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Executive Summary
• Motivation

• Can Rowhammer be used to strengthen Spectre attacks?
• What implication does this combined attack have on existing Spectre mitigations? 

• Goal
• Strengthen Spectre attack and make existing mitigations weaker or unusable

• Key idea
• Use Rowhammer to relax the requirements for a Spectre gadget

• Key Contributions
• Combining Rowhammer and Spectre to relax gadget requirements and thus rising 

the number of gadgets present in the linux kernel from about 100 to 20200
• New methods to massage user and kernel stack
• Correcting oversights made by previous papers to improve Rowhammer bit-flip 

rate by 525x in the best case
• Demonstrating how SpecHammer gadgets can be used to leak stack canaries or 

arbitrary memory in user and kernel space 2
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RowHammer

• By quickly accessing a row in DRAM charge of capacitors in 
neighboring rows can be leaked

• If a capacitor leaks enough charge before it is refreshed again, a 
bitflip is caused
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Cache Side-Channel attack

• Reveal if a specific piece 
of data was in cache

• Timing memory access
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Speculative Execution

• Resolving a branch takes a significant amount of time 

• Processor predicts whether branch will be taken or not

• It then starts executing the code at the guessed location instead of 
just waiting

• If it turns out that the branch was miss predicted all changes made 
while speculatively executing are undone
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Speculative Execution

int foo(int x, int y[]) {

int t = 0;

if (x < 2){

t = y[x];

}

return t;

}

7

1
2
3
4
5
6
7
8
9

x = 2

Memory

Cache

y[1]
y[0]

t = 0
y[2]

t = 0t = y[2]

t = y[2]

Branch was misspredicted

All changes made are
reversed

Branch is predicted to be taken

t = 0t = 0

t = 0t = 0

y[2]



Key oversight in Speculative Execution

• Data blocks are pulled into cache if accessed

• This leaves side effects
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Key oversight in Speculative Execution

int foo(int x, int y[]) {

int t = 0;

if (x < 2){

t = y[x];

}

return t;

}
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Key oversight in Speculative Execution

• When having to roll back code the cache is not cleared

• The cache contents can be determined using a Cache Side-Channel 
attack
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Spectre v1

• Trains the branch predictor with legal values for the branch.

• Calls the function with a value which would cause the branch not to 
be taken.

• Accesses some array element depending on secret value which can 
be accessed during window of miss speculation

• Then uses Cache Side-Channel attack to figure out what element is in 
the cache and thus must have been accessed
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Spectre v1
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if (x < array1_size) {

victim_secret = array1[x];

z = array2[victim_secret];

}
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Spectre v1
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Cache Side-Channel attack

int retrieve_secret;

for (int i=0; i<array2.length; i++){

startTimer();

z = array2[i];

time = stopTimer();

if (time < threshold){

retrieve_secret = i;

}

}
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Gadget

• A piece of victim code that has the desired structure which is 
exploitable and can be used

• Spectre uses gadgets in victim code
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• x is required to be attacker controlled because we need to point to 
the victim’s secret

• *512 because we need to access different cache blocks

Spectre gadget
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SpecHammer double gadget

• The same as Spectre gadget

• Key difference: x does not have to be attacker controlled

• We use RowHammer to modify x
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SpecHammer double gadget attack

• Memory profiling (for Rowhammer)
• Find addresses that are vulnerable to bitflips via RowHammer

(Memory Templating)

• Perform operations (such as stack allocations) to force the victim to store                     
x (used to index into array) at such an address (Memory Massaging)

• Branch predictor training
• Call the gadget with a legal value for x
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SpecHammer double gadget attack

• Memory profiling (for Rowhammer)

• Branch predictor training

• Hammer and miss speculation
• Hammer x such that array1[x] points to the secret value

• The branch will be miss predicted, since we have trained the branch 
predictor accordingly

• Flush and reload
• Retrieve secret by Cache Side-Channel attack
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SpecHammer
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SpecHammer triple gadget

• x does not have to be attacker controlled

• We use RowHammer to modify x

• attacker_offset (was the x in the double gadget attack) can be 
chosen arbitrarily since array0[x] is attacker controlled
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SpecHammer triple gadget attack

• Memory profiling
• Memory Templating / Memory Massaging

• Branch predictor training

• Hammer and miss speculation
• Hammer x such that array0[x] points to the attacker controlled data

• Flush and reload
• Retrieve secret by Cache Side-Channel attack
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SpecHammer triple gadget
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Presence of gadgets in victim code

• As an example we look at the Linux kernel

• Spectre
• Double gadgets: 100

• Triple gadgets: 2

• SpecHammer
• Double gadgets: 20 000

• Triple gadgets: 170

• Why does SpecHammer have more gadgets?
• It does not have the limitation of the variable x (index into first array) having 

to be attacker controlled
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Tradeoffs

• Tradeoff between double and triple gadgets
• Double gadgets are usually much more common in victim code

• Triple gadget: The targeted offset can be directly specified (more flexibility)

