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Executive Summary

• Background: RowHammer is a serious security issue

• Problem: Mitigation mechanisms have limited support for current/future chips
• Compatibility with commodity DRAM chips
• Scalability with worsening RowHammer effects

• Goal: Efficient and scalable method to prevent RowHammer bit-flips without 
knowledge of or modifications to DRAM internals

• Key Mechanism: 
• Selectively limit memory accesses that may cause RowHammer bit-flips
• Identifying and throttling potential attacker

• Key Results:
• Scalable complexity
• Highly efficient solution in terms of energy consumption (<0.6%) and performance (71% 

under an attack)
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Outline
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RowHammer

• We are seeing here a DRAM bank

Row

Victim Row

Hammered Row

Victim Row

Row
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Scalability

• DRAM chips are more vulnerable to RowHammer today

• The density of DRAM chips increases

• A RowHammer bit-flip occurs with a lower amount of accesses

• Blast radius is increasing
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Compatibility

Application Level – Virtual Memory

System Level – Physical Memory

Memory Controller – DRAM Bus Addresses

In-DRAM Mapping – Physical Rows and Columns
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In-DRAM Mapping

• Design Optimizations: Provides better density, power and 
performance by simplifying DRAM circuitry

• Yield Improvements: Internal mapping from faulty rows to working 
rows

• In-DRAM mapping is not published to the outer world

Our solution should not require knowledge of DRAM internals!
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Solution 1: Increase Refresh Rate

• Process: Increase the refresh rate of all DRAM rows to prevent 
RowHammer bit-flips

• Drawbacks: 
• Higher power consumption

• Performance loss
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Solution 2: Physical Isolation

• Process: Separate physically 
sensitive data

• Drawbacks: 
• Requires a lot memory

• Because RowHammer is getting 
worse, the fraction of cells we can 
protect decreases

• Requires knowledge on DRAM 
internals
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Solution 3: Reactive Refresh

• Process: Observes activations and refreshes potential victim rows

• Used in PARA, Graphene, TwiCe

• Drawback
• Requires knowledge on DRAM internals
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Solution 4: Proactive throttling

• Process: Limit repeated access to the same row

• Drawback
• Decreases performance of benign applications
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Goal

Prevent RowHammer bit-flips efficiently and scalably without any 
knowledge of or modifications to DRAM
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Idea

Selectively throttle memory accesses that may cause RowHammer bit-
flips
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Idea in Detail

• An attacker hammers a row

• BlockHammer detects a RowHammer attack

• BlockHammer selectively throttles accesses from within the memory 
controller

• Access limitations make it impossible for bit-flips to occur

• BlockHammer informs the system software about a potential attack
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BlockHammer Overview

• AttackThrottler
• Identifies threads that perform 

RowHammer attacks

• Reduces memory bandwidth usage 
of identified potential threads

=> Reduces performance 
degradation during an attack

• RowBlocker
• Tracks row activations rates

• Blacklists rows

• Throttles activations targeting a 
blacklisted row

=> Limits the row activation rate
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RowBlocker - Overview

• Throttles row activations

• Blacklists rows and delays activations of blacklisted rows

Memory
Request

Scheduler

RowBlocker Blacklisting Logic

RowBlocker History Buffer

RowBlocker

&
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RowBlocker - Blacklisting Logic

• Blacklists a row when the row‘s activation count in a time window 
exceeds a threshold

• Uses two efficient Bloom filter to track the recent accesses

• Accesses are stored in both filters

• Only one filter is active at a given time
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RowBlocker – Blacklisting Logic

Hash
Functions
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Bloom filter

• We want an efficient method to check whether a row has been 
recently accessed!

• We do not want false negatives
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Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0Address
Hash

Functions

24



SWAZRoman Hoffmann

Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 01
Hash

Functions
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Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 01
Hash

Functions
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Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 02
Hash

Functions
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Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 02
Hash

Functions
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Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 01
Hash

Functions
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Bloom filter

0 0 0 1 0 1 0 0 1 0 0 1 0 01
Hash

Functions
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Now, we know if a row has been accessed! But how often have we accessed a row?
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Counting Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0Address
Hash

Functions
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Counting Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 01
Hash

Functions
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Counting Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 01
Hash

Functions
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Counting Bloom filter

0 0 0 1 0 0 0 0 1 0 0 1 0 04
Hash

Functions
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Counting Bloom filter

0 0 0 2 0 0 0 0 1 0 0 1 1 14
Hash

Functions
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Counting Bloom filter

• We continue adding elements...

