conventional systems.

Conventional systems can, in fact, leverage these open/close API
functions to extend existing functions and use NDS more efficiently.
Read/write API Functions in this category receive the following
arguments: (1) a space identifier describing the source/target NDS
space, (2) coordinates describing the
source/target data locations from the application’s perspective, and
(3) a memory buffer in the application space for the source data or
target. If a function writes to NDS, NDS triggers the STL to allocate
building blocks and transfer the source data from the specified
coordinates in the application to the designated locations in build-
ing blocks. If a function reads from NDS, the STL translates the
coordinates from the application’s perspective to the correspond-
ing locations in the storage device. The read/write API functions
can also work with multi-dimensional data-movement API func-
tions (e.g., cudaMemcpy2D in CUDA) to move data more efficiently
between high-dimensional accelerators and NDS.

Without NDS, the programmer needs to manually optimize ap-
plications in a way that the program can retrieve and store data
chunks using an optimized size that maximizes the storage band-
width for the specific storage device. Most of time, such chunk size
does not match the chunk size maximizes the GPU utilization as
Section 2.2 presented. Therefore, the programmer needs to add code
to construct application objects in chuck sizes that maximize the
performance of compute kernels, and finally, the compute kernel
receives these objects can work on parts of the constructed data
objects. In addition to the efforts of coding itself, programmers
need to go through exhaustive design space exploration processes
in searching the optimal size for both the storage front-end and the
compute kernel backend. In contrast, the NDS version of code al-
lows the programmer to just focus on describing the desired objects
from the compute kernel’s perspective. NDS transparently handles
the performance optimizations in storage front-end. Though the
programmer may still need to search for optimal parameters of the
compute kernel, NDS should at least save half of the development
time since the programmer does not need to take care of the optimal
object and parameters for storage.

5.2 System implementations
To test the NDS concept, we developed a hardware-assisted NDS
by extending the baseline SSD’s controller and replacing the exist-
ing NVM management layer with the STL. In addition, we imple-
mented a software-only NDS by using LightNVM [15], a storage
protocol/interface that exposes software to the physical addresses
of the underlying NVM device.

Figure 7 shows the system architectures, control paths, and data
paths for the three implementations: the baseline SSD, the software-
only NDS, and the hardware-assisted NDS. In applications involving
conventional SSDs, like the configuration shown in Figure 7(a),
the system stack incurs significant data accesses to system main
memory in order to exchange data objects for compute kernels
( 1○), serialize/deserialize objects ( 2○), and exchange the serialized
objects with the device ( 3○– 5○).

In the software configuration shown in Figure 7(b), all NDS func-
tions, including the API implementations and the STL, run on the
host processor with system main memory. The NDS subsystem
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Figure 7: (a) The baseline, conventional SSD, (b) the software-only NDS implementation, and (c) the hardware-assisted, NVMe-
based NDS implementation

interacts with the LightNVM-compliant storage device (e.g., open-
channel SSD) through the NVMe device driver; NDS does this by
using physical addresses that the storage device can directly use to
access its internal data-array locations without translation. Though
the software-only implementation can address all the challenges of
the baseline case and avoids the object deserialization/restructuring
overhead, the implementation fails to address other performance
issues. Namely, the software-only implementation still accesses
the host system main memory for data assembly( 2○), so the imple-
mentation under-utilizes the internal bandwidth because NDS still
works behind the interconnect.

In contrast to the baseline system and the software-only system,
the hardware-assisted NDS system moves data-assembly traffic
to device memory ( 2○). Because NDS works inside the device in
the hardware-assisted system, NDS has access to the full internal
bandwidth and can reduce the interconnect traffic in ( 4○).

5.3 The NDS-compliant storage device
Our hardware-assisted, NDS-compliant storage device provides an
interface that supports NDS’s multi-dimensional address mode and
a controller to implement the STL functions. This section describes
the extended command set and the controller architecture in our
prototype implementation.

5.3.1 PCIe/NVMe command extension. Our prototypeNDS-compliant
storage supports an extended NVMe command set while remain-
ing compatible with existing NVMe commands [6]. An extended
NVMe command uses a reserved bit in the first 64-bit command
word in NVMe standard to distinguish itself from conventional
NVMe commands. Upon receiving a conventional NVMe command,
NDS simply treats the request as a request to a one-dimensional
address space.

For read/write operations, the extended NVMe commands are
almost identical to conventional read/write commands except that
the NDS version uses the second 64-bit command word. This com-
mand word points to a memory page that contains the coordinates
and sub-dimensionality from the application’s perspective. In a
system with 4 KB memory pages, each extended command can
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Figure 8: The NDS-compliant SSD controller

support coordinates up to 32 dimensions and 264 elements in each
dimension.

