
Roman Hoffmann

BlockHammer: Preventing RowHammer at Low Cost
by Blacklisting Rapidly-Accessed DRAM Rows

Giray Yaglıkçı, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, 
Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, Onur Mutlu

Seminar in Computer Architecture HS 2022
24.11.2022

Published in HPCA 2021



SWAZRoman Hoffmann

Executive Summary

• Background: RowHammer is a serious security issue

• Problem: Mitigation mechanisms have limited support for current/future chips
• Compatibility with commodity DRAM chips
• Scalability with worsening RowHammer effects

• Goal: Efficient and scalable method to prevent RowHammer bit-flips without 
knowledge of or modifications to DRAM internals

• Key Mechanism: 
• Selectively limit memory accesses that may cause RowHammer bit-flips
• Identifying and throttling potential attacker

• Key Results:
• Scalable complexity
• Highly efficient solution in terms of energy consumption (<0.6%) and performance (71% 

under an attack)

2



SWAZRoman Hoffmann

Outline

• Recab: RowHammer
• Requirements for the solution
• Possible Solutions
• BlockHammer

• General
• RowBlocker
• AttackThrottler

• Evaluation

• Conclusion
• Strengths and Weaknesses
• Discussion

3



SWAZRoman Hoffmann

RowHammer

• We are seeing here a DRAM bank

Row

Victim Row

Hammered Row

Victim Row

Row

4



Requirements



SWAZRoman Hoffmann

Scalability

• DRAM chips are more vulnerable to RowHammer today

• The density of DRAM chips increases

• A RowHammer bit-flip occurs with a lower amount of accesses

• Blast radius is increasing

6



SWAZRoman Hoffmann

Compatibility

Application Level – Virtual Memory

System Level – Physical Memory

Memory Controller – DRAM Bus Addresses

In-DRAM Mapping – Physical Rows and Columns

7

V
is

ib
le

 t
o

th
e

p
ro

ce
ss

o
r

D
R

A
M



SWAZRoman Hoffmann

In-DRAM Mapping

• Design Optimizations: Provides better density, power and 
performance by simplifying DRAM circuitry

• Yield Improvements: Internal mapping from faulty rows to working 
rows

• In-DRAM mapping is not published to the outer world

Our solution should not require knowledge of DRAM internals!

8



Possible Solutions



SWAZRoman Hoffmann

Solution 1: Increase Refresh Rate

• Process: Increase the refresh rate of all DRAM rows to prevent 
RowHammer bit-flips

• Drawbacks: 
• Higher power consumption

• Performance loss

10

Compatible but not scalable



SWAZRoman Hoffmann

Solution 2: Physical Isolation

• Process: Separate physically 
sensitive data

• Drawbacks: 
• Requires a lot memory

• Because RowHammer is getting 
worse, the fraction of cells we can 
protect decreases

• Requires knowledge on DRAM 
internals

11

Not compatible and not scalable

Row

Buffer Row

Secured Row

Buffer Row

Row



SWAZRoman Hoffmann

Solution 3: Reactive Refresh

• Process: Observes activations and refreshes potential victim rows

• Used in PARA, Graphene, TwiCe

• Drawback
• Requires knowledge on DRAM internals

12

Row

Victim Row

Hammered Row

Victim Row

Row

Not compatible but scalable



SWAZRoman Hoffmann

Solution 4: Proactive throttling

• Process: Limit repeated access to the same row

• Drawback
• Decreases performance of benign applications

13

Compatible and scalable but not efficient



Solution



SWAZRoman Hoffmann

Goal

Prevent RowHammer bit-flips efficiently and scalably without any 
knowledge of or modifications to DRAM