1 1 1 3 1 1 1 1 2 1 1 2 2 2...
Hash

Functions
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Counting Bloom filter

1 1 1 3 1 1 1 1 2 1 1 2 2 21
Hash

Functions
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Counting Bloom filter

1 1 1 4 1 1 1 1 3 1 1 3 2 21
Hash

Functions
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Counting Bloom filter

• How often have we accessed Row 1 at most?

1 1 1 4 1 1 1 1 3 1 1 3 2 21
Hash

Functions
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Now, we have an upper bound!
We want to track the accesses in a specific interval. How can we clear the filter without losing all data?
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Why are we using two Bloom filter?

• We want to clear the filter in regular intervals to see the number of 
accesses in a specific interval.

• How do we achieve this?
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Unified Bloom filter

• All elements are inserted into both filter

• Only one filter is active and responses to queries

• Active filter clears array at the end of a specified time interval

• Switches roles after an interval
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Unified Bloom filter

0 0 0 0 0

0 0 0 0 0

Hash
Functions

VALUE

{}

{}

Filter B: passive

Filter A: active

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3
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Unified Bloom filter
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Hash
Functions
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Unified Bloom filter

0 0 1 0 1

0 0 1 0 1

Hash
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Unified Bloom filter
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Unified Bloom filter

0 1 2 0 1

0 1 2 0 1

Hash
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Unified Bloom filter
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Unified Bloom filter

0 1 2 0 1
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An unified Bloom filter gives us an upper bound of the last n accesses! How can we increase security to make
the filter unpredictable?
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Dual counting Bloom filter

• Both filters use different hash functions

• Hash functions of the active filter are altered at the end of each 
epoch
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Bloom filter

50

• With a Bloom filter we can get false positives

• With a Bloom filter we cannot get false negatives

• A counting Bloom filter gives us an upper bound of accesses

• Additionally, by using a unified Bloom filter, we can track the last n 
insertions

• A dual counting Bloom filter increases security and makes the filter 
harder to attack
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Blacklisting Logic

Time

CBF A

CBF B

Active

Passive

Assume that row is activated at a high rate Assume that row is
not activated at a 

high rate

Below TH

Higher TH
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Blacklisting Logic

Time
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Blacklisting Logic

Time
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Blacklisting Logic

Time

CBF A
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Active

Passive

Assume that row is activated at a high rate Assume that row is 
not activated at a 

high rate

Below TH

Higher TH

54



SWAZRoman Hoffmann

RowBlocker - Overview

• Throttles row activations

• Blacklists rows and delays activations of blacklisted rows

Memory
Request

Scheduler

RowBlocker Blacklisting Logic

RowBlocker History Buffer

RowBlocker

&
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RowBlocker – History Buffer

• In order to induce a bit-flip, the aggressor row must be activated with 
a minimum frequency. If we keep a certain amount of time between 
each activation, we can guarantee RowHammer safety

• History Buffer writes most recently accesses in a (FIFO) queue

• Queue stores
• Row ID: A rank-unique ID for all rows

• Timestamp

• Valid bit
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Conclusion for RowBlocker

• Not possible to activate a row often enough to induce a bit-flip

• A row access is delayed when the row is blacklisted and was accessed 
in the last time window
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AttackThrottler

• Reduces the performance degradation and energy wastage during a 
RowHammer attack

• A RowHammer attack keeps activating blacklisted rows
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RowHammer Likelihood Index (RHLI)

• The RHLI defines the possibility of a RowHammer attack

• A benign application has index 0

• A malicious software has index 1

RHLI is larger when a thread‘s access pattern is more similar to a 
RowHammer attack