The NDS/NVMe command extension has three commands for
managing multi-dimensional address space: open_space,
close_space, and delete_space. The open_space command can
create a new space or change the dimensionality of an existing
space depending on the flag set in the command header. The second
open_space command word points to a memory page that lists
the dimensionality of the space, with up to 32 dimensions and 264
elements in each dimension. The open_space command returns
a 64-bit identifier and a dynamic space ID; the software system
can use the space ID to distinguish between different views an
application uses for the space. In contrast, the close_space com-
mand reclaims the dynamic space ID and disables the use of the
previously defined space view. The delete_space command per-
manently deletes an address space by invalidating all space building
blocks and removing the translation data structures for the space.
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5.3.2 The controller architecture. To support the STL features, our
prototype NDS storage device has a controller that extends an exist-
ing NVMe/SSD controller, as shown in Figure 8. Similar to conven-
tional NVMe controllers, the NDS controller exploits pipeline paral-
lelism to maximize command-handling throughput. The NDS con-
troller contains the following pipeline elements: (1) a PCIe/NVMe
command handler, (2) a space translator/manager, (3) a space alloca-
tor with garbage collector, (4) a data assembler, and (5) 4× channel
handlers.

To communicate with one another, the NDS controller’s pipeline
elements use a message-passing interface with dedicated message-
queue pairs between each neighboring element to avoid locking
and race conditions. The NDS controller can use DRAM within the
storage device as data-structure storage for space/address transla-
tions and data buffering. The controller also contains a DMA engine
to move data between the host computer and the device DRAM or
the device DRAM and the device’s NVM arrays.

To build our prototype NDS controller, we extended the firmware
code in the baseline SSD controller using ARM A72 cores with each
pipeline element statically mapped to one of eight cores. While
the NVMe baseline controller also uses eight cores to implement
essential functions, the baseline controller replaces the STL cre-
ator/translator with an address-lookup function and replaces the
data assembler with a command-control manager. Both the baseline
and NDS controller have the same amount of channel handlers.

5.3.3 Supporting cryptography. Modern computer systems provide
cryptography features in software modules and hardware accelera-
tors to protect sensitive information. Modern datacenter-class SSD
controllers [60] typically incorporate intellectual property cores
to provide high-throughput data encryption/decryption. The most
popular standard block-based advanced encryption mechanisms
(AES) [62] work by dividing data into fixed-sized sections and per-
forming pseudorandom permutation within the same section of
data. The resulting data size remains the same before and after
encryption/decryption.

NDS can easily cooperate with popular block-based encryp-
tion mechanisms. Though NDS translates coordinates between
abstracted memory spaces, divides datasets into building blocks
and constructs building blocks into application objects, NDS does
not alter the content of datasets in very fine grains. Therefore, the
current NDS workflow functions well regardless of where the sys-
tem performs cryptography functions, as long as the data size in
each dimension of the building block is larger than the section size
of encryption. As the section size is simply 256 bits that can store
8× 4-byte elements, and each page in modern memory chips is at
least 4KB, the cases where the encryption section size is larger than
the dimension size of a building block is near zero.

5.3.4 Supporting Data Compression. Modern storage subsystems
may implement data compression/decompression to reduce the
cost of storage. NDS can work with or integrate data compres-
sion/decompression features in different ways.

If the storage device transparently performs data compression
functions, the hardware-assisted NDS can work with existing data
compression features if (1) the data compression/decompression
process occurs before the space allocation stage and (2) the data
compression/decompression occurs in units of building blocks. As

NDS’s space allocation policy in Section 4.2 randomly chooses
access units from channels/banks, NDS can still ensure performance
and even-wearing, but simply uses fewer access units for each
building block.

In case the system compresses/decompresses data in software
or using accelerators on the host computer, the data compression
mechanism needs to be part of the software-only NDS framework.
As software-only NDS decides/maintains the building block sizes
and space allocation using host system software stack, software-
only NDS can use this information to treat each building block as a
basic unit of data compression/decompression and allow NDS to
function correctly.

6 EXPERIMENTAL METHODOLOGY
To evaluate the built NDS systems, we modified the I/O functions
of a set of applications while allowing the applications’ multi-
dimensional compute kernels to remain the same. This section
describes the system configurations and experimental setup we
developed.

6.1 Experimental platform
Weused an octa-core AMDRyZen 3700X processor with a clock rate
up to 4.4 GHz.We installed Ubuntu 16.04 (Linux kernel version 4.15),
implemented the NDS API and NDS subsystem (for the software-
only version) and an extended NVMe driver (for the hardware-
assisted version) to support the NDS model. We built a TLC-NAND
flash-based SSD with the controller described in Section 5.

