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Problems and Motivation

Tight energy budget Tight thermal heat budget Tight circuit area budget

= How to make Google Consumer Devices more energy-efficient?




Key Idea: Analyze Popular Workloads
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Key Observations

Cache ' ' Cache ' ' Cache ' '

On average, 62.7 % of system energy is spent on data movement

A few simple primitives are responsible
for a large chunk of total energy cost




Key Contributions

€ 1T vps

® Analyze data movement in these workloads

PiM Accelerator

® Show opportunities for PiM to alleviate data movement costs

® Design PiM logic and evaluate efficiency gains

= Reduces energy costs by an average of §5.4% &%
= Reduces execution time by an average of §4.2% e



Background: Processing-in-Memory (PiM)

vault

PiM: Process data closer to memory

= More bandwidth
= |.ower latency
= Higher energy efficiency

Type of PiM: 3d-stacked memory

DRAM Layer
B B N D D N R

DRAM Layer
BN B D DN D N R

DRAM Layer
BN B N DN D N

DRAM Layer
B B D D D N

Logic Layer

TSV: Through-Silicon-Via
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Methodology: Workload Analysis

Machine ™

1. Chromebook with Intel Celeron N3060 dual core SoC
2. 2GBof DRAM

Performance and traffic analysis 8

Hardware performance counters on the SoC

Energy model -

0ff-chip

Interconnects
Energy




Methodology: PiM Implementation

TSV: Through-Silicon-Via

DRAM Layer
N N D D R —

DRAM Layer
I N N D R —

DRAM Layer
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TSV: Through-Silicon-Via

DRAM Layer
B D N D D —

DRAM Layer
I D N D DN —

DRAM Layer
I D D D B —

DRAM Layer
I DN D D N —

DRAM Layer
BN DN N D DN

i . : : PiM PiM PiM PiM
P]_M P]_M P]_M P]_M Accelerator Accelerator Accelerator Accelerator
Core Core Core Core PiN PiM PiM PiM
Accelerator Accelerator Accelerator Accelerator

1. General purpose
purp 1. Customlogic (for each workload)
2. Low-power:no fancy ILP

2. Data- llelism = Multipl '
3. Data-parallelism= SIMD ala-paraficiism UItpic COpics
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J Motivations

Why analyze Google Chrome?

> 1 billion monthly active users

What makes Chrome feel fast? (e
1. Pageload time
2. Smooth web page scrolling

3. Quick tab switching

What's next?

1. 'Take care of scrolling (2) and tab switching (3)

2. Page load time (1) reduces by increasing scrolling and tab switching performance !

13



Chrome
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J Page Scrolling

Server &

HTML bing.com
CSS

Machine ™ ® Color Blitting O Texture Tiling

IX' - Reneree’i" - qu == = Rasterization #: =» Compositing

Calculate the structure Calculate the bitmap Combine bitmaps

and the position of each element of each element of all layers and draw

.|
Once Every 16.7 ms (60 fps)
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J Page Scrolling: Energy Analysis

® Color Blitting

@ Texture Tiling

HTML

= Render Tree?J' = Layout = = Rasterization # = Compositing

CSS

Color Blittin

B Texture Tiling
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J Page Scrolling: Energy Analysis

® Color Blitting O Texture Tiling

HTM'— = Render Tree ' = Layout = = Rasterization #: = Compositing [~

| Data Movement £ COmpute
40%

© 5 > 25%

: = 30% R

o5 ‘ Recall

Sw 20% [V :

g‘_o 10% 7 Data Movement = ®

| - &= 0 _ ] )
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0% -] (==
Texture Color

Tiling Blitting
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J PiM Feasibility: Texture Tiling

(a) CPU-Only time
leU Melyory

rasterization
generates
' linear bitmap

read bitmap
from memory

convert_bitmap
to tiled texture

high
¥ data movemen

texture tiling

write tiles |
| _tomemory |-,

L

texture tiles

driver invokes
compositing

Is Texture Tiling a good fit for PiM?

1. During texture tiling, 85% of energy consumed Is PiM Cost effective?

by data movements 1.  Simple primitives: memcopy, bitwise logic and addition

2. Poor datalocality during texture tiling 2. PiM Accelerator takes 0.25 mm?2 per vault

5. Therasterized bitmap is big 1024 by 1024 (4 MB) 3. 7.1% of total per vault area
19
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3 PiM Feasibility: Color Blitting

color bllttmg
Lo+ + O —

Is Color Blitting a good fit for PiM?

