
Seminar in Computer Architecture
Presented by Xavier Servot

3.11.2022

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

ASPLOS 2018

Amirali Boroumand, Saugata Ghose, Youngsok Kim,
Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim,
Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu.

1

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

2

➡ How to make Google Consumer Devices more energy-efficient?

Problems and Motivation

Tight circuit area budgetTight thermal heat budgetTight energy budget

3
:) :) :)

:)

Encoder

Chrome TensorFlow

Video Capture

Google’s default
web browser

Google’s Deep
Learning library

Google’s video
codec

(Used in Youtube)
Decoder

Video Playback

Google’s video
codec

(Used in Youtube)

Key Idea: Analyze Popular Workloads

4

Key Observations

On average, 62.7 % of system energy is spent on data movement

CPU Cache
L1

Cache
L2

Cache
L3 DRAM

A few simple primitives are responsible
for a large chunk of total energy cost

add + multiply * shift << memcopy

5

Key Contributions

❶ Analyze data movement in these workloads

❷ Show opportunities for PiM to alleviate data movement costs

PiM Core PiM Accelerator

❸ Design PiM logic and evaluate efficiency gains
➡ Reduces energy costs by an average of 55.4%
➡ Reduces execution time by an average of 54.2%

6

🚙

🏎

Background: Processing-in-Memory (PiM)
PiM: Process data closer to memory

➡ More bandwidth
➡ Lower latency

➡ Higher energy efficiency

Type of PiM: 3d-stacked memory
TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

Logic Layer

7

vault

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

8

Methodology: Workload Analysis

1. Chromebook with Intel Celeron N3060 dual core SoC
2. 2 GB of DRAM

Machine 💻

Hardware performance counters on the SoC

Performance and traffic analysis 🚦

Energy model ⚡

CPU
Energy

Cache
Energy
(L1/2)

DRAM
Energy

Off-chip
Interconnects

Energy✚ ✚✚
9

Methodology: PiM Implementation

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM
Core

PiM
Core

PiM
Core

PiM
Core

1. General purpose
2. Low-power: no fancy ILP
3. Data-parallelism ➡ SIMD

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

1. Custom logic (for each workload)
2. Data-parallelism ➡ Multiple copies

10

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

11

Chrome

Google’s
web browser

TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

12

Motivations
Why analyze Google Chrome?

≥ 1 billion monthly active users

What makes Chrome feel fast?

1. Page load time

2. Smooth web page scrolling

3. Quick tab switching

What’s next?

1. Take care of scrolling (2) and tab switching (3)

2. Page load time (1) reduces by increasing scrolling and tab switching performance !

(🏎)

13

Chrome
TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

Page Scrolling

Tab Switching

14

DrawLayoutLoad + Parse

Page Scrolling

HTML
CSS

➡ Render Tree 🌴 ➡ Layout 𝌍

Machine 💻

Server 🤖

bing.comHTML
CSS

15

Calculate the structure
and the position of each element

Calculate the bitmap
of each element

Combine bitmaps
of all layers and draw

❌ ❌ ❌

❶ Texture Tiling❷ Color Blitting

Once Every 16.7 ms (60 fps)

➡ Rasterization 🏁 ➡ Compositing 🖼

Page Scrolling: Energy Analysis

16

Load + Parse DrawLayout

➡ Render Tree 🌴 ➡ Layout 𝌍 ➡ Rasterization 🏁 ➡ Compositing 🖼HTML
CSS

❶ Texture Tiling❷ Color Blitting

≥ 40%

Page Scrolling: Energy Analysis

17

Data Movement = 😡

Recall

Load + Parse DrawLayout

➡ Render Tree 🌴 ➡ Layout 𝌍 ➡ Rasterization 🏁 ➡ Compositing 🖼HTML
CSS

❶ Texture Tiling❷ Color Blitting

≥ 25%

≥ 10%

Chrome
TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

Page Scrolling
1. Texture Tiling
2. Color Blitting

Tab Switching

18

PiM Feasibility: Texture Tiling

😡 🏎🏎🏎

1. During texture tiling, 85% of energy consumed
by data movements

2. Poor data locality during texture tiling
3. The rasterized bitmap is big 1024 by 1024 (4 MB)

1. Simple primitives: memcopy, bitwise logic and addition
2. PiM Accelerator takes 0.25 mm2 per vault
3. 7.1% of total per vault area

19

Is PiM Cost effective?
Is Texture Tiling a good fit for PiM?

