
Presented by

Sandro Marchon

2022 IEEE Symposium on Security and Privacy (SP)

Executive Summary
• Motivation

• Can Rowhammer be used to strengthen Spectre attacks?
• What implication does this combined attack have on existing Spectre mitigations?

• Goal
• Strengthen Spectre attack and make existing mitigations weaker or unusable

• Key idea
• Use Rowhammer to relax the requirements for a Spectre gadget

• Key Contributions
• Combining Rowhammer and Spectre to relax gadget requirements and thus rising

the number of gadgets present in the linux kernel from about 100 to 20200
• New methods to massage user and kernel stack
• Correcting oversights made by previous papers to improve Rowhammer bit-flip

rate by 525x in the best case
• Demonstrating how SpecHammer gadgets can be used to leak stack canaries or

arbitrary memory in user and kernel space 2

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

Overview

3

RowHammer

• By quickly accessing a row in DRAM charge of capacitors in
neighboring rows can be leaked

• If a capacitor leaks enough charge before it is refreshed again, a
bitflip is caused

4

1 1 1 1 1 11 1 1 1 0 0

Row activation Charge

Cache Side-Channel attack

• Reveal if a specific piece
of data was in cache

• Timing memory access

5

CPU

Memory

Cache

100ns

10ns

Speculative Execution

• Resolving a branch takes a significant amount of time

• Processor predicts whether branch will be taken or not

• It then starts executing the code at the guessed location instead of
just waiting

• If it turns out that the branch was miss predicted all changes made
while speculatively executing are undone

6

Speculative Execution

int foo(int x, int y[]) {

int t = 0;

if (x < 2){

t = y[x];

}

return t;

}

7

1
2
3
4
5
6
7
8
9

x = 2

Memory

Cache

y[1]
y[0]

t = 0
y[2]

t = 0t = y[2]

t = y[2]

Branch was misspredicted

All changes made are
reversed

Branch is predicted to be taken

t = 0t = 0

t = 0t = 0

y[2]

Key oversight in Speculative Execution

• Data blocks are pulled into cache if accessed

• This leaves side effects

8

Key oversight in Speculative Execution

int foo(int x, int y[]) {

int t = 0;

if (x < 2){

t = y[x];

}

return t;

}

9

1
2
3
4
5
6
7
8
9

x = 2

Cache with
missprediction

y[1]
y[0]

t = 0
y[2]

t = y[2]t = 0t = 0

Cache without
missprediction

t = 0 t = 0
y[2]

Memory

Key oversight in Speculative Execution

• When having to roll back code the cache is not cleared

• The cache contents can be determined using a Cache Side-Channel
attack

10

Spectre v1

• Trains the branch predictor with legal values for the branch.

• Calls the function with a value which would cause the branch not to
be taken.

• Accesses some array element depending on secret value which can
be accessed during window of miss speculation

• Then uses Cache Side-Channel attack to figure out what element is in
the cache and thus must have been accessed

11

• Trains the branch predictor with legal values for the branch.

• Calls the function with a value which would cause the branch not to
be taken.

• Accesses some array element depending on secret value which can
be accessed during window of miss speculation

• Then uses Cache Side-Channel attack to figure out what element is in
the cache and thus must have been accessed

Spectre v1

12

if (x < array1_size) {

victim_secret = array1[x];

z = array2[victim_secret];

}

1

2

3

4

x = 4

array2[1]
array2[2]
array2[3]

Memory

Cache

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0]

z = array2[1]
victim_secret = 1

Attacker controlled Attacker accessible Attacker inaccessible

x = 4

array2[1]
array2[2]
array2[3]

secret = 1
array2[0]

irrelevant

Spectre relies on presence of such
victim code which attacker can call

missspeculating branch (4 < 4 is not true)

secret = 1
victim_secret = 1

array2[1]
z = array2[1]

-> is set equal to the actual secret

Spectre v1

13

if (x < array1_size) {

victim_secret = array1[x];

z = array2[victim_secret];

}

1

2

3

4

x = 4

array2[1]
array2[2]
array2[3]

Memory

Cache

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0]

z = array2[3]
victim_secret = 3

x = 4

array2[1]
array2[2]
array2[3]

secret = 3
array2[0]

Spectre relies on presence of such
victim code which attacker can call

secret = 3
victim_secret = 3

array2[3]
z = array2[3]

missspeculating branch (4 < 4 is not true)

Cache from
previous slide

secret = 1
victim_secret = 1

array2[1]
z = array2[1]

-> is set equal to the actual secret

Attacker controlled Attacker accessible Attacker inaccessible irrelevant

Cache Side-Channel attack

int retrieve_secret;

for (int i=0; i<array2.length; i++){

startTimer();

z = array2[i];

time = stopTimer();

if (time < threshold){

retrieve_secret = i;