Our prototype SSD has 32 parallel channels with 4 KB pages
in 8 banks. The total capacity of the SSD is 2 TB, with 10% over-
provisioning space reserved for background garbage collection.
The prototype SSD also has 4 GB of DRAM buffer available for
all FTL/STL data structures and data buffers. The host machine
for our prototype has 32 GB of main memory with a motherboard
containing a PCIe 3.0 I/O hub that connects the processor and other
peripherals; these peripherals include a Mellanox InfiniBand NIC
with 8 PCIe 3.0 lanes to connect to the prototype SSD through the
NVMeoF protocol. The host machine also contains an NVIDIA RTX
2080 GPU with 8 GB of device memory to enable compute-intensive
kernels.

6.2 Benchmarks
As shown in Table 1, we used 10 applications to test our NDS system,
with the applications falling into 6 categories: graph (traversal), lin-
ear algebra, physics simulation, data mining, image processing, and
tensor-algebra operations. We selected the applications because
each one (1) provides a highly efficient open-source implementation
(or one that is easily optimized) for large datasets, (2) works on
multi-dimensional datasets, and (3) provides or allows for the gen-
eration of datasets that exceed the capacity of GPU device memory.
As the data volume of each workload is larger than the device-
memory buffer on the GPU (where we execute compute kernels),
the compute kernels execute algorithms in a block fashion and must
restructure input data into sub-blocks prior to data processing. Each
application is pipelined so that its I/O and data restructuring (if re-
quired) overlap with the I/O and data restructuring of the compute
kernels.
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Dimensionality Data Size Kernel Sub- Source of
Workload Name Category Data Kernel (Elements) dimension size Baseline
Breadth-First Search (BFS) Graph Traversal 2D 1D 65536×65536 65536 Rodinia [71]
Bellman-Ford (SSSP) Graph Traversal 2D 65536×4096 Parallel Implementation of Bellman Ford Algorithm [82]
Block-GEMM (GEMM) Linear Algebra 2D 2D 65536×65536 8192×8192 MSplitGEMM with cuBLAS using Tensor Cores [63, 94]
Hotspot (Hotspot) Physics Simulation 2D 2D 65536×65536 4096×4096 Rodinia [36, 71]
K-Means (KMeans) Data Mining 2D 1D 65536×65536 65536 Rodinia [71], Parallel K-Means Data Clustering [29, 54]
K-Nearest Neighbor (KNN) Data Mining 1D 65536 Rodinia [71], knn-CUDA [27, 88]
PageRank (PageRank) Graph 2D 2D 65536×65536 4096×65536 GraphBlast [91], GraphChi [48]
2D Convolution (Conv2D) Image Processing 2D 2D 65536×65536 4096×4096 CUDA Separable Convolution [67]
Tensor Times Vector (TTV) Tensor Algebra 3D 2D/1D 2048×2048×2048 512×512 NVIDIA [23, 77]
Tensor Contractions (TC) Tensor Algebra 2D 512×512 NVIDIA [23, 77]

Table 1: Workloads, the sources of their baseline implementations, the dimensionality, size of their raw data and the dimen-
sionality of their compute kernels.
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Figure 9: The performance of the baseline SSD, the software-only NDS, and the hardware-assisted NDS for fetching data with
different dimensionalities

For the baseline implementation, we carefully partitioned the
I/O size and selected the sub-block for compute kernels to minimize
end-to-end latency. For the applications used to test the implemen-
tations, we chose the parameters of each application’s compute
kernel to agree with the dataset format in the host main memory
so that the dataset was ready for the compute kernel to consume
regardless of the underlying NDS implementation. With the size
of each application dataset exceeding host main-memory capacity,
the applications required intensive I/O that was always the longest
pipeline stage in the baseline scenario.

Among the applications used to test our NDS system, 3 pairs
of applications shared their inputs: BFS and SSSP, K-Means and
KNN, and TTV and TC. The application compute kernels were
allowed to vary in block size and dimension to demonstrate the
elasticity of NDS in accommodating different application demands
with identical datasets in NDS. Each run of any workload’s baseline
implementation lasts longer than 1 minute (BFS) and up to 40
minutes (KMeans).

7 RESULTS
This section summarizes our evaluation of NDS and the nature of
the 5.73× speedup observed for the hardware-assisted NDS imple-
mentation.

7.1 Microbenchmarks
To understand the pure I/O performance of NDS, we created a set
of microbenchmarks with raw data comprising a 32,768×32,768
2-D matrix and a storage device with 32 channels and 4 KB pages.
The prototype NDS system selected 256×256 as the building-block

size for dataset storage, with elements in double floating-point
format. Figure 9 shows the effective bandwidth measured from the
application side in fetching and structuring the data.