Chrome
TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

Page Scrolling
1. Texture Tiling
2. Color Blitting

Tab Switching

20

PiM Feasibility: Color Blitting

1. During Color Blitting, 64% of energy consumed by data movements
2. Poor data locality due to streaming patterns
3. The rasterized bitmap is big 1024 by 1024 (4 MB)

1. Simple primitives:
memset, add and multiply for alpha-blending, bit shifts

2. PiM Accelerator takes a small per vault area

21

Is PiM Cost effective?

Is Color Blitting a good fit for PiM?

color blitting

++

Chrome
TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

Page Scrolling

Tab Switching

22

DRAM

➡ Memory is a big problem!

1. Increasingly rich web pages
2. Need responsive tabs ➡ Use DRAM
3. Too many tabs ➡ Compress inactive (ZRAM)
4. Decompress from ZRAM when needed

Google Chrome: Tab Switching

Tab switching: what is?

1. Each tab is its own process
➡ Context-switching
➡ Load page from memory

2. What’s the problem?

23

ZRAM

Chrome

Tab 1 Tab N

Process 1 Process N

…

…

Tab Switching: Energy Analysis

Methodology

1. Open 50 tabs
2. Scroll for 3s then switch to the next

24

• 11.7 GB of data swapped out to ZRAM
• 7.8 GB of data swapped in from ZRAM
➡ Total of 19.6 GB of data movement

➡ 18.1% of system energy spent on compression / decompression

Results

PiM Feasibility: Tab Switching

😡 🏎🏎🏎

25

1. 34.3% of system energy spent on (de)compression
2. Can be handled in the background

1. Simple compression (LZO) has simple primitives
2. PiM Accelerator takes 0.25 mm2 per vault
3. 7.1% of total per vault area

Is PiM Cost effective?
Is Tab Switching a good fit for PiM?

Chrome

Google’s
web browser

TensorFlow

Google’s Deep
Learning library

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

26

TensorFlow Mobile

Why analyze TensorFlow Mobile?

1. It’s what the cool kids are doing
2. Deep Learning is becoming increasingly used in mobile application (e.g. Google Photos)

27

What does TensorFlow do?

1. We analyze CNNs: Conv2D and MatMul
2. Key operations: ❶ Packing ❷ Quantization

Chrome

Google’s
web browser

TensorFlow

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

28

Packing

Quantization

Packing

29

The packing problem

Is Packing a good fit for PiM? Is PiM cost effective?

1. 33% of total system energy
2. During packing, 82% of energy

consumed by data movement

1. Simple memory reordering
2. We can reuse the same logic as in texture tiling

➡ Cost-effective

CPU Cache
L1

Cache
L2

Cache
L3

During MatMul,
How to load matrix
elements into caches to
minimize cache miss rate?

Chrome

Google’s
web browser

TensorFlow

Decoder

Video Playback

Google’s video codec
(Used in Youtube)

Encoder

Video Capture

Google’s video codec
(Used in Youtube)

30

Packing

Quantization

Quantization

31

Is Quantization a good fit for PiM? Is PiM cost effective?
1. Up to 16.1% of total system energy
2. During quantization, up to 73% of

energy consumed by data movement

1. Simple primitives: shift, add, multiply
2. We can reuse the same logic as in texture tiling

➡ Cost-effective

The quantization process

float
matrix

int8
matrix

Conv2D
/Matmul

Quantization

float
matrix

int8
matrix Re-Quantization

Chrome

Google’s
web browser

Decoder

Video Playback

Google’s video
codec

(Used in Youtube)
Encoder

Video Capture

Google’s video
codec

(Used in Youtube)

32

TensorFlow

Google’s Deep
Learning library

Motivations

Why analyze video playback and video capture?