1. During Color Blitting, 64% of energy consumed by data movements

2. Poor datalocality due to streaming patterns
5. 'Therasterized bitmap is big 1024 by 1024 (4 MB)

Is PiM Cost effective?

I.  Simple primitives:
memset, add and multiply for alpha-blending, bit shifts
2. PiM Accelerator takes a small per vault area
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¥ Google Chrome: Tab Switching

Tab switching: what is?

1.  Eachtabisits own process Chrome

= Context-switching

= [.o0ad page from memory
2. What's the problem? Process1 <=  Process N <

= Memory is a big problem!

1. Increasingly rich web pages
¢ i e ot 7 s Q0 2. Needresponsive tabs = Use DRAM
L e e S = SR (S S G5 S5SER N 3. Toomanytabs = Compressinactive (ZRAM)
gt .

Decompress from ZRAM when needed
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J Tab Switching: Energy Analysis

Data Swapped Out
to ZRAM (MB/s)

Methodology

1.
2. Scroll for 3s then switch to the next

Open 50 tabs

R R NN
U1 © L1 © U
O O O O © O

Tim

M®

secon

Results

* 11.7 GB of data swapped out to ZRAM
* 7.8 GB of data swapped in from ZRAM
= Total of 19.6 GB of data movement

= 18.1% of system energy spent on compression / decompression

N N
o Ui
o O

=
U1
o

=
-
o

U1

Data Swapped In
from ZRAM (MB/s)
o

o

Time (seconds
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J PiM Feasibility: Tab Switching

(a) CPU-Only

CPU

read N pages

from memory

compress
N pages

thgh

write back
N compressed |-.,

L pages

compression
A

other tasks for
active pages

Is Tab Switching a good fit for PiM?

swap out
N inactive pages
( .
A$

Memory

time

{ uncompressed

“

pages

ta movement

compressed

..

_Lg

pages (ZRAM)

1.  34.3% of system energy spent on (de)compression

2. Canbehandled in the background

Is PiM Cost effective?

1. Simple compression (LLZO) has simple primitives

2. PiM Accelerator takes 0.25 mm? per vault
5. 7.1% oftotal pervault area
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' TensorFlow Mobile

Why analyze TensorFlow Mobile?

1. It’s what the cool kids are doing

2. Deep Learning is becoming increasingly used in mobile application (e.g. Google Photos)

What does TensorFlow do?

1. We analyze CNNs: Conv2D and MatMu L

2. Key operations: ® Packing ® Quantization

27
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- Packing

The packing problem

During MatMul,
How to load matrix
elements into caches to

minimize cache miss rate?

Is Packing a good fit for PiM? Is PiM cost effective?
1.  33% of total system energy 1. Simple memory reordering
2. During packing, 82% of energy 2. We canreuse the same logic as in texture tiling

consumed by data movement = (Cost-effective
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F Quantization

The quantization process

matrix Quantization
float "

matrix
1nt8
Conv2D
/Matmul

matrix | Re-Quantization matrix
1nt8 float

Is Quantization a good fit for PiM? Is PiM cost effective?
1. Upto16.1% of total system energy 1. Simple primitives: shift, add, multiply
2. During quantization, up to 73% of 2. We can reuse the same logic as in texture tiling

energy consumed by data movement = (Cost-effective
31
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Motivations

Why analyze video playback and video capture?

1. Youtube, Netflix, Tiktok, Instagram: the videos are not watching themselves!

2. Huge traffic volumes, and set to increase in the future

Global IP traffic %

By 2020, video on the internet will eat 1%
up a bigger share of increased web traffic.

15%

Gaming — o 1%

File sharing 8%

Web/data 18%

IPVOD 22%
2016 2021

: Total traffic: 96 exabytes 278 exabytes
Source: Cisco J e 33



“ Video Playback / Video Capture

video stream Decode r En code r video stream
dlsplay
compressed compressed

Most of the system energy is spent on data movements
= Good fit for PIM

The majority of data movement comes from simple primitives
= PiM likely feasible

34



Outline

Paper presentation

1. Introductionand Background
2. Methodology
5. Workload Analysis

4. Results

Analysis

5. Strengths

6. Weaknesses
7. 'Takeaways
8. Discussion

35



Evaluation Methodology: System Configuration

The gemb full-system simulator is used with the following system:

SoC
I. 4000 Coxes, 8-wideissue

2. L1Cache: 64 K& 1.2 Cache: 2MB
PiM Core
1. 1dorepervault, I-wideissue, 4-wide SIMD

2. L1Qache: 32KB

3D-Stacked Memory

1. 2GB e, 16vaults per cube
2. Internal Bandwidth: 256 GB/s Interface Channel Bandwidth: 32 GB/s

Baseline Memory

[.LPDDR3, 2GB, FR-FCFS scheduler

o6



Normalized Energy
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Runtime .