15



SWAZRoman Hoffmann

Idea

Selectively throttle memory accesses that may cause RowHammer bit-
flips

16



SWAZRoman Hoffmann

Idea in Detail

• An attacker hammers a row

• BlockHammer detects a RowHammer attack

• BlockHammer selectively throttles accesses from within the memory 
controller

• Access limitations make it impossible for bit-flips to occur

• BlockHammer informs the system software about a potential attack

17



Roman Hoffmann

BlockHammer Overview

• AttackThrottler
• Identifies threads that perform 

RowHammer attacks

• Reduces memory bandwidth usage 
of identified potential threads

=> Reduces performance 
degradation during an attack

• RowBlocker
• Tracks row activations rates

• Blacklists rows

• Throttles activations targeting a 
blacklisted row

=> Limits the row activation rate

18



RowBlocker



SWAZRoman Hoffmann

RowBlocker - Overview

• Throttles row activations

• Blacklists rows and delays activations of blacklisted rows

Memory
Request

Scheduler

RowBlocker Blacklisting Logic

RowBlocker History Buffer

RowBlocker

&

20



SWAZRoman Hoffmann

RowBlocker - Blacklisting Logic

• Blacklists a row when the row‘s activation count in a time window 
exceeds a threshold

• Uses two efficient Bloom filter to track the recent accesses

• Accesses are stored in both filters

• Only one filter is active at a given time

21



SWAZRoman Hoffmann

RowBlocker – Blacklisting Logic

Hash
Functions

22



SWAZRoman Hoffmann

Bloom filter

• We want an efficient method to check whether a row has been 
recently accessed!

• We do not want false negatives

23

True 
Positive

False
Positive

False
Negative

True 
Negative

Positive Negative

Po
si

ti
ve

N
eg

at
iv

e

Actual

P
re

d
ic

te
d

We can use a Bloom filter



SWAZRoman Hoffmann

Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0Address
Hash

Functions

24



SWAZRoman Hoffmann

Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 01
Hash

Functions

25



SWAZRoman Hoffmann

Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 01
Hash

Functions

26



SWAZRoman Hoffmann

Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 02
Hash

Functions

27



SWAZRoman Hoffmann

Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 02
Hash

Functions

28



SWAZRoman Hoffmann

Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 01
Hash

Functions

29



SWAZRoman Hoffmann

Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 01
Hash

Functions

30

Now, we know if a row has been accessed! But how often have we accessed a row?



SWAZRoman Hoffmann

Counting Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0Address
Hash

Functions

31



SWAZRoman Hoffmann

Counting Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 01
Hash

Functions

32



SWAZRoman Hoffmann

Counting Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 01
Hash

Functions

33



SWAZRoman Hoffmann

Counting Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 04
Hash

Functions

34



SWAZRoman Hoffmann

Counting Bloom filter

0 0 0 2 0 0 0 0 1 0 0 1 1 14
Hash

Functions

35



SWAZRoman Hoffmann

Counting Bloom filter

• We continue adding elements...

1 1 1 3 1 1 1 1 2 1 1 2 2 2...
Hash

Functions

36



SWAZRoman Hoffmann

Counting Bloom filter

1 1 1 3 1 1 1 1 2 1 1 2 2 21
Hash

Functions

37



SWAZRoman Hoffmann

Counting Bloom filter

1 1 1 4 1 1 1 1 3 1 1 3 2 21
Hash

Functions

38



SWAZRoman Hoffmann

Counting Bloom filter

• How often have we accessed Row 1 at most?

1 1 1 4 1 1 1 1 3 1 1 3 2 21
Hash

Functions

39

Now, we have an upper bound!
We want to track the accesses in a specific interval. How can we clear the filter without losing all data?



SWAZRoman Hoffmann

Why are we using two Bloom filter?

• We want to clear the filter in regular intervals to see the number of 
accesses in a specific interval.

• How do we achieve this?

