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➡ How to make Google Consumer Devices more energy-efficient?

Problems and Motivation

Tight circuit area budgetTight thermal heat budgetTight energy budget
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Key Idea: Analyze Popular Workloads
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Key Observations

On average, 62.7 % of system energy is spent on data movement

CPU Cache 
L1

Cache 
L2

Cache 
L3 DRAM

A few simple primitives are responsible  
for a large chunk of total energy cost

add + multiply * shift << memcopy
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Key Contributions

❶ Analyze data movement in these workloads

❷ Show opportunities for PiM to alleviate data movement costs

PiM Core PiM Accelerator

❸ Design PiM logic and evaluate efficiency gains
➡     Reduces energy costs by an average of 55.4% 
➡ Reduces execution time by an average of 54.2%
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Background: Processing-in-Memory (PiM)
PiM: Process data closer to memory 

➡ More bandwidth 
➡ Lower latency 

➡ Higher energy efficiency

Type of PiM: 3d-stacked memory
TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

Logic Layer
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Methodology: Workload Analysis

1. Chromebook with Intel Celeron N3060 dual core SoC 
2. 2 GB of DRAM

Machine 💻

Hardware performance counters on the SoC 

Performance and traffic analysis 🚦 

Energy model ⚡

CPU 
Energy

Cache 
Energy 
(L1/2)

DRAM 
Energy

Off-chip 
Interconnects 

Energy✚ ✚✚
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Methodology: PiM Implementation

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM 
Core

PiM 
Core

PiM 
Core

PiM 
Core

1. General purpose 
2. Low-power: no fancy ILP 
3. Data-parallelism ➡ SIMD

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

1. Custom logic (for each workload) 
2. Data-parallelism ➡ Multiple copies
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Motivations
Why analyze Google Chrome?

≥ 1 billion monthly active users

What makes Chrome feel fast?

1. Page load time 

2. Smooth web page scrolling 

3. Quick tab switching

What’s next?

1. Take care of scrolling (2) and tab switching (3) 

2. Page load time (1) reduces by increasing scrolling and tab switching performance !

(🏎)
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Chrome
TensorFlow

Google’s Deep  
Learning library

Decoder

Video Playback

Google’s video codec 
(Used in Youtube)

Encoder

Video Capture

Google’s video codec 
(Used in Youtube)

Page Scrolling

Tab Switching
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DrawLayoutLoad + Parse

Page Scrolling

HTML
CSS

➡   Render Tree 🌴   ➡   Layout 𝌍

Machine 💻

Server 🤖

bing.comHTML 
CSS
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Calculate the structure  
and the position of each element

Calculate the bitmap 
of each element

Combine bitmaps 
of all layers and draw

❌ ❌ ❌

❶ Texture Tiling❷ Color Blitting

Once Every 16.7 ms (60 fps)

➡    Rasterization 🏁    ➡    Compositing  🖼



Page Scrolling: Energy Analysis
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Load + Parse DrawLayout

➡   Render Tree 🌴   ➡   Layout 𝌍    ➡    Rasterization 🏁    ➡    Compositing  🖼HTML
CSS

❶ Texture Tiling❷ Color Blitting

≥ 40%



Page Scrolling: Energy Analysis
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Data Movement = 😡

Recall 

Load + Parse DrawLayout

➡   Render Tree 🌴   ➡   Layout 𝌍    ➡    Rasterization 🏁    ➡    Compositing  🖼HTML
CSS

❶ Texture Tiling❷ Color Blitting

≥ 25%

≥ 10%



Chrome
TensorFlow

Google’s Deep  
Learning library

Decoder

Video Playback

Google’s video codec 
(Used in Youtube)

Encoder

Video Capture

Google’s video codec 
(Used in Youtube)

Page Scrolling 
1. Texture Tiling 
2. Color Blitting

Tab Switching
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PiM Feasibility: Texture Tiling

😡 🏎🏎🏎

1. During texture tiling, 85% of energy consumed 
by data movements 

2. Poor data locality during texture tiling 
3. The rasterized bitmap is big 1024 by 1024 (4 MB)   

1. Simple primitives:  memcopy, bitwise logic and addition 
2. PiM Accelerator  takes 0.25 mm2  per vault  
3. 7.1% of total per vault area
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Is PiM Cost effective?
Is Texture Tiling a good fit for PiM?
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PiM Feasibility: Color Blitting

1. During Color Blitting, 64% of energy consumed by data movements 
2. Poor data locality due to streaming patterns 
3. The rasterized bitmap is big 1024 by 1024 (4 MB)   

1. Simple primitives:  
memset, add and multiply for alpha-blending, bit shifts 

2. PiM Accelerator  takes a small per vault area
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Is PiM Cost effective?

Is Color Blitting a good fit for PiM?

color blitting

++



Chrome
TensorFlow
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(Used in Youtube)

Page Scrolling
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DRAM

➡  Memory is a big problem! 

1. Increasingly rich web pages 
2. Need responsive tabs   ➡   Use DRAM 
3. Too many tabs   ➡   Compress inactive (ZRAM) 
4. Decompress from ZRAM when needed

Google Chrome: Tab Switching

Tab switching: what is?