Normalized Runtime
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Conclusion

Want to make Google devices energy efficient?
But: Tight chip area budget / Tight thermal budget

Realize that it’s all data movements
62.7% of system energy
Realize that it's all in simple algorithms
primitives like add, multiply, shift

Accelerate by processing-in-memory

reduces energy consumption by §5.4% &
reduces running time by 54.2%

ree-up area
Make things fast
Free-up energy budget
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Strengths

Breadth of exploration

Chrome, TensorFlow, VP9 Encoder (SW + HW), VP9 Decoder (SW + HW)

Depth of exploration

1. Each workload is thoroughly analyzed

2. Each workload not only get its own PiM feasibility analysis but also a PiM implementation!

3. Each workload’s PiM implementation is thoroughly analyzed

First paper to comprehensively profile and analyze popular google workloads

47
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Weaknesses

Evaluation methodology vs. analysis methodology
The evaluation methodology and the analysis methodology do not match.
1. Analysis main CPU has 2 cores while evaluation CPU has 4 cores

2. Analysis based on HMC memory while evaluation based on HBM memory

Lacks comparison against a GPU for Chrome, or a Neural Network Accelerator for TensorFlow?
(Snapdragon Neural Processing Engine in Motoral phones anounced in 2017)

Lacks comparison against accelerators on the SoC for Chrome and TensorFlow?

Lacks comparison against a 16 core system on the SoC:

We want to decouple the performance from PiM itself and the simple fact of having more cores

The baseline memory uses LPDDR73 (2GB/s): why not use the off-chip bandwidth of 3d-stacked
memory (32 GB/s)?

43
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Key Takeaways

A lot of the popular workloads involve very basic operations that can be accelerated with PiM

Data movement problems are hard to solve with current methods but powerfully solved with PiM

Improvements by 2x might not seem monumental, but we are talking about the most used and
optimized algorithms of our times

Matrix-multiply optimizations (quantization, packing) can be optimized further with PiM!

GPU is not necessarily the solution to all graphics problems!
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Discussion: Opening Questions

Program/
Language

Operating System

¢
Operating System
=
e —
e
| owaus
| oo

Microarchitecture

System integration: opening questions

* How to design compiler to deal with PiM workloads?

* Automatically identify portions of code that can be offloaded to PiM Core?
= [sit an OS Job?
= [sita compiler Job?
= [s it the programmer’s job?
If so, think about programming a 1000-core machine in the future!
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Discussion: Runtime/Static Analysis

PIMProf (2022)
PIMProf: An Automated Program Profiler for
m Processing-in-Memory Offloading Decisions
Yizhou Wei*, Minxuan Zhou, Sihang Liu*, Korakit Seemakhupt*, Tajana RosingT, and Samira Khan*
*University of Virginia, 1University of California San Diego
Prog ram / Email: {yizhouwei,l{vihanglg, Icf()rakit, sami(rizkhan}té’@v;:';nfc{edu, {fnizOngtajana}@ucsd.edu
Language
TOM (2016)
Transparent Offloading and Mapping (TOM):
Operating System Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh* Eiman Ebrahimi' Gwangsun Kim® Niladrish ChatterjeeJr Mike O’Connor'
Nandita Vijaykumar? Onur Mutlu?®  Stephen W. Keckler!

'Carnegie Mellon University NVIDIA *KAIST SETH Ziirich

Microarchitecture

PIM-Enabled Instructions (2015)

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo @gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University fCarnegie Mellon University

48



Discussion: Processing-in-Memory

This work: 3D-stacked memory What about other Processing-in-Memory devices?