40



SWAZRoman Hoffmann

Unified Bloom filter

• All elements are inserted into both filter

• Only one filter is active and responses to queries

• Active filter clears array at the end of a specified time interval

• Switches roles after an interval

41



SWAZRoman Hoffmann

Unified Bloom filter

0 0 0 0 0

0 0 0 0 0

Hash
Functions

VALUE

{}

{}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

42



SWAZRoman Hoffmann

Unified Bloom filter

0 0 0 0 0

0 0 0 0 0

Hash
Functions

2

{}

{}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

43



SWAZRoman Hoffmann

Unified Bloom filter

0 0 1 0 1

0 0 1 0 1

Hash
Functions

2

{2}

{2}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

44



SWAZRoman Hoffmann

Unified Bloom filter

0 0 1 0 1

0 0 1 0 1

Hash
Functions

1

{2}

{2}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

45



SWAZRoman Hoffmann

Unified Bloom filter

0 1 2 0 1

0 1 2 0 1

Hash
Functions

1

{1, 2}

{1, 2}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

46



SWAZRoman Hoffmann

Unified Bloom filter

0 1 2 0 1

0 1 2 0 1

Hash
Functions

1

{1, 2}

{1, 2}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

47



SWAZRoman Hoffmann

Unified Bloom filter

0 1 2 0 1

0 0 0 0 0

Hash
Functions

1

{}

{1, 2}

Filter B: active

Filter A: passive

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

48

An unified Bloom filter gives us an upper bound of the last n accesses! How can we increase security to make
the filter unpredictable?



SWAZRoman Hoffmann

Dual counting Bloom filter

• Both filters use different hash functions

• Hash functions of the active filter are altered at the end of each 
epoch

49



SWAZRoman Hoffmann

Bloom filter

50

• With a Bloom filter we can get false positives

• With a Bloom filter we cannot get false negatives

• A counting Bloom filter gives us an upper bound of accesses

• Additionally, by using a unified Bloom filter, we can track the last n 
insertions

• A dual counting Bloom filter increases security and makes the filter 
harder to attack



SWAZRoman Hoffmann

Blacklisting Logic

Time

CBF A

CBF B

Active

Passive

Assume that row is activated at a high rate Assume that row is
not activated at a 

high rate

Below TH

Higher TH

51



SWAZRoman Hoffmann

Blacklisting Logic

Time

CBF A

CBF B

Active

Passive

Assume that row is activated at a high rate Assume that row is 
not activated at a 

high rate

Below TH

Higher TH

52



SWAZRoman Hoffmann

Blacklisting Logic

Time

CBF A

CBF B

Active

Passive

Assume that row is activated at a high rate Assume that row is 
not activated at a 

high rate

Below TH

Higher TH

53



SWAZRoman Hoffmann

Blacklisting Logic

Time

CBF A

CBF B

Active

Passive

Assume that row is activated at a high rate Assume that row is 
not activated at a 

high rate

Below TH

Higher TH

54



SWAZRoman Hoffmann

RowBlocker - Overview

• Throttles row activations

• Blacklists rows and delays activations of blacklisted rows

Memory
Request

Scheduler

RowBlocker Blacklisting Logic

RowBlocker History Buffer

RowBlocker

&

55



SWAZRoman Hoffmann

RowBlocker – History Buffer

• In order to induce a bit-flip, the aggressor row must be activated with 
a minimum frequency. If we keep a certain amount of time between 
each activation, we can guarantee RowHammer safety

• History Buffer writes most recently accesses in a (FIFO) queue

• Queue stores
• Row ID: A rank-unique ID for all rows

• Timestamp

• Valid bit

56



SWAZRoman Hoffmann

Conclusion for RowBlocker

• Not possible to activate a row often enough to induce a bit-flip

• A row access is delayed when the row is blacklisted and was accessed 
in the last time window

57



AttackThrottler



SWAZRoman Hoffmann

AttackThrottler

• Reduces the performance degradation and energy wastage during a 
RowHammer attack

• A RowHammer attack keeps activating blacklisted rows

59



SWAZRoman Hoffmann

RowHammer Likelihood Index (RHLI)

• The RHLI defines the possibility of a RowHammer attack

• A benign application has index 0

• A malicious software has index 1

RHLI is larger when a thread‘s access pattern is more similar to a 
RowHammer attack

RHLI = 
#blacklisted row activations a thread performed to a DRAM bank

maximum # times a blacklisted row can be activated in a protected system

60



SWAZRoman Hoffmann

AttackThrottler

• If the RHLI is large, then we limit the thread‘s bandwidth

61

f(x) = 1/x RHLI

Quota



SWAZRoman Hoffmann

Identifying attacker threads

• We use an active and a passive counter to track the accesses for every 
<thread, bank> pair

• Active counter is used for calculating the RHLI

• RHLI could be used by an antivirus to find malicious software

62



SWAZRoman Hoffmann

Evaluation with other techniques

• We compare the techniques in the following categories:
• Hardware complexity analysis (scalable and low cost)