1. Each tab is its own process 
➡  Context-switching 
➡  Load page from memory 

2. What’s the problem?
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ZRAM

Chrome

Tab 1 Tab N

Process 1 Process N

…

…



Tab Switching: Energy Analysis

Methodology

1. Open 50 tabs 
2. Scroll for 3s then switch to the next
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• 11.7 GB of data swapped out to ZRAM 
• 7.8 GB of data swapped in from ZRAM 
➡   Total of 19.6 GB of data movement 

➡   18.1% of system energy spent on compression / decompression

Results



PiM Feasibility: Tab Switching

😡 🏎🏎🏎
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1. 34.3% of system energy spent on (de)compression 
2. Can be handled in the background

1. Simple compression (LZO) has simple primitives 
2. PiM Accelerator  takes 0.25 mm2  per vault  
3. 7.1% of total per vault area

Is PiM Cost effective?
Is Tab Switching a good fit for PiM?
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TensorFlow Mobile

Why analyze TensorFlow Mobile?

1. It’s what the cool kids are doing 
2. Deep Learning is becoming increasingly used in mobile application (e.g. Google Photos)
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What does TensorFlow do? 

1. We analyze CNNs: Conv2D and MatMul 
2. Key operations:           ❶ Packing          ❷ Quantization
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Packing

Quantization



Packing
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The packing problem

Is Packing a good fit for PiM? Is PiM cost effective?

1. 33% of total system energy 
2. During packing, 82% of energy 

consumed by data movement

1. Simple memory reordering 
2. We can reuse the same logic as in texture tiling 

➡    Cost-effective

CPU Cache 
L1

Cache 
L2

Cache 
L3

During MatMul, 
How to load matrix 
elements into caches to 
minimize cache miss rate?
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Packing

Quantization



Quantization
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Is Quantization a good fit for PiM? Is PiM cost effective?
1. Up to 16.1% of total system energy 
2. During quantization, up to 73% of 

energy consumed by data movement

1. Simple primitives: shift, add, multiply 
2. We can reuse the same logic as in texture tiling 

➡    Cost-effective

The quantization process

float
matrix

int8
matrix

Conv2D 
/Matmul

Quantization

float
matrix

int8
matrix Re-Quantization
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Google’s Deep  
Learning library



Motivations

Why analyze video playback and video capture?
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1. Youtube, Netflix, Tiktok, Instagram: the videos are not watching themselves! 
2. Huge traffic volumes, and set to increase in the future



Most of the system energy is spent on data movements 
➡   Good fit for PiM

Video Playback / Video Capture
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compressed

video stream
display

Decoder Encoder

compressed

video stream

The majority of data movement comes from simple primitives 
➡   PiM likely feasible
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Evaluation Methodology: System Configuration
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1. 4 OoO cores,    8-wide issue 
2. L1 Cache:    64 KB                                 L2 Cache:    2 MB

SoC

1. 1 core per vault,    1-wide issue,    4-wide SIMD 
2. L1 Cache:    32KB

PiM Core

1. 2 GB Cube,    16 vaults per cube 
2. Internal Bandwidth:    256 GB/s                               Interface Channel Bandwidth:     32 GB/s

3D-Stacked Memory

LPDDR3,    2GB,    FR-FCFS scheduler

Baseline Memory

The gem5 full-system simulator is used with the following system: 



Energy    🚗
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Runtime    🏎
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Conclusion
Want to make Google devices energy efficient?

But: Tight chip area budget / Tight thermal budget

Realize that it’s all data movements
62.7% of system energy

Realize that it’s all in simple algorithms
primitives like add, multiply, shift

Accelerate by processing-in-memory
reduces energy consumption by 55.4%   🚗 

reduces running time by 54.2%   🏎

Profit
Free-up area 

Make things fast 
Free-up energy budget 39
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Strengths

41

Chrome, TensorFlow, VP9 Encoder (SW + HW), VP9 Decoder (SW + HW)

Breadth of exploration

1. Each workload is thoroughly analyzed 

2. Each workload not only get its own PiM feasibility analysis but also a PiM implementation! 

3. Each workload’s PiM implementation is thoroughly analyzed

Depth of exploration

First paper to comprehensively profile and analyze popular google workloads
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Weaknesses

43

The evaluation methodology and the analysis methodology do not match.  
1. Analysis main CPU has 2 cores while evaluation CPU has 4 cores 
2. Analysis based on HMC memory while evaluation based on HBM memory

Evaluation methodology vs. analysis methodology

Lacks comparison against a GPU for Chrome, or a Neural Network Accelerator for TensorFlow? 
(Snapdragon Neural Processing Engine in Motoral phones anounced in 2017)

Lacks comparison against accelerators on the SoC for Chrome and TensorFlow?