In Figure 9(a), the application requests data in dimensions rang-
ing from 512×32,768 to 4096×32,768 until the application finishes
reading the whole matrix (basically a row-fetch from matrices of
different dimensions). As the data are already in row order, the
microbenchmark with the baseline SSD achieves an effective band-
width of around 4.3 GB/sec. The hardware-assisted NDS achieves a
performance that is almost identical to that of the baseline with-
out optimizing building-block dimensions for the access pattern.
These results indicate that the determined building-block structure
effectively permits the hardware NDS to fully utilize a device’s
internal bandwidth and thereby cover the overhead of constructing
rows from those building blocks. In contrast, the software-only
NDS creates significant overhead by copying 256 elements (2 KB;
smaller than a host DRAM page size) in each operation involved
in constructing a row from related building blocks. As a result,
the software NDS’s effective bandwidth was observed to be only
3.8 GB/sec.

In Figure 9(b), the application performs column accesses for ma-
trices with dimensions ranging from 32,768×512 to 32,768×4096.
For the baseline/row-store condition, if the dataset is not presented
optimally in the baseline SSD, then the effective bandwidth of fetch-
ing a column is at most 600 MB/sec, with the largest granularity
appearing when the system cache is allowed to serve later requests
without visiting the SSD. On the other hand, NDS still works effi-
ciently in constructing a column for each access, and the resulting
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performance is comparable to storing column-ordered data in the
baseline SSD (the baseline/column-store condition).

In Figure 9(c), the application fetches submatrices of various
sizes. Because NDS’s building blocks match the 2-D space the ap-
plication requests, NDS significantly outperforms the baseline SSD,
regardless of NDS implementation type. For an application whose
data is stored in the baseline SSD, the application must generate
many small I/O requests, with each request fetching a row from
the baseline SSD; when accessing content for a submatrix, this pro-
cess underutilizes both the interconnect and the device’s internal
bandwidth.

Figure 9(d) shows the performance of writing the microbench-
mark 32,768×32,768 2-D data matrix into the baseline SSD and
NDS. For the baseline SSD, data is arranged in both row-store and
column-store formats before writing. For NDS, the dataset is ar-
ranged in row-oriented 2-D dense-matrix format before writing
to NDS (using the NDS API). For these experiments, we disable
asynchronous writes, so latency is measured until the end of the
whole programming process. The baseline SSD has an effective
write bandwidth of 281 MB/sec for both row-store or column-store
formats.

For the software-only NDS, the NDS subsystem requires the
CPU code to dynamically break up large matrices into building
blocks, and each building block must copy 256 elements (2 KB)
for 256 times, which creates intensive memory operations with
low bandwidth utilization on the host computer. Consequently, the
effective write bandwidth of the software-only NDS is 30% slower
than that of the baseline.

For hardware NDS, the SSD requests host main memory content
in 4 KB pages and breaks them up later, allowing the to better utilize
the host main memory bus and system interconnect. However,
the increased overhead in the storage controller along with the
controller’s lower performance (compared to the host processor),
resulted in an observed write performance loss of 17%. That being
said, modern data-center workloads are more read-intensive than
write-intensive, so the pronounced benefits of reading in NDS make
the 17% loss acceptable for most workloads. Moreover, because NDS
is compatible with conventional NVMe devices, write-intensive
workloads can still be managed effectively via NDS’s conventional
storage capabilities.

7.2 End-to-end application latency
Figure 10(a) shows the speedup of end-to-end latency of running ap-
plications. The software-only implementation can achieve a speedup
of 5.07×, which shows the benefits of using NDS building blocks to
store data and dynamically rebuild objects. Using building blocks,
software-only implementation allows the NDS software to speed
up the process of building multi-dimensional objects by 1.52× on
average. With building blocks reducing the chances of fetching tem-
porally unnecessary data from the SSD, software NDS also reduces
74% of average idle time before each pipelined compute kernel as
Figure 10(b) shows.

An alternative to software NDS is using a software library and
carefully layout data on the storage device. To investigate the max-
imum potential of all software-based approaches, we created an

 0

 2

 4

 6

 8

 10

 12

B
F

S

S
S

S
P

G
E

M
M

H
o
tS

p
o
t

K
M

e
a
n
s

k
N

N

P
a
g
e
R

a
n
k

C
o
n
v
2
D

T
T

V

T
C

A
v
e
ra

g
e

G
e
o
m

e
a
nS
p
e
e
d
u
p
 (

H
ig

h
e
r 

is
 B

e
tt
e
r) Software NDS

1
.0

0

6
.0

2

3
.5

3 5
.2

2 6
.5

2

1
0

.6
9

3
.5

2

4
.0

2 5
.1

2

5
.0

8

5
.0

7

4
.4

2

Software (Oracle)

