
Presented by: Pengcheng Xu at Seminar in Computer Architecture

Multiscalar Processors
Gurindar S. Sohi, Scott E. Breach, T.N. Vijaykumar, University of Wisconsin-Madison. 
International Symposium of Computer Architecture (ISCA), 1995

Executive Summary

• Problem: Improve the performance of sequential execution

• Goal: Execute as many instructions as possible per cycle (IPC)

• Key idea: Improve the instruction-level parallelism (ILP) through the
„Multiscalar Paradigm“, which divides the program into a collection of tasks to
increase ILP

• Mechanism: Each task is assigned to one of many processing elements (PE)
at runtime for independent execution

• Result: Multiscalar Processors significantly improves ILP in parallelisable
workloads

2

Agenda

• Basic Concepts

• Multiscalar Paradigm

• Design Analysis

• Evaluation

• Strengths and Weaknesses

• Discussion

3

Instruction-level Parallelism

• Pipelining: Execution of multiple
instructions can partially overlap

• Throughput still 1 instruction
per cycle

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Time

Instructions

Basic Concepts

5-stage single-issue in-order pipeline

4

Instruction-level Parallelism

• Superscalar: Fetch and
dispatch multiple instructions at
once

• Can be of any implementation,
so long as throughput > 1
instruction/cycle

• Use a single PC to step
through program and establish
window of operations

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Time

Instructions

Basic Concepts

5-stage dual-issue in-order pipeline

5

Instruction-level Parallelism

• Out-of-order (OoO): Instructions
execute in any order that does
not violate data dependencies

• Coupled with multi-issue for
superscalar throughput

• „Order“ still mandated by
memory model (consistency)

Instruction Cache

DecoderFetch/Dec Ctrl

Register rename & allocate

Entry Reorder Buffer & Retire Unit

Reservation Station

Register File

In
t

FP

Store
Data

AGU

Store
Addr

AGU

Load
Addre

ss

SS
E

In
t

FP SS
E

In
t

FP SS
E

Memory Reorder Buffer

L1 Data Cache & D-TLB Shared L2-Cache

Basic Concepts

6-port OoO machine with 3 ALU groups
6

Instruction-level Parallelism

• Dataflow Execution Model:
Instruction execute once input is
available

• No program counter!

• Mostly used in DSP, HLS, etc.

• Difficult to build general
purpose processor

Load a[I] Load b[I]

Multiply

Select

Const 0

Add

Buffer

Output

Basic Concepts

Simplified vector dot product

7

Observation of Previous Mechanisms

• Most instructions are independent on each other

• Thus, a sequential execution plan does not exploit such independence in
terms of improving parallelism

• Key constraint in previous methods: stall instructions until previous control
and data dependencies are resolved

8

Multiscalar Paradigm

Agenda
Multiscalar Paradigm

• Philosophy and Concepts

• Multiscalar Program

• Multiscalar Hardware

10

Philosophy and Concepts
Multiscalar Paradigm

• Cooperation between software and hardware:

• Split the programs into tasks using the control flow graph (CFG)

• Speculatively distribute tasks into parallel processing elements (PE)

• Use separate PCs to sequence through the program

• Resemble sequential appearance by constraining dispatch and commit

11

Control Flow Graph (CFG)
Important Concepts

• Directed graph that shows the control flow of a program

• Basic blocks (nodes) and control flow (edges)

• First instruction is the unique entry point of basic block

• Last instruction is the only control flow instruction (jump, etc.)

12

A B C D E

Sample CFG with 5 basic blocks

Important Concepts

• A task is a portion of the entire
CFG

• A contiguous region of a
dynamic instruction sequence

• Assigned to PEs for execution

• Possibly dependent on each
other

Program

Task A

Task B

Task C

Tasks

Example of a program with 3 tasks
13

Imposing Sequential Appearance
Philosophy and Concepts

• Challenge when instruction per cycle > 1:

• Ensure the PEs adhere to sequential execution semantics

• Important definitions to maintain a sequential semantics:

• Order between PEs

• Speculative task execution

14

Imposing Sequential Appearance

• Task-level sequential order:
circular queue of PEs

• Tasks consume and produce
values bound to registers or
memory

• Maintain one single set of
registers and memory
locations

Order Between PEs

15

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer

Tail

H
ead

Imposing Sequential Appearance

• Task-level sequential order:
circular queue of PEs

• Tasks consume and produce
values bound to registers or
memory

• Maintain one single set of
registers and memory
locations

Order Between PEs

16

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer

Tail

H
ead

Imposing Sequential Appearance

• Task-level sequential order:
circular queue of PEs

• Tasks consume and produce
values bound to registers or
memory

• Maintain one single set of
registers and memory
locations

Order Between PEs

17

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer

Tail

H
ead

Speculative Task Execution
Imposing Sequential Appearance

• Speculative tasks due to:

• Control speculation i.e. branch prediction

• Data speculation i.e. non-conformant to memory model

• Resolve data dependency violations with address resolution buffers

• In case of unresolvable conflict, successors must be squashed

• Tasks are retired in the order as they are added

18

Agenda
Multiscalar Paradigm

• Philosophy and Concepts

• Multiscalar Program

• Multiscalar Hardware

19

Multiscalar Program

• Linear search through linked list
for symbol

• Outer loop iterates through a list
of symbols searched

• Inner loop iterates through the
linked list of items

Example Program

20

Multiscalar Paradigm

• Should enable fast walk through
the CFG to distribute tasks on
many PEs

• The sequencer chooses one
possible successors of tasks
(statically determined) to
continue walk

Multiscalar Programs

21

Multiscalar Paradigm

• Should enable fast walk through
the CFG to distribute tasks on
many PEs

• The sequencer chooses one
possible successors of tasks
(statically determined) to
continue walk

Multiscalar Programs

22

Forward bit: value forwarded to next task
Stop bit: denote finish of task
Release: do not forward the value

Multiscalar Paradigm

• Communication between tasks
implemented as minimal ISA
changes

• Forward „live-out“ values to
successor tasks

Multiscalar Programs

23

Multiscalar Paradigm

• Communication between tasks
implemented as minimal ISA
changes

• Forward „live-out“ values to
successor tasks

Multiscalar Programs

24

Forward bit: value forwarded to next task
Stop bit: denote finish of task
Release: do not forward the value

Agenda
Multiscalar Paradigm

• Philosophy and Concepts

• Multiscalar Program

• Multiscalar Hardware

25

Multiscalar Paradigm

• Key components:

• Sequencer

• Processing Element

• Address Resolution Buffer

• Otherwise a traditional SoC

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer
Tail

H
ead

Multiscalar Hardware

An example of a 3-unit multiscalar processor

26

Multiscalar Paradigm

• Sequencer:

• Determine order of tasks

• Fetch descriptor and executes
task

• Predict next task

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer
Tail

H
ead

Multiscalar Hardware

An example of a 3-unit multiscalar processor

27

Multiscalar Paradigm

• Processing Element:

• Independently fetch and
execute tasks

• Forward register values
through the uni-directional ring

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer
Tail

H
ead

Multiscalar Hardware

An example of a 3-unit multiscalar processor

28

Multiscalar Paradigm

• Address Resolution Buffer:

• Holds speculative memory
operations before retirement

• Detects and corrects
dependency violations

Processing Unit

Processing Unit

Processing
Element

icache

PE

Register File

Interconnect

Data Bank Data Bank
ARB

dcache

Sequencer
Tail

H
ead

Multiscalar Hardware

An example of a 3-unit multiscalar processor

29

Design Analysis

Design Analysis
Breakdown of (useless) CPU cycles

• Objective: all PEs should perform useful computation at all times

• Try to avoid:

• Squashing due to wrong speculation

• Stalling due to waiting for values

• Idle due to no schedulable task

31

Solutions
Avoiding Useless CPU Cycles

• Observation: incorrect branch prediction cause squashing

• => early validation of prediction; optimise code structure

• Observation: inter-task dependencies serialise execution

• => source-level change to reduce dependencies

• Observation: short tasks wait for very long tasks

• Perform load-balancing by adjusting granularity of tasks

32

Design Analysis
Comparison with other ILP Paradigms

• Does not require branch prediction on every branch

• Only on task edges! => larger instruction window

• Does not have to check load-store conflicts on issuance

• Conflict checked by ARBs instead

• Less complex hardware

• Simple, in-order cores sufficient to achieve high IPC

33

Evaluation

Evaluation
Experiment Setup

• Big-endian MIPS simulator with cycle models

• 5-stage pipeline

• Configurable in/out-of-order & single/dual issue

• Modified GCC 2.5.8 compiler for multiscalar programs

• Benchmarks from SPECfp92 and GNU Coreutils

35

Evaluation
Increase in Dynamic Instruction Count cf. Scalar

36

0.00%

4.50%

9.00%

13.50%

18.00%

Com
pres

s

Eqnto
tt

Esp
res

so Gcc Sc
Xlisp

To
mca

tv
Cmp Wc

Exa
mple

More instruction in multiscalar:

Additional multiscalar data instructions (release)

Evaluation
Speedup cf. Scalar and Prediction Accuracy

37

0%

25%

50%

75%

100%

0

2

4

6

8

Compress Eqntott Espresso Gcc Sc Xlisp Tomcatv Cmp Wc Example

In-order 4-unit Out-of-order 4-unit In-order 8-unit Out-of-order 8-unit
Prediction accuracy Speedup=1 Speedup=4 Speedup=8

Speedup < 1!

Speedup = ~80% theoretical

Evaluation
Speedup vs. Prediction Accuracy

38

0%

25%

50%

75%

100%

0

2

4

6

8

Compress Eqntott Espresso Gcc Sc Xlisp Tomcatv Cmp Wc Example

In-order 4-unit Out-of-order 4-unit In-order 8-unit Out-of-order 8-unit
Prediction accuracy Speedup=1 Speedup=4 Speedup=8

Speedup largely correlates to task prediction accuracy

Linear speedup in suitable workloads

Strengths and Weaknesses

Strengths

• Completely new (in 1995) compared to other ILP paradigms

• Speculative control and data flow

• Cooperation between compiler and hardware

• Influential with large impact: 1339 citations since publication

• Address Resolution Buffer: used by virtually all processors nowadays (known as
ROB)

• Better known as speculative thread parallelism

• Implemented in IBM XL C/C++ (-qsmp=speculative), OpenMP TLS extension

40

Weaknesses

• Important details glossed over: how to implement the sequencer, ARB, etc.?

• Time-proved difficult hardware design: no full, real hardware ever

• Dependent on compiler optimisations: story of Itanium

• Bad compiler (in 1995!) => poor performance

• Less vigorous evaluation (in today’s standards)

• Missing comparison with other ILP paradigms

• No cycle-accurate simulation model / synthesizable implementation

41

Acknowledgements

• Special thanks to mentors of this presentation

• Haocong Luo

• Rahul Bera

• Nisa Bostancı

• Thanks to the teaching team for picking the papers and teaching the basics

• …and the audience for listening! Please engage in the discussion :)

42

Discussion

Transferability into Other Fields
Discussion

• Thread Level Speculation (TLS):

• Speculatively execute a section of computer code in a separate
independent thread

• Software on SMT processors v.s. hardware-based approach?

• Task creation? Passing values? Rollback?

44

Discussion

• Multiscalar execution model:

• CFG slicing, independent
runtime task scheduling

• Explicit Data Graph Execution
(EDGE): Microsoft & DARPA

• „Dataflow execution“: execute
hyperblocks on all PEs at the
same time

• Difference?

ILP Execution Models

45

Hardware-Software Co-design
Discussion

• Open ended: compiler-assisted hints for higher hardware performance

• Multiscalar processors: task division, „stop" and „forward" bits

• MIPS & SPARC: delay slots

• More?

46

Presented by: Pengcheng Xu at Seminar in Computer Architecture

Thanks for your attention

Backup Slides

Instruction-level Parallelism

• Very Long Instruction Word
(VLIW): Encode multiple
"instructions" in one instruction

• Compiler statically schedule
instructions to be executed in
parallel

Op1, Reg1, Reg2 Op2, Reg3, Reg4 Op3, Reg5, Reg6 Op4, Reg7, Reg80x2000

PE PE PE PE

… … … …0x2010

Instruction, Time

Basic Concepts

4-way VLIW with 16-byte instructions

49

Register and Memory Synchronisation
Order between PEs

Registers

• Produce & consume can be
statically determined

• Produced: forward to successor

• Consumed: wait for value

Memory

• Known locations: same as registers

• Unknown location:

• Aggressively speculatively load
(cf. conservatively wait)

50

Augmenting Binaries
Multiscalar Programs

• Support executing old binaries, albeit slowly due to lack of parallelism

• For existing binaries:

• Generate CFG and task structure and add to binary

• Possible for migrating existing, non-multiscalar binaries to multiscalar

51