Logic Layer

RowClone (2013) RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee

ca n we use Processi ng - usi ng - M emo ry7 vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
®

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry
AM BIT (2017) onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

Ambit: In-Memory Accelerator for Bulk Bitwise Operations SIMDRAM (2021)
USing CommOdity DRAM TeChnOIOgy SIMDRAM: An End-to-End Framework for

Vivek Seshadri'® Donghyuk Lee?® Thomas Mullins®>® Hasan Hassan®* Amirali Boroumand® Bit-Serial SIMD Computing in DRAM

. .4 . 4 11 .
Jeremie Kim ®  Michael A. Kozuch® Onur Mutlu*® Phillip B. Gibbons® Todd C. MOWIY5 *Nastaran Hajinazar’?>  *Geraldo F. Oliveira! ~ Sven Gregorio! ~ Jo#o Dinis Ferreira’
Nika Mansouri Ghiasi'! =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®

IMicrosoft Research India 2NVIDIA Research 3Intel “ETH Ziirich °Carnegie Mellon University Juan Gémez-Luna'  Onur Mutlu'

1ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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Discussion: Coherence

—
 Aigorithm —
Program /
Language However: Off-chip coherence traffic is expensive:

How do we solve the data coherence problem?

directory directory

Operating System LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

2010 n | .
Amirali Boroumand', Saugata Ghose', Minesh Patel, Hasan Hassan'$, Brandon Lucia,
LaZyPIM Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*?

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

Microarchitecture

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

2 019 Amirali Boroumand' Saugata Ghose' Minesh Patel* Hasan Hassan*
Brandon Lucia® Rachata Ausavarungnirun'# Kevin Hsieh'
C ON DA Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"
fCarnegie Mellon University *ETH Zirich *KMUTNB
°Simon Fraser University §Samsung Semiconductor, Inc.
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Discussion: Synchronization

time (b) CPU + PIM

generates

linear bitmap

...
L
L 4
L

Program/

}linear bitmap
Language -

S S
i
M 0
o S
o O.
25
So
® T

%
5 BF

Synchronization

l texture tiles

Operating System driver invokes
compositing

Microarchitecture

SynCron: Efficient Synchronization Support
2021 for Near-Data-Processing Architectures

Christina Giannoula'™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas’ Ivan Fernandez®*
Juan Gémez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas’ Onur Mutlu*

" National Technical University of Athens  *ETH Ziirich *University of Toronto $University of Malaga

SynCron
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Discussion: Research Methodology

This work: use energy as the primary target metric

DAMOV (2021)

DAMOYV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

LOIS OROSA, ETH Ziirich, Switzerland

SAUGATA GHOSE, University of Illinois at Urbana—Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada

IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland
MOHAMMAD SADROSADATI, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Architecture Independent

Temporal Locality

Spatial Locality

Architecture Dependent

Arithmetic
Intensit

LLC Misses Per
Kilo-Instructions

Last-to-First
Miss Ratio (LFMR
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Discussion: PiM in the market

TSV: Through-Silicon-Via

DRAM Layer

We have to choose what to put in PiM accelerators e m LayT BN E—

DRAM Layer

: BN BN B D B B
1. Generality (Accelerator reuse) DRAM Layer

Tradeoff between:

2. Performance m m m o
Accelerator Accelerator Accelerator Accelerator

3. Cost | | | |
PiM PiM PiM PiM
Accelerator Accelerator Accelerator Accelerator

Today PiM-enabled memory is expensive
Is there a future where even cheap mobile devices are PiM-enabled? When?
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L.xecutive Summary

Problems and motivation
* Mobile consumer devices are subject to tight circuit area, thermal heat and energy budget.

= How to make Google Consumer Devices more energy-efficient? &g — _a

Key ideas and insights

* Among popular workloads, data movement is a prime contributor to total system energy expenditure.
* A few functions are responsible for a large chunk of the total energy cost.

Mechanisms and implementation

* Analyzing data movement related costs in Google Chrome, TensorFlow, Video Playback and Capture.
* Investigation of efficiency gains from using Processing-in-memory (PiM).
* Determining for which workloads it is a good idea to use PiM, and which type of PiM to use.

Results

* Reduces energy costs by an average of 55.4% across tested workloads. &
* Reduces execution time by an average of §4.2%. ea
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L.xecutive Summary

Problem Tight energy / chip area / thermal budgets
and motivation Want to make Google devices energy efficient?