1
.0

0

6
.0

1

3
.4

7 5
.1

9 6
.6

1

1
0

.8
2

3
.5

2

4
.1

2 5
.0

4

5
.0

2

5
.0

8

4
.4

2

Hardware NDS

1
.1

3

6
.7

5

4
.0

7

6
.3

0 7
.3

1

1
1

.4
1

4
.0

0

4
.6

3 5
.8

7

5
.8

3

5
.7

3

5
.0

3

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

B
F

S

S
S

S
P

G
E

M
M

H
o
tS

p
o
t

K
M

e
a
n
s

k
N

N

P
a
g
e
R

a
n
k

C
o
n
v
2
D

T
T

V

T
C

A
v
e
ra

g
e

G
e
o
m

e
a
n

R
e
la

ti
v
e
 I
d
le

 T
im

e
 (

L
o
w

e
r 

is
 B

e
tt
e
r)

Software NDS0
.9

6

0
.1

2

0
.3

7

0
.1

4

0
.0

7

0
.0

7

0
.1

5 0
.2

9

0
.2

3

0
.2

3

0
.2

6

0
.1

9

Hardware NDS0
.8

4

0
.1

1

0
.3

8

0
.1

4

0
.0

7

0
.0

7

0
.1

4 0
.2

7

0
.2

0

0
.2

0

0
.2

4

0
.1

8

(b)
Figure 10: (a) The speedup of end-to-end latency and (b) the
reduction of idle time in compute kernels of running appli-
cations using NDS

oracle configuration where we exhaustively search for the best stor-
age data layout that incurs zero overhead on the host and minimum
end-to-end latency when executing these workloads. In this config-
uration, we have to store two copies of data in different shapes for
workloads sharing the same datasets (i.e., BFS and SSSP, KMeans
and KNN, TTV and TC). Figure 10(a) shows that even assuming
these software libraries have zero overhead, the performance gain
is just about the same as the software NDS.

Compared with software-only solution, the hardware NDS can
further accelerate applications by 5.73×. As Section 5.2 explains,
the hardware-assisted implementation removes both computation
overhead and traffic on the host processor/memory needed to re-
build data objects from building blocks. Hardware NDS completely
skips the process of assembling multi-dimensional objects on the
host computer. The hardware NDS also allows the STL to fully
access a storage device’s internal parallelism. Even though the NDS
controller is less powerful than the host processor, the hardware
NDS still outperforms the software-only solution by 1.13×. As a
result, hardware NDS reduces the idle time before compute ker-
nels by 76%. Within these test applications, we found that BFS
receives almost no benefit from the software-only NDS; although
the original dataset was created and stored in 2-D building blocks,
the compute kernel relies on sequential access along each row in
the 2-D graph representation. As the baseline SSD version stores
data in row-ordered format, the compute kernel works efficiently
with the storage format.

The software-only NDS shows that building blocks work well
with mismatched access patterns; accessing matrices in row-order
format (discussed in Section 7.1, above) produces similar results. In
contrast, the hardware-only NDS outperforms the baseline version
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because the hardware-only version (1) passes objects to the applica-
tion that exactly match compute-kernel demands and (2) accesses
building blocks with more bandwidth than any host-side software
can provide.

Though hardware NDS’s 1.13× speedup over software NDS
seems limited, we argue the presence of hardware NDS is mean-
ingful for the following reasons. (1) Software NDS relies on light-
NVM [15] that is currently still not widely adopted by manufac-
turers. (2) Software NDS increases the CPU workload and makes
it less preferable by heavily loaded servers. (3) As software NDS
always requires the host-side module to perform space translation
and address lookup, software NDS makes the use of modern system
interconnects’ peer-to-peer data exchange between storage devices
and hardware accelerators [4, 55, 65, 85, 95] inefficient. (4) Hard-
ware NDS allows STL to work closer with NVM array using the
rich internal bandwidth to handle NDS tasks. Our baseline SSD has
an internal-to-external bandwidth ratio as 8-to-5. With faster NVM
technologies that raise the internal-to-external bandwidth ratio,
the advantage of hardware NDS will become more significant.

7.3 Overhead of NDS
As the STL requires more complex data structures and arithmetic
operations in handling requests, NDS increases the latency and
creates space overhead in storage devices, but to a very limited
degree. We evaluated the worst-case scenario where a request only
asks for a page of data from the baseline SSD and NDS. All requests
to the baseline and NDS are carefully designed to avoid any trans-
formation to help to identify the increases of data access latency
from B-tree traversal. The result shows 41µs additional latency in
software NDS and 17µs in hardware NDS; both are shorter than
or the same order as the average latency of accessing a modern
NAND flash page (typically 30µs–100µs) [31, 61]. However, as a leaf
node in NDS’s B-tree structure can point to up to 512 flash pages,
if the request asks for a larger block of data, NDS simply requires
one B-tree traversal for all accesses and can easily amortize the
additional latency. In the worst-case scenario where every page is
in-use, the whole STL lookup data structure occupies 0.1% of the
storage space.