• Tradeoff between Spectre and SpecHammer
• Spectre has fewer gadgets in victim code, SpecHammer has more

• SpecHammer is much more complex to perform since it adds the complexity 
of performing a RowHammer attack
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Memory Templating

• Obtain the virtual to physical and physical to DRAM mappings                 
(using already available tools)

• Allocate the memory you want to check for useful flips

• Hammer all rows and check for bitflips
• If a flip from 0 to 1 is desired, initialize whole row to 0 and then check if any 

bit flipped

• Do not neglect to flush cache before checking if bit was flipped, to make sure 
that you don’t check in the cache but in the actual DRAM

29



Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

30



Memory Massaging

• Goal:
• Force the victim to use a specific physical page which was discovered to be 

prone to bitflips in the previous Memory Templating step for the targeted 
variable
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Background: Buddy Allocator

• Linux’s physical page allocator

• It consists of lists of free physical pages

• PCP List (Page Frame Cache)
• A cache for recently freed pages. It enables pages to be used again without 

having to pass them to the buddy allocator

• If a page is freed, it is pushed onto the PCP list

• If a page allocation is requested, the PCP list serves the request by popping 
the first element of the list
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User space stack massaging

• Idea: free the flip prone page and place it onto the PCP list in a way 
to force the victim to use it for the targeted variable we want to flip

• The presented technique works with 63% accuracy
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User space stack massaging
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User space stack massaging
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User space stack massaging
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User space stack massaging
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User space stack massaging
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Kernel space stack massaging

• Is very similar to user space stack massaging

• Difficulty: The kernel pulls from a different PCP list

• Solution: Drain kernel memory to force the kernel to use the PCP list 
which can be filled with pages by the attacker
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Proof of concept

• The authors of the paper demonstrate two attacks

• They were able to leak a stack canary
• A canary is a small value saved just before the stack return pointer

• It prevents buffer overflow attacks, since to overwrite the return pointer one 
would have to overwrite the canary and the canary is checked before returning

• They were able to leak the canary at 8 bits / second with 100% accuracy

• They were able to perform arbitrary kernel reads
• With a leakage rate of 16 to 24 bits / second on DDR3, 6 bits / min on DDR4

with 100% accuracy

• On DDR4 one can see the impact of performance due to in place RowHammer
mitigations
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Mitigations

• Taint tracking against Spectre
• Taint tracking “taints” untrusted variables and reports a possible gadget if 

such a variable is used to index into an array in a branch

• does not work anymore for SpecHammer gadgets

• Other Spectre defences usually come at a high performance cost and 
sometimes work only partially

• For RowHammer numerous defenses exist
• Though since for the SpecHammer triple gadget attack only one flip is 

sufficient, it is still likely to work, since the mitigations do not provide a 100% 
safety guarantee
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Conclusion

• Motivation
• Can Rowhammer be used to strengthen Spectre attacks?
• What implication does this combined attack have on existing Spectre mitigations? 

• Goal
• Strengthen Spectre attack and make existing mitigations weaker or unusable

• Key idea
• Use Rowhammer to relax the requirements for a Spectre gadget

• Key Contributions
• Combining Rowhammer and Spectre to relax gadget requirements and thus rising the number of 

gadgets present in the linux kernel from about 100 to 20200
• New methods to massage user and kernel stack
• Correcting oversights made by previous papers to improve Rowhammer bit-flip rate by 525x in 

the best case
• Demonstrating how SpecHammer gadgets can be used to leak stack canaries or arbitrary 

memory in user and kernel space
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Paper Strengths

• The authors demonstrated that RowHammer and Spectre can be 
combined to circumvent existing mitigations and increase the 
number of exploitable gadgets

• The authors proposed a new technique to massage stack in user and 
kernel space

• The authors were able to leak a stack canary and perform arbitrary 
kernel reads using SpecHammer

• The paper only makes a small change in an attack to be able to drain 
kernel pages to circumvent a new mitigation
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Paper Weaknesses

• Attack includes the complexity for both RowHammer and Spectre

• The kernel memory massaging phase leaves a footprint, since so 
many pages are allocated (to drain kernel pages) -> this could be 
used to develop a mitigation

• Memory massaging phase has only been tested with nothing else 
running on the processor
• Could make the success rate smaller, since another process might free more 

memory in between or allocate the flip prone page

• Could make the attack slower
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Why use SpecHammer if you can already leak 
memory using only RowHammer on its own?

• RAMBleed

• Taking over a whole system 
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Could we modify Taint Tracking in a way 
that it also mitigates SpecHammer?

• Would it be possible to “taint” memory locations which are identified 
as susceptible to RowHammer induced bitflips?

• Would it be possible to “taint” variables which reside in memory 
locations next to or between hot rows?
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Could we also perform SpecHammer
without access to array2?

• Prime and Probe
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Backup Slides: Prime + Probe

• Fill up entire cache

• Make victim access a value that maps to a specific cache set based on 
secret value

• Check from which cache set your data was evicted
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