RHLI = 
#blacklisted row activations a thread performed to a DRAM bank

maximum # times a blacklisted row can be activated in a protected system
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AttackThrottler

• If the RHLI is large, then we limit the thread‘s bandwidth

61

f(x) = 1/x RHLI

Quota



SWAZRoman Hoffmann

Identifying attacker threads

• We use an active and a passive counter to track the accesses for every 
<thread, bank> pair

• Active counter is used for calculating the RHLI

• RHLI could be used by an antivirus to find malicious software
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Evaluation with other techniques

• We compare the techniques in the following categories:
• Hardware complexity analysis (scalable and low cost)

• Efficiency in terms of performance and energy usage
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Other techniques - Overview

• 3 probabilistic mechanisms
• PARA 2014 (Yoongu Kim)

• ProHIT 2017 (Mungyu Son)

• MRLoc 2019 (Jung Min You)

• 3 deterministic mechanisms
• CBT 2018 (Seyed Mohammed Seydzadeh)

• TWiCe (Eojin Lee) 2019

• Graphene (Yeonhong Park) 2020
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Hardware complexity

65

• PARA, PRoHIT, MRLoc -> probabilistic methods and are therefore very area-efficient

• If we reduce the threshold, then BlockHammer scales better than the other techniques
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Evaluation – Single-Core

66

Deterministic approaches do not have a high overhead because benign applications do not reach the 
threshold!
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Evaluation – Multi-Core

67

higher = better higher = better lower = better lower = better

BlockHammer has competitive performance and energy usage when no attack is presentUnder an attack, BlockHammer has a much higher performance of benign applications and a lower DRAM 
energy consumption!
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Evaluation – Energy consumption

68

higher = better higher = better lower = better lower = better

BlockHammer has negligible performance and energy consumption overheads, even if chips become more 
vulnerable to RowHammer!

BlockHammer has significantly better performance and lower energy consumption as RH worsens
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Conclusion

• Most mechanisms to prevent RowHammer bit-flips do not work perfectly and do 
not scale accordingly

• Many solutions often require knowledge of or modification to DRAM internals

• Finds a scalable and efficient mechanism that works without any knowledge of or 
modification to DRAM internals

• BlockHammer consists of two parts
• RowBlocker: Tracks all row activations and limits potentially unsafe accesses
• AttackThrottler: Calculates RHLI and limits potential attacker’s bandwidth

• When there is no attack, then BlockHammer is competitive with other 
mechanisms

• If there it an attack, then BlockHammer outperforms the other mechanisms
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Strengths

• BlockHammer has high potential in the future, as it scales well with 
upcoming DRAM chips

• Keeps high efficiency when running benign and attacking threads

• BlockHammer is compatible with all DRAM chips

• Creates an interface for other applications
• I.e., gives an antivirus access to the RHLI
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Weaknesses

• Is implemented in memory controller -> Cannot be implemented in 
already manufactured chips

• Potentially opens a door for other attacks. An attacker could use the 
false positive rate to decrease performance

• What is the impact on virtual machines? AttackThrottler would start 
limiting bandwidth
• => Open door for potential denial of service attacks
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Discussion

• Do you see any potential attacks that can be made possible by using 
BlockHammer? Do you see any solution to prevent the presented 
attacks?
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Discussion – Possible Attack

• Blacklist specific rows

Possible 
Addresses

Possible 
Hashvalues
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Discussion – Possible Attack

• We attack a system using AttackThrottler

Application 1 Application 2 Application 1 Application 2

Context Switch Context Switch Context Switch

Time window AttackThrottler

Application 1 is hammering a row
Application 2 is a benign application
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Discussion

• Do you see any potential attacks that can be made possible by using 
BlockHammer? Do you see any solution to prevent these attacks?
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Discussion

• We have seen many potential solutions against RowHammer. Do you 
have an idea how we can improve BlockHammer even further?

• Should we find a solution in software? What are the main differences 
between a solution in software versus hardware?

• Should we implement BlockHammer in DRAM?
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Discussion

• We could give the operating system access to the RHLI 

• What can we do with this value?
• For example: Improve database for antivirus

• Optimize caching
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