8 OTHER RELATEDWORK
In addition to the related work described in Section 2.3, several
other lines of NDS-relevant research deserve mention.
Tensor algebra libraries, algorithms, compilers, and acceler-
ators For decades, tensor algebra has been explored through al-
gorithms [10, 13, 20, 42, 59, 92], libraries [14, 56, 78, 86], code gen-
erators [24, 44, 52, 79], and accelerators [2, 28, 30, 34, 49, 66, 69,
80, 81, 98, 100, 101]. Most prior work has focused on improving
the efficiency of tensor computations. In contrast, NDS offers a
streamlined compute-kernel front-end to address the bottleneck
caused by data transfer/restructuring.
Other in-storage processing approaches The hardware NDS
is similar to in-storage processing in that NDS extends the stor-
age controller to dynamically assemble data from building blocks.
Aside from the projects mentioned in Section 2.3 that use ISP/NDP

to directly present data as applications require, existing general-
purpose ISP/NDP platforms can enable object deserialization func-
tions [3, 26, 32, 46, 74, 96, 97]. Specialized ISP/NDP systems can
also run compute kernels on storage controllers, thereby access-
ing the rich internal device bandwidth to accelerate file system
operations [22] and data analytics [40, 41, 89]. As noted previously,
however, the data layout may not align with in-storage compute-
kernel access patterns, in which case in-storage applications may
perform inefficiently even though the internal bandwidth is acces-
sible to code/accelerators in the storage device.
Sparse formats The Tensor Algebra Compiler (TACO) [45] can
generate efficient code based on iteration graphs, merge lattices,
and a tensor storage tree for both sparse and dense matrices. One
work [25] demonstrates that a sparse tensor-algebra compiler should
be agnostic to data layouts [11, 17, 37, 43, 72]. Among data repre-
sentations, the compressed sparse-block (CSB) format [18] suggests
that building blocks may be equally effective for both row-wise
and column-wise sparse-matrix processing. NDS focuses more on
dense formats because the data-processing throughput of compute
kernels on dense datasets is significantly higher and NDS’s storage
demands are greater. Nonetheless, NDS can store sparse content
efficiently through a checking/optimization process that is similar
to page-zero optimization in VAX/VMS [50].
Smart main memory controllersWithout a storage system like
NDS to present data in a way that aligns with a compute kernel’s
perspective, the problem [P2] will significantly bottleneck appli-
cation performance for various access patterns. Both Impulse and
Gather-Scatter DRAM (GS-DRAM) proposed smart memory con-
trollers or adding additional circuits that adds another layer of main
memory address translation and dynamically creates condensed ap-
plication objects without redundant elements/values going through
the CPU-main memory bus [21, 75]. However, both Impulse and
GS-DRAM still lead to [P3] as the internal page data layout is still
either row or column oriented. RC-NVM [53] further confirms that
a dual-addressing mode is unrealistic with DRAM architectures.
In contrast, NDS can release the burden of Impulse or GS-DRAM
and ultimately address both [P2] and [P3] without the presence
of Impulse or GS-DRAM if the raw data comes from the storage
subsystem. NDS also needs zero modifications in NVM chips as
RC-NVM.

9 CONCLUSION
This paper introduces a memory/storage system called NDS and
describes prototype NDS implementations. NDS provides multi-
dimensional address spaces for applications and decouples stor-
age dimensionality from application-optimal dataset dimensional-
ity by dynamically reconstructing data objects. NDS successfully
tackles the challenges posed by hidden device parameters, the un-
predictability of application kernels, and dimensional mismatches
among devices. NDS thus addresses the overhead of restructuring
input data and the underutilization of both interconnect bandwidth
and device bandwidth. Through prototype evaluation, we show
that the hardware-assisted NDS version achieves an average 5.73×
speedup over a datacenter-class SSD baseline for a representative
set of real-world applications.
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A ARTIFACT APPENDIX
A.1 Abstract
This document describes the artifact of “NDS: N-Dimensional Stor-
age” and the process of reproducing the experimental results in this
paper. To run the baseline applications that this paper evaluates,
the evaluator must have a computer equipped with (1) an NVIDIA
GPU and (2) an Infiniband network interface card (NIC) and (3)
capable of running a Linux distribution supporting the software
stacks for the GPU, the NIC and NVMe over Fabrics. To build a
prototype storage device that supports NDS in hardware, the eval-
uator must also have a prototype similar to Broadcom’s SST-100 or
PS1100R platform [16] where the platform contains (1) a multi-core
ARM processor that is capable of running the NVMe controller
software stack and the firmware programs that NDS requires, and
(2) PCIe slot(s) that can host flash-based storage medium supporting
NVMe or LightNVM protocols. If the evaluator installs multiple
flash-based storage devices in the prototype, the resulting platform
will be able to emulate the performance of datacenter SSDs in a way
that the ARM-based controller has access to rich internal bandwidth
through many (typically more than 16×) parallel channels.