33

1. Youtube, Netflix, Tiktok, Instagram: the videos are not watching themselves!
2. Huge traffic volumes, and set to increase in the future

Most of the system energy is spent on data movements
➡ Good fit for PiM

Video Playback / Video Capture

34

compressed

video stream
display

Decoder Encoder

compressed

video stream

The majority of data movement comes from simple primitives
➡ PiM likely feasible

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

35

Evaluation Methodology: System Configuration

36

1. 4 OoO cores, 8-wide issue
2. L1 Cache: 64 KB L2 Cache: 2 MB

SoC

1. 1 core per vault, 1-wide issue, 4-wide SIMD
2. L1 Cache: 32KB

PiM Core

1. 2 GB Cube, 16 vaults per cube
2. Internal Bandwidth: 256 GB/s Interface Channel Bandwidth: 32 GB/s

3D-Stacked Memory

LPDDR3, 2GB, FR-FCFS scheduler

Baseline Memory

The gem5 full-system simulator is used with the following system:

Energy 🚗

37

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.25

0.5

0.75

1

Texture
Tiling

Color
Blitting

Com-
pression

Decom-
pression

Packing Quantization Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

CPU-Only PIM-Core PIM-Acc

Video Playback / CaptureTensorFlowChrome

≤ 27%

≤ 50%

≤ 60%

≤ 30%

Runtime 🏎

38

N
or

m
al

iz
ed

 R
un

tim
e

0.0

0.3

0.5

0.8

1.0

Texture
Tiling

Color
Blitting

Com-
pression

Decom-
pression

Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

TensorFlow

CPU-Only PIM-Core PIM-Acc

Chrome Video Playback / Capture TensorFlow

≤ 85%

≤ 45%≤ 40%

≤ 71%

Conclusion
Want to make Google devices energy efficient?

But: Tight chip area budget / Tight thermal budget

Realize that it’s all data movements
62.7% of system energy

Realize that it’s all in simple algorithms
primitives like add, multiply, shift

Accelerate by processing-in-memory
reduces energy consumption by 55.4% 🚗

reduces running time by 54.2% 🏎

Profit
Free-up area

Make things fast
Free-up energy budget 39

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

40

Strengths

41

Chrome, TensorFlow, VP9 Encoder (SW + HW), VP9 Decoder (SW + HW)

Breadth of exploration

1. Each workload is thoroughly analyzed

2. Each workload not only get its own PiM feasibility analysis but also a PiM implementation!

3. Each workload’s PiM implementation is thoroughly analyzed

Depth of exploration

First paper to comprehensively profile and analyze popular google workloads

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

42

Weaknesses

43

The evaluation methodology and the analysis methodology do not match.
1. Analysis main CPU has 2 cores while evaluation CPU has 4 cores
2. Analysis based on HMC memory while evaluation based on HBM memory

Evaluation methodology vs. analysis methodology

Lacks comparison against a GPU for Chrome, or a Neural Network Accelerator for TensorFlow?
(Snapdragon Neural Processing Engine in Motoral phones anounced in 2017)

Lacks comparison against accelerators on the SoC for Chrome and TensorFlow?

Lacks comparison against a 16 core system on the SoC:
We want to decouple the performance from PiM itself and the simple fact of having more cores

The baseline memory uses LPDDR3 (2GB/s): why not use the off-chip bandwidth of 3d-stacked
memory (32 GB/s)?

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

44

Key Takeaways

45

A lot of the popular workloads involve very basic operations that can be accelerated with PiM

Data movement problems are hard to solve with current methods but powerfully solved with PiM

Improvements by 2x might not seem monumental, but we are talking about the most used and
optimized algorithms of our times

Matrix-multiply optimizations (quantization, packing) can be optimized further with PiM!

GPU is not necessarily the solution to all graphics problems!

Outline

Paper presentation

1. Introduction and Background
2. Methodology
3. Workload Analysis
4. Results

Analysis

5. Strengths
6. Weaknesses
7. Takeaways
8. Discussion

46

Discussion: Opening Questions

• How to design compiler to deal with PiM workloads?

• Automatically identify portions of code that can be offloaded to PiM Core?
➡ Is it an OS Job?
➡ Is it a compiler Job?
➡ Is it the programmer’s job?
 If so, think about programming a 1000-core machine in the future!

47

Problem

Algorithm

Program /
Language

Operating System

ISA

Microarchitecture

Logic

Circuits

Electrons

User 👨💻

System integration: opening questions

Discussion: Runtime/Static Analysis

48

Problem

Algorithm

Program /
Language

Operating System

ISA

Microarchitecture

Logic

Circuits

Electrons

User 👨💻

PIMProf (2022)

TOM (2016)

PIM-Enabled Instructions (2015)

Discussion: Processing-in-Memory

49

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

Logic Layer

This work: 3D-stacked memory

DRAM

Logic

Can we use Processing-using-Memory?