Observation Realize that it's all data movements
62.7% of system energy

Realize that it's all in simple algorithms
primitives like add, multiply, shift

Contribution Accelerate by processing-in-memory

and result reduces energy consumption by 55.4%
reduces running time by §4.2%

ree-up area
Enable more power

Free-up energy budget
56



Neural Network Architectures analyzed

ResNet (2015) VGG-19 (2014) GRU (2014) Inception-ResNet (2016)
+ y[t]

Layer I-2 I Filter concat
h[t-l] ) ( &\ + \ h[t] /\ 3x3 Conv
(320 stride 2 V)
3x3 Qonv 3x3 (_Zonv f
Layer I-1 r[t] E— (384 stride 2 V) (288 stride 2 V) 3x3 Conv
Z[t] h[t] (stride 2 V) T (288)
* \ 1x1 Conv 1x1 Conv f
)-I Y )‘ Y H tanh (256) ) 1x1 Conv
L N s
* \ / Previous
* Layer
X[t]
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“ Video Playback

What is video playback anyway?

= A decoder: The VPg decoder!

Decompresses and decodes the raw streaming video data and renders it on the device.

compressed reference reconstructed
video stream frame frame
: : : Memory
Y R . SoC
motion vectors MC: Motion 0 :
Entropy Compensation Deblocking
Decoder Filter
Inverse Inverse
residual data | Quantization Transform

Figure 9. General overview of the VP9 decoder.
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Video Playback

-hv- compressed reference reconstructed
Step-by e:'tep qvideo stream] q frame ] é frame J "
explanation : o : emory
V motion vectors S¥MC: Motion 0 e ‘ SoC
Entropy Compensation Deblc;cking
Decoder Filter
Inverse Inverse
residual data | Quantization Transform
Figure 9. General overview of the VP9 decoder.
® macro-blocks ® motion vectors: ® deblocking filter

resolution can be as low as
1/8 of a pixel!

= Sub-pixel interpolation

Fig. 1. Deblocking a video frame[3]
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Energy Analysis

Energy Analysis: VP9 software decoder

Usmg 4K resolution (3840X2160-]2)1X€1) MC: Sub-Pixel Interpolation B Other MC Functions

Deblocking Filter HE Entropy Decoder
o 53 4% Of energy spent on MC 7 Inverse Transform 3 Other
4K W | | S
* 37.5% of energy spent on Sub-Pixel 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fraction of Energy

Interpolation.
P Figure 10. Energy analysis of VP9 software decoder.

MC: Sub-Pixel Interpolation B Other MC Functions

Deblocking Filter E Entropy Decoder
* 03.5% of total energy spent on data —  oon EInverse Transform Other
= 2.
movement -
% 151074
. . Q x1012 {___
* 80.4% of which is provoked by MC. g 1040
— 0.5<10%2 |-
)
* 42.6% of total data movement © 0.0x1022-
. . . CPU LLC Inter- Mem DRAM
happens in Sub-Pixel Interpolation. connect  Ctrl

Figure 11. Energy breakdown of VP9 software decoder.
60



PiM Feasibility: Sub-Pixel Interpolation

CPU problems:

* Each subpixel interpolation needs multiple pixels to be

fetched from memory (11 by 11 pixels at worse)

* Motion vectors can point to any point in reference frame:
poor data locality!

* 65% of data movement between DRAM and CPU!

PiM solution:

* Filters used only require addition, multiplication and shifting.

* PiM accelerator would only use 0.25 mm2 (6% per vault)
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PiM Feasibility: Deblocking Filter

CPU problems:

* Low-pass filter on each edge between two superblocks.
* Poor cache locality.

* 711% of data movement happens off-chip

PiM solution:

* Simple lowpass requires only arithmetic and bitwise operations.

) ; | * PiM accelerator would only use 0.12 mm2 (3.4% per vault)
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Video Playback

A new challenger has arrived: VP9 hardware decoder

[0 Reference Frame B Compression Info [l Decoder Data
Reconst. Frame Metadata [0 Deblocking Filter M Reconstructed Frame

A With Compression [ i

- No Compression :l A
With Compression Nl
No Compression

| 1 | | | | 1 1

0 5 10 15 20 25 30 35 40 45
Off-Chip Traffic to/from DRAM (MB)

Figure 12. Off-chip traffic breakdown of VP9 hardware decoder.
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Video Playback

Back to PiM Feasibility. Does it hold against the hardware decoder?

compressed reference reconstructed
video stream frame frame
___________ MC: Motion Deblocking
= motion Compensation Filter
5 = vectors ; PIM
\ AN E SoC
Entropy |- Inverse Inverse -
Decoder md,o¢iquq/| Quantization Transform

data

Figure 13. Modified VP9 decoder with in-memory MC.
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