As the paper describes, we present NDS in two different types of
implementations. Though the software-only version can work on
conventional SSDs, we still recommend running experiments on
the same hardware as hardware-assisted NDS for fair comparisons.

A.2 Artifact check-list (meta-information)
• Program: The NDS software stack, Breadth-First Search
(BFS) [71], Bellman-Ford (SSSP) [82], MSplitGEMM with
cuBLAS using Tensor Cores (GEMM) [63, 94], Hotspot [71],
K-Means [29], K-Nearest Neighbor [88], PageRank [91], 2D
Convolution (Conv2D) [67], Tensor Times Vector (TTV) [23,
77] and Tensor Contractions (TC) [23, 77].

• Compilation: NVCC 10.2, GCC 5.4.0
• Data set: Synthetic datasets from each program’s dataset
generator.We also provide those in our GitHub repository [93].

• Run-time environment: Ubuntu 16.04, SPDK v19.07.1,
CUDA 10.2

• Hardware: A host computer with an x86 processor, an
NVIDIA GPU using Turing architecture or more advanced,
a Mellanox RDMA-compliment 40 Gbps network interface
card, and a Broadcom Stingray based prototyping system
hosting NVMe SSDs [16].

• Execution: To reduce the disturbance from other work-
loads, we recommend running experiments with a sole user.

Each experiment can run from 1 minute to 10 minutes, de-
pending on the dataset size.

• Metrics: End-to-end latency (secs) and throughput (MB/sec).
• Output: Each benchmark programwill display its execution
result through console or log files. We added timestamps in
their standard output formats for measurement purposes.

• Publicly available?: Yes
• Archived DOI: https://doi.org/10.5281/zenodo.5495743
• Code licenses (if publicly available)?: We will be using
MIT license for our code.

• Data licenses (if publicly available)?: The datasets are
publicly available through their original licensing terms.

A.3 Description
A.3.1 How to access. We archive the source code and workloads at
https://doi.org/10.5281/zenodo.5495743 For the latest version, you
can access our GitHub page: https://github.com/escalab/NDS

A.3.2 Hardware dependencies. To build a host machine supporting
NDS, the user will need the following hardware components.

• Processor: An x86 processor to host required software
stack.

• DRAM: The system should have at least 16 GB of DRAM
to support the execution of GPU programs.

• GPU: A CUDA-compatible NVIDIA GPU. However, we
strongly recommend the user to have high-end GPUs with
Tensor Cores based on Turing or Ampere architecture to
re-produce the I/O bottleneck in workloads.

• Network Interface Card: AMellanox RDMA-compliment
network interface card supports 40 Gbps connection speed.

• Motherboard: The host machine’s motherboard should
contain at least two 8-lane to 16-lane PCIe 3.0 slots to al-
low the NIC at its full speed while letting the GPU enjoy a
sufficient amount of I/O bandwidth.

To build a prototype hardware-assisted NDS-compliant SSD, the
user will need the following hardware components.

• SoC: An embedded-system-class processor based on ARM
64-bit architectureswith the capability of handling RDMA/NVMe
over Fabrics protocols.

• DRAM: The embedded system platform should have at least
4 GB of DRAM to support basic STL functions of NDS and
data buffering.

• I/O Slots: The prototype board should have multiple I/O
slots (e.g., PCIe) for flash-based storage devices (e.g., Light-
NVM or NVMe SSDs) to communicate with the SoC.

A.3.3 Software dependencies. The baseline storage system stack
and NDS rely on the following software components.

• RDMA kernel modules and libibverbs
• SPDK v19.07.1 [38]
• CUDA 10.2 [64] and cuBLAS [63]

A.3.4 Data sets. An evaluator can find the dataset generator for
each benchmark application in
https://github.com/escalab/NDS/tree/main/data/generator/

We briefly describe these data generators and their workflows.
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• Matrix The matrix data generator produces random num-
bers as many asM × N , whereM and N are the dimensions
of the target matrix. The resulting matrix can serve as an in-
put of Block-GEMM, conv2D and hotspot. The evaluator can
find the matrix data generator at data/generator/matrix/
from the repository. The same directory provides a datagen.sh
script file to invoke the program and produce the matrix ef-
ficiently in binary-encoded format accordingly.