What about other Processing-in-Memory devices?

SIMDRAM (2021)

RowClone (2013)

up mem

AMBIT (2017)

Discussion: Coherence

However: Off-chip coherence traffic is expensive:
How do we solve the data coherence problem?

50

2016
LazyPIM

2019
CoNDA

CPU PiM

directory directory

Problem

Algorithm

Program /
Language

Operating System

ISA

Microarchitecture

Logic

Circuits

Electrons

User 👨💻

Discussion: Synchronization

51

Synchronization!

2021
SynCron

Problem

Algorithm

Program /
Language

Operating System

ISA

Microarchitecture

Logic

Circuits

Electrons

User 👨💻

Discussion: Research Methodology

52

This work: use energy as the primary target metric

DAMOV (2021)

Backup slides

53

Discussion: PiM in the market

54

We have to choose what to put in PiM accelerators

Tradeoff between:

1. Generality (Accelerator reuse)

2. Performance

3. Cost

Today PiM-enabled memory is expensive
Is there a future where even cheap mobile devices are PiM-enabled? When?

TSV: Through-Silicon-Via

DRAM Layer

DRAM Layer

DRAM Layer

DRAM Layer

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

PiM
Accelerator

Executive Summary

➡ How to make Google Consumer Devices more energy-efficient?

Problems and motivation

Key ideas and insights

Mechanisms and implementation
• Analyzing data movement related costs in Google Chrome, TensorFlow, Video Playback and Capture.
• Investigation of efficiency gains from using Processing-in-memory (PiM).
• Determining for which workloads it is a good idea to use PiM, and which type of PiM to use.

Results
• Reduces energy costs by an average of 55.4% across tested workloads. 🚙
• Reduces execution time by an average of 54.2%. 🏎

• Among popular workloads, data movement is a prime contributor to total system energy expenditure.
• A few functions are responsible for a large chunk of the total energy cost.

🚙 = 🏎
• Mobile consumer devices are subject to tight circuit area, thermal heat and energy budget.

55

Executive Summary

Want to make Google devices energy efficient?

Realize that it’s all data movements
62.7% of system energy

Tight energy / chip area / thermal budgets

Realize that it’s all in simple algorithms
primitives like add, multiply, shift

Accelerate by processing-in-memory
reduces energy consumption by 55.4%

reduces running time by 54.2%

Profit
Free-up area

Enable more power
Free-up energy budget

Problem
and motivation

Observation

Contribution
and result

56

Neural Network Architectures analyzed

ResNet (2015) VGG-19 (2014) GRU (2014) Inception-ResNet (2016)

57

Video Playback
What is video playback anyway?

➡ A decoder: The VP9 decoder!

Decompresses and decodes the raw streaming video data and renders it on the device.

58

Video Playback

Step-by-step
explanation

❸ macro-blocks ❸ motion vectors:

resolution can be as low as

1/8 of a pixel!

➡ Sub-pixel interpolation

❽ deblocking filter

59

Energy Analysis

Energy Analysis: VP9 software decoder

• 53.4% of energy spent on MC.

• 37.5% of energy spent on Sub-Pixel
Interpolation.

• 63.5% of total energy spent on data
movement

• 80.4% of which is provoked by MC.

• 42.6% of total data movement
happens in Sub-Pixel Interpolation.

Using 4K resolution (3840x2160-pixel)

60

PiM Feasibility: Sub-Pixel Interpolation

• Each subpixel interpolation needs multiple pixels to be
fetched from memory (11 by 11 pixels at worse)

• Motion vectors can point to any point in reference frame:
poor data locality!

• 65% of data movement between DRAM and CPU!

CPU problems:

PiM solution:

• Filters used only require addition, multiplication and shifting.

• PiM accelerator would only use 0.25 mm2 (6% per vault)

61

PiM Feasibility: Deblocking Filter

• Low-pass filter on each edge between two superblocks.

• Poor cache locality.

• 71.1% of data movement happens off-chip

CPU problems:

PiM solution:

• Simple lowpass requires only arithmetic and bitwise operations.

• PiM accelerator would only use 0.12 mm2 (3.4% per vault)

62

Video Playback

A new challenger has arrived: VP9 hardware decoder

63

Video Playback

Back to PiM Feasibility. Does it hold against the hardware decoder?

64