Lacks comparison against a 16 core system on the SoC: 
We want to decouple the performance from PiM itself and the simple fact of having more cores

The baseline memory uses LPDDR3 (2GB/s): why not  use the off-chip bandwidth of 3d-stacked 
memory (32 GB/s)?
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Key Takeaways

45

A lot of the popular workloads involve very basic operations that can be accelerated with PiM

Data movement problems are hard to solve with current methods but powerfully solved with PiM

Improvements by 2x might not seem monumental, but we are talking about the most used and 
optimized algorithms of our times

Matrix-multiply optimizations (quantization, packing) can be optimized further with PiM!

GPU is not necessarily the solution to all graphics problems!
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Discussion: Opening Questions

• How to design compiler to deal with PiM workloads? 

• Automatically identify portions of code that can be offloaded to PiM Core? 
➡   Is it an OS Job? 
➡   Is it a compiler Job?  
➡   Is it the programmer’s job?  
     If so, think about programming a 1000-core machine in the future!
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System integration: opening questions



Discussion: Runtime/Static Analysis
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PIMProf (2022)

TOM (2016)

PIM-Enabled Instructions (2015)



Discussion: Processing-in-Memory
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DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

Logic Layer

This work: 3D-stacked memory

DRAM

Logic

Can we use Processing-using-Memory?

What about other Processing-in-Memory devices?

SIMDRAM (2021)

RowClone (2013)

up mem

AMBIT (2017)



Discussion: Coherence

However: Off-chip coherence traffic is expensive:  
How do we solve the data coherence problem?
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2016 
LazyPIM

2019 
CoNDA

CPU PiM

directory directory
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Discussion: Synchronization
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Synchronization!

2021 
SynCron

Problem

Algorithm

Program / 
Language

Operating System

ISA

Microarchitecture

Logic

Circuits

Electrons

User 👨💻



Discussion: Research Methodology
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This work: use energy as the primary target metric

DAMOV (2021)



Backup slides
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Discussion: PiM in the market
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We have to choose what to put in PiM accelerators 

Tradeoff between: 

1. Generality (Accelerator reuse) 

2. Performance 

3. Cost

Today PiM-enabled memory is expensive 
Is there a future where even cheap mobile devices are PiM-enabled? When?

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator

PiM 
Accelerator



Executive Summary

➡ How to make Google Consumer Devices more energy-efficient?

Problems and motivation

Key ideas and insights

Mechanisms and implementation
• Analyzing data movement related costs in Google Chrome, TensorFlow, Video Playback and Capture. 
• Investigation of efficiency gains from using Processing-in-memory (PiM). 
• Determining for which workloads it is a good idea to use PiM, and which type of PiM to use.

Results
• Reduces energy costs by an average of 55.4% across tested workloads. 🚙 
• Reduces execution time by an average of 54.2%. 🏎

• Among popular workloads, data movement is a prime contributor to total system energy expenditure. 
• A few functions are responsible for a large chunk of the total energy cost.

🚙 = 🏎
• Mobile consumer devices are subject to tight circuit area, thermal heat and energy budget.
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Executive Summary

Want to make Google devices energy efficient?

Realize that it’s all data movements
62.7% of system energy

Tight energy / chip area / thermal budgets

Realize that it’s all in simple algorithms
primitives like add, multiply, shift

Accelerate by processing-in-memory
reduces energy consumption by 55.4% 

reduces running time by 54.2%

Profit
Free-up area 

Enable more power 
Free-up energy budget

Problem 
and motivation

Observation

Contribution 
and result
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Neural Network Architectures analyzed

ResNet (2015) VGG-19 (2014) GRU (2014) Inception-ResNet (2016)
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Video Playback
What is video playback anyway?

➡  A decoder: The VP9 decoder!

Decompresses and decodes the raw streaming video data and renders it on the device.
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Video Playback

Step-by-step  
explanation

❸ macro-blocks ❸ motion vectors:  

 
resolution can be as low as 

1/8 of a pixel! 

➡ Sub-pixel interpolation

❽ deblocking filter
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Energy Analysis

Energy Analysis: VP9 software decoder

• 53.4% of energy spent on MC. 

• 37.5% of energy spent on Sub-Pixel 
Interpolation.

• 63.5% of total energy spent on data 
movement 

• 80.4% of which is provoked by MC. 

• 42.6% of total data movement 
happens in Sub-Pixel Interpolation.

Using 4K resolution (3840x2160-pixel)
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PiM Feasibility: Sub-Pixel Interpolation

• Each subpixel interpolation needs multiple pixels to be 
fetched from memory (11 by 11 pixels at worse) 

• Motion vectors can point to any point in reference frame: 
poor data locality! 

• 65% of data movement between DRAM and CPU!

CPU problems:

PiM solution:

• Filters used only require addition, multiplication and shifting. 

• PiM accelerator would only use 0.25 mm2 (6% per vault)
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PiM Feasibility: Deblocking Filter

• Low-pass filter on each edge between two superblocks. 

• Poor cache locality. 

• 71.1% of data movement happens off-chip

CPU problems:

PiM solution:

• Simple lowpass requires only arithmetic and bitwise operations. 

• PiM accelerator would only use 0.12 mm2 (3.4% per vault)
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Video Playback

A new challenger has arrived: VP9 hardware decoder
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Video Playback

Back to PiM Feasibility. Does it hold against the hardware decoder?
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