• Efficiency in terms of performance and energy usage

63



SWAZRoman Hoffmann

Other techniques - Overview

• 3 probabilistic mechanisms
• PARA 2014 (Yoongu Kim)

• ProHIT 2017 (Mungyu Son)

• MRLoc 2019 (Jung Min You)

• 3 deterministic mechanisms
• CBT 2018 (Seyed Mohammed Seydzadeh)

• TWiCe (Eojin Lee) 2019

• Graphene (Yeonhong Park) 2020

64



SWAZRoman Hoffmann

Hardware complexity

65

• PARA, PRoHIT, MRLoc -> probabilistic methods and are therefore very area-efficient

• If we reduce the threshold, then BlockHammer scales better than the other techniques



SWAZRoman Hoffmann

Evaluation – Single-Core

66

Deterministic approaches do not have a high overhead because benign applications do not reach the 
threshold!



SWAZRoman Hoffmann

Evaluation – Multi-Core

67

higher = better higher = better lower = better lower = better

BlockHammer has competitive performance and energy usage when no attack is presentUnder an attack, BlockHammer has a much higher performance of benign applications and a lower DRAM 
energy consumption!



SWAZRoman Hoffmann

Evaluation – Energy consumption

68

higher = better higher = better lower = better lower = better

BlockHammer has negligible performance and energy consumption overheads, even if chips become more 
vulnerable to RowHammer!

BlockHammer has significantly better performance and lower energy consumption as RH worsens



SWAZRoman Hoffmann

Conclusion

• Most mechanisms to prevent RowHammer bit-flips do not work perfectly and do 
not scale accordingly

• Many solutions often require knowledge of or modification to DRAM internals

• Finds a scalable and efficient mechanism that works without any knowledge of or 
modification to DRAM internals

• BlockHammer consists of two parts
• RowBlocker: Tracks all row activations and limits potentially unsafe accesses
• AttackThrottler: Calculates RHLI and limits potential attacker’s bandwidth

• When there is no attack, then BlockHammer is competitive with other 
mechanisms

• If there it an attack, then BlockHammer outperforms the other mechanisms

69



SWAZRoman Hoffmann

Strengths

• BlockHammer has high potential in the future, as it scales well with 
upcoming DRAM chips

• Keeps high efficiency when running benign and attacking threads

• BlockHammer is compatible with all DRAM chips

• Creates an interface for other applications
• I.e., gives an antivirus access to the RHLI

70



SWAZRoman Hoffmann

Weaknesses

• Is implemented in memory controller -> Cannot be implemented in 
already manufactured chips

• Potentially opens a door for other attacks. An attacker could use the 
false positive rate to decrease performance

• What is the impact on virtual machines? AttackThrottler would start 
limiting bandwidth
• => Open door for potential denial of service attacks

71



Discussion



SWAZRoman Hoffmann

Discussion

• Do you see any potential attacks that can be made possible by using 
BlockHammer? Do you see any solution to prevent the presented 
attacks?

73



SWAZRoman Hoffmann

Discussion – Possible Attack

• Blacklist specific rows

Possible 
Addresses

Possible 
Hashvalues

74



SWAZRoman Hoffmann

Discussion – Possible Attack

• We attack a system using AttackThrottler

Application 1 Application 2 Application 1 Application 2

Context Switch Context Switch Context Switch

Time window AttackThrottler

Application 1 is hammering a row
Application 2 is a benign application

75



SWAZRoman Hoffmann

Discussion

• Do you see any potential attacks that can be made possible by using 
BlockHammer? Do you see any solution to prevent these attacks?

76



SWAZRoman Hoffmann

Discussion

• We have seen many potential solutions against RowHammer. Do you 
have an idea how we can improve BlockHammer even further?

• Should we find a solution in software? What are the main differences 
between a solution in software versus hardware?

• Should we implement BlockHammer in DRAM?

77



SWAZRoman Hoffmann

Discussion

• We could give the operating system access to the RHLI 

• What can we do with this value?
• For example: Improve database for antivirus

• Optimize caching

78



SWAZRoman Hoffmann

Big thanks to the mentors!

• Abdullah Giray Yaglikci

• Ataberk Olgun

• Konstantinos Kanellopoulos

79


