
Branch
Runahead

Branch Runahead: An
Alternative to Branch
Prediction for Impossible to
Predict Branches

Stephen Pruett + Yale N. Patt @ MICRO’21

Presented by: Ignacio Bricchi

1

Executive Summary

• Programmes in certain fields are increasingly data drivenMotivation

• Current branch prediction is not well suited to deal with data based predictionsProblem

• Provide an alternative solution to branch prediction for these “hard to predict branches”Goal

• Coroutines that execute dependency chains leading up to an “hard to predict branch”Idea
• Detecting dependency chains

• Keeping co-routines in sync with core processorChallenges
• Branch Miss Prediction per Kilo Instruction (BMPKI) Reduction of 40%

• Instructions Per Cycle (IPC) increase of 8%Results

2

Presentation outline

Paper Summary
Background

Mechanism

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion/Questions

3

Background Pipelining introduced to increase throughput

ADDI x1, x0, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 10

ADDI x1, x0, 12

…

L1:

ADDI x1, x0, 4

DF E

LW x2, 0(x5)

DF E

BEQ x1, x2, L1

DF E

ADDI x1, x0, 4

DF E

LW x2, 0(x5)

DF E

BEQ x1, x2, L1

DF E

4

Background Introduces dependency hazards

ADDI x1, x0, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 10

ADDI x1, x0, 12

…

L1:

5

ADDI x1, x0, 4

DF E

LW x2, 0(x5)

DF E

BEQ x1, x2, L1

DF E

?

DF E

?

DF E

NOP

DF E

NOP

DF E

Background Introduces dependency hazards

ADDI x1, x0, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 10

ADDI x1, x0, 12

…

L1:

6

ADDI x1, x0, 4

DF E

LW x2, 0(x5)

DF E

BEQ x1, x2, L1

DF E
We can wait until data is ready

ADDI $x1, $x0, 10

DF E

…

DF E

Background Introduces dependency hazards

ADDI x1, x0, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 10

ADDI x1, x0, 12

…

L1:

7

ADDI x1, x0, 4

DF E

LW x2, 0(x5)

DF E

BEQ x1, x2, L1

DF E
Or guess and fix it later

ADDI x1, x0, 10

DF E

…

DF E

Background

Simple solution is to add bubbles, but this is slow and wasteful

Branch prediction solves this by making a prediction on what branch to
take and flushing the pipeline in the event of an incorrect guess

Relies on the fact that most branches exhibit predictable patterns
which can be detected as the programme runs

8

Motivation The problem

Genome Analysis

Image Processing

Big Data problems

Data driven programs tend to have branches that do
not follow a history based pattern

9

L1:

ADDI $x1, $x0, 4

LW $x2, 0($x5)

BEQ $x1, $x2, L1

ADDI $x1, $x0, 12

ADDI $x1, $x0, 12

…

Data dependant branch

ADDI x1, x0, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 10

ADDI x1, x0, 12

…

L1:

Highly parallelized architectures (e.g. Cray MTA)

• With enough parallelization you can switch between threads skipping those which are
waiting for data dependencies

• Not possible for all kinds of workloads

Execute all paths (Never implemented commercially as far as I can tell)

• Wasteful in terms of area, and energy

• Exponential growth with pipeline depth

Motivation Alternatives

Use a coprocessor to compute dependency chains for resolving branches

10

Presentation outline

Paper Summary
Background

Mechanisms

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion/Questions

11

Key Ideas

Software

• Threads are spawned to compute
relevant instructions in parallel
with main execution

• High overhead limits when co-
processing can occur

Hardware

• Hardware approach, run time
detection of dependency chains
and special purpose compute unit

• No need for source code
modification

12

Key Mechanisms Detecting Hard To Predict Branches (HTB)

• Introduce a Hard Branch Table
(HBT)

• Keep track of misprediction counts

• Once counter is saturated consider
Branch HTP

• Counter is periodically decreased

0x1: 30

0x2: 02

0x3: 07

0x4: 16

HBT

13

0x1: 31

0x2: 02

0x3: 07

0x4: 16

HBT

0x1: 31

0x2: 02

0x3: 07

0x4: 16

HBT

0x1: 16

0x2: 02

0x3: 07

0x4: 16

HBT

0x1: 01

0x2: 02

0x3: 07

0x4: 16

HBT

0x1: 00

0x2: 02

0x3: 07

0x4: 16

HBT

0x1: 00

0x2: 02

0x3: 07

0x4: 16

HBT

• Backwards dataflow walk

• Loop over a circular buffer of most recently retired uops

• Store live in registers and instructions in Data Dependence Cache
(DDC)

Key Mechanisms Dynamically detecting dependency chains

14

• When PC is reached and live in registers are ready copy them in and
begin executing chain continuously

• Store prediction results in a queue

• When processor reaches branch read result from queue

• Keep track of accuracy of run ahead predictions to modulate between
it and regular branch predictions

Key Mechanisms Triggering Execution

15

Key Insights/Innovations

• The code within a dependency chain may contain smaller frequently
changing branches which require synchronisation limiting time a co-
processor can remain independent

16

17

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

L1:

…

…

BEQ x3, x4 L0

L0:

…

LUI x1, x2, 9

ADD x2, x2, x1

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

…

…

BEQ x3, x4 L0

…

LUI x1, x2, 9

ADD x2, x2, x1

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

18

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

L1:

…

…

BEQ x3, x4 L0

L0:

…

LUI x1, x2, 9

ADD x2, x2, x1

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

…

…

BEQ x3, x4 L0

…

LUI x1, x2, 9

ADD x2, x2, x1

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 12

LUI x1, x2, 9

ADD x2, x2, x1

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

Chain A:

19

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

L1:

…

…

BEQ x3, x4 L0

L0:

…

LUI x1, x2, 9

ADD x2, x2, x1

BEQ x1, x2, L1

ADDI x1, x0, 12

BEQ x1, x2 L1

…

…

BEQ x3, x4 L0

…

LUI x1, x2, 9

ADD x2, x2, x1

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

ADDI x1, x0, 12

ADDI x1, x1, 4

LW x2, 0(x5)

BEQ x1, x2, L1

Chain A: Chain B: <A, NT>

BEQ x1, x2 L1

LUI x1, x2, 9

ADD x2, x2, x1

Key Insights/Innovations

• Detect these frequently changing branches and generate chains for
them

• Use these to generate inter chain dependencies so that when one
chain ends a second is immediately triggered as a continuation based
on it’s result

• Improves the time the programme can execute independently
without the need for synchronisation

20

Presentation outline

Paper Summary
Background

Mechanisms

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion/Questions

21

Results Baseline Configuration

• Simulated using cycle accurate x86 simulator with custom extensions
for the run ahead

22

23

Results Branch Configuration

Results

24

IPC increases by 8%

Results

25

IPC increases by 8% BMPKI decrease by 40%

Conclusion

• Programmes in certain fields are increasingly data drivenMotivation

• Current branch prediction is not well suited to deal with data based predictionsProblem

• Provide an alternative solution to branch prediction for these “hard to predict branches”Goal

• Coroutines that execute dependency chains leading up to an “hard to predict branch”Idea
• Detecting dependency chains

• Keeping co-routines in sync with core processorChallenges
• BMPKI Reduction of 40%

• IPC increase of 8%Results

26

Presentation outline

Paper Summary
Background

Mechanism

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion/Questions

27

Strengths

• Does not require changes to ISA’s, this makes it possible to implement
in current generation of processors

• Results suggest significant improvements

• Paper and design are well laid out and easy to follow

28

Novelty

• Other papers have already introduced runahead for various uses
• (Multu +, Micro’03) Runahead execution: An effective alternative to large

instruction windows
• Proposes run ahead as an alternative to pre-fetching to reduce cache misses

• (Chapell+ ISCA '02) Difficult-path branch prediction using subordinate
microthreads

• Proposes a very similar concept to this paper

• The key insight of adding interdependency between branches is novel
and improves upon previous ideas by allowing run ahead to go
further

29

Weaknesses

• Doesn’t compare results against previous run-ahead models

• Not really an “alternative” for branch prediction, more of a
supplementary feature

30

Conclusion

• Programmes in certain fields are increasingly data drivenMotivation

• Current branch prediction is not well suited to deal with data based predictionsProblem

• Provide an alternative solution to branch prediction for these “hard to predict branches”Goal

• Coroutines that execute dependency chains leading up to an “hard to predict branch”Idea
• Detecting dependency chains

• Keeping co-routines in sync with core processorChallenges
• MPKI Reduction of 40%

• IPC increase of 8%Results

31

Presentation outline

Paper Summary
Background

Mechanism

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion

32

• How does this solution compare to parallelized architectures?

• Throughput

• Latency

• Complexity

33

Discussion Highly parallelized architectures

• What are the security implications of this design?

• Spectre V1 works by training the branch predictor to speculatively execute
malicious code that leaves observable changes in the state of cache

• Can an attacker inject malicious dependency chains?

• What to do in the event of an exception?

• Could you use run-ahead to prevent Spectre V1?

34

Discussion Security

• The author disregards SW solutions as they require computationally
expensive threads, but is that the only way?

• Extend the ISA to have explicit dependency chain markers on instructions

• Take advantage of context available in source code that get’s lost at the
assembly level

• Simplify the process of extracting dependency chains

• Might miss some opportunities similar to how compiler schedulers are not as
effective as out of order processors

35

Discussion HW + SW solution

• The author implements a way of detecting branch merge points in
hardware, why not populate branch predictions with instructions
from there?

• Can we ensure no data dependencies from branch arms

• Removes the need for prediction if enough independent instructions exist

• Do independent instructions even exist?

36

Discussion No branch prediction

Presentation outline

Paper Summary
Background

Mechanism

Results

Analysis
Strengths

Weaknesses

Thought/Ideas

Discussion/Questions

37

Executive Summary

• Programmes in certain fields are increasingly data drivenMotivation

• Current branch prediction is not well suited to deal with data based predictionsProblem

• Provide an alternative solution to branch prediction for these “hard to predict branches”Goal

• Coroutines that execute dependency chains leading up to an “hard to predict branch”Idea
• Detecting dependency chains

• Keeping co-routines in sync with core processorChallenges
• MPKI Reduction of 40%

• IPC increase of 8%Results

38