• Tensor The tensor generator produces random numbers as
many asM × N ×K , whereM , N and K are dimensions of a
3-D tensor. The resulting 3-D tensor can provide an input for
TTV and TC. The evaluator can find the tensor data generator
at data/generator/tensor from the repository. The same
directory provides a datagen.sh script file to invoke the
program and produce the tensor in efficient binary-encoded
format accordingly.

• Clustering This dataset generator leverages the source code
of kNN-CUDA [88] to produce inputs for K-Means and K-
NN. The evaluator can find the tensor data generator at
data/generator/clustering from the repository. The same
directory provides a datagen.sh script file to invoke the pro-
gram. The script produces a binary-encoded file containing
M data points with N attributes and another binary-encoded
file containing K points with N attributes, depending on the
user inputs ofM , N and K .

• Graph The data generator leverages Rodinia’s data genera-
tor for BFS benchmark [71]. The main difference between
NDS’s and Rodinia’s version is that the NDS version creates
graphs in binary-encoded adjacency matrices, but the Ro-
dinia version stores the matrix in less efficient ASCII format.
The resulting matrices can provide inputs for BFS and SSSP
in our workloads. The modified data generator is located at
data/generator/graph/bfs from the repository. The same
directory provides a gen_dataset.sh script file to invoke
the program. The user should specify the desired number
of nodesM and the number of edges N . The generator will
create anM ×M adjacency matrix with N non-zero random
values in the matrix.

• Pagerank This paper modifies the dataset generator from
the 10th DIMACS Implementation Challenge [12]. Similar
to our modifications to other dataset generators, we have
made the data in binary format to reduce the host pro-
cessing overhead. The modified data generator is located
at data/generator/graph/pagerank from the repository.
The same directory provides a pagerank_graph_gen.sh to
download the graph with 65536 nodes from the website and
transform it into a binary adjacency matrix.

A.4 Installation
Before installing any NDS software/library, the user should in-
stall packages described in Section A.3.3 appropriately. The system
should also configure the RDMA connection between the host com-
puter and the NDS prototype SSD to at least 40Gbps.

Then, the user can install the NDS software stack through the
following steps.

git clone https://github.com/escalab/NDS

cd NDS
make all

This step will generate static libraries for NDS applications to link
at compile time.

A.5 Experiment workflow
A.5.1 Running Baseline Applications. Before running the baseline,
the evaluator needs to configure the prototype SSD and the host
system software stack as a conventional NVMe SSD by using the
script NDS/scripts/setup_baseline.sh.
Once the configuration is done, the user can enter a directory with
the prefix of NDS/apps/baseline_. For example, if the user would
like to run an experiment for GEMM, the user should use the fol-
lowing a sequence of commands.

cd NDS/apps/baseline_block_gemm
make
./run 65536 8192

The evaluator can also run all baseline experiments once by exe-
cuting the following instructions

cd NDS/scripts
./run_baseline.sh

A.5.2 Running Software NDS apps. Before running any software
NDS experiments, the evaluator needs to configure the prototype
SSD and the host system software stack for software NDS by using
the script NDS/scripts/setup_software_NDS.sh.
Once the configuration is done, the user can enter a directory with
the prefix of NDS/apps/software_. For example, if the user would
like to run an experiment for GEMM, the user should use the fol-
lowing sequence of commands.

cd NDS/apps/software_block_gemm
make
./run 65536 8192

The evaluator can also run all software-only NDS experiments once
by executing following instructions

cd NDS/scripts
./run_software_nds.sh

A.5.3 Hardware-assisted NDS. Before running any hardware-assisted
NDS experiments, the evaluator needs to configure the prototype
SSD and the host system software stack for software NDS by using
the script NDS/scripts/setup_hardware_NDS.sh.
Once the configuration is done, the user can enter a directory with
the prefix of NDS/apps/hardware_. For example, if the user would
like to run an experiment for GEMM, the user should use the fol-
lowing sequence of commands.

cd NDS/apps/hardware_block_gemm
make
./run 65536 8192

The evaluator can also run all hardware-assisted NDS experi-
ments once by executing following instructions

cd NDS/scripts
./run_hardware_nds.sh

42



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yu-Chia Liu and Hung-Wei Tseng

A.6 Evaluation and expected results
A.6.1 Evaluate Results. To ease the process of reproducing the
complete set of NDS experiments, we provide a script that executes
all our experiments once and analyzes results through results.py

cd NDS/scripts
./run_evaluation.sh

The evaluator can also redirect the outputs to three log files,
baseline.txt, software_nds.txt and hardware_nds.txt, and carefully
examine the timestamps.

A.6.2 Expected Results. Compared to baseline, sequential format
on the traditional storage device, Software NDS can offer 5.07×
speedup, while Hardware NDS is able to give 5.73× speedup. Please
reference Section 7 of our paper for the expected results.
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