}

}

1

2

3

4

5

6

7

8

9

14

x = 4

array2[1] = 1
array2[2] = 2
array2[3] = 3

Memory

Cache

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0] = 0

z = array2[3]
victim_secret = 3

x = 4

secret = 3

secret = 3
victim_secret = 3

z = array2[3]

array2[1]
array2[2]
array2[3]

array2[0]

array2[3]
array2[3]

array2[0]

i = 0i = 1

array2[1]

i = 2

array2[2]

i = 3

array2[3]
retrieve_secret = 3

Gadget

• A piece of victim code that has the desired structure which is
exploitable and can be used

• Spectre uses gadgets in victim code

15

• x is required to be attacker controlled because we need to point to
the victim’s secret

• *512 because we need to access different cache blocks

Spectre gadget

16

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

17

SpecHammer double gadget

• The same as Spectre gadget

• Key difference: x does not have to be attacker controlled

• We use RowHammer to modify x

18

SpecHammer double gadget attack

• Memory profiling (for Rowhammer)
• Find addresses that are vulnerable to bitflips via RowHammer

(Memory Templating)

• Perform operations (such as stack allocations) to force the victim to store
x (used to index into array) at such an address (Memory Massaging)

• Branch predictor training
• Call the gadget with a legal value for x

19

SpecHammer double gadget attack

• Memory profiling (for Rowhammer)

• Branch predictor training

• Hammer and miss speculation
• Hammer x such that array1[x] points to the secret value

• The branch will be miss predicted, since we have trained the branch
predictor accordingly

• Flush and reload
• Retrieve secret by Cache Side-Channel attack

20

SpecHammer

21

if (x < array1_size) {

victim_secret = array1[x];

z = array2[victim_secret];

}

1

2

3

4

x = 0000 = 0

array2[1]
array2[2]
array2[3]

Memory

Cache

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0]

z = array2[3]
victim_secret = 3

Attacker controlled Attacker accessible Attacker inaccessible

x = 0000 = 0

array2[1]
array2[2]
array2[3]

secret = 3
array2[0]

irrelevant

SpecHammer relies on presence of such
victim code which attacker can call

secret = 3
victim_secret = 3

array2[3]
z = array2[3]

missspeculating branch (4 < 4 is not true) x = 0100 = 4

Can be extracted using
Cache Side-Channel

-> is set equal to the actual secret

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

22

SpecHammer triple gadget

• x does not have to be attacker controlled

• We use RowHammer to modify x

• attacker_offset (was the x in the double gadget attack) can be
chosen arbitrarily since array0[x] is attacker controlled

23

SpecHammer triple gadget attack

• Memory profiling
• Memory Templating / Memory Massaging

• Branch predictor training

• Hammer and miss speculation
• Hammer x such that array0[x] points to the attacker controlled data

• Flush and reload
• Retrieve secret by Cache Side-Channel attack

24

SpecHammer triple gadget

25

if (x < array1_size) {

attacker_offset = array0[x];

victim_secret = array1[attacker_offset];

z = array2[victim_secret];

}

1

2

3

4

x = 4

array2[1]
array2[2]
array2[3]

Memory

Cache

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0]

z = array2[3]

victim_secret = 3

Attacker controlled Attacker accessible Attacker inaccessible

x = 0000 = 0

array2[1]
array2[2]
array2[3]

secret = 3
array2[0]

irrelevant

SpecHammer relies on presence of such
victim code which attacker can call

missspeculating branch (13 < 4 is not true)

x = 1101 = 13

Can be extracted using
Cache Side-Channel

attacker_var = 4

array0[0]
array0[1]

array0[3]
array0[2]

attacker_offset = 4attacker_var = 4

attacker_offset = 4

secret = 3
victim_secret = 3

array2[3]
z = array2[3]

-> points to attacker_var

-> is set equal to the actual secret

array0[x] now points to
our attacker-controlled
variable

array0[x]

Presence of gadgets in victim code

• As an example we look at the Linux kernel

• Spectre
• Double gadgets: 100

• Triple gadgets: 2

• SpecHammer
• Double gadgets: 20 000

• Triple gadgets: 170

• Why does SpecHammer have more gadgets?
• It does not have the limitation of the variable x (index into first array) having

to be attacker controlled

26

Tradeoffs

• Tradeoff between double and triple gadgets
• Double gadgets are usually much more common in victim code

• Triple gadget: The targeted offset can be directly specified (more flexibility)

• Tradeoff between Spectre and SpecHammer
• Spectre has fewer gadgets in victim code, SpecHammer has more

• SpecHammer is much more complex to perform since it adds the complexity
of performing a RowHammer attack

27

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

28

Memory Templating

• Obtain the virtual to physical and physical to DRAM mappings
(using already available tools)

• Allocate the memory you want to check for useful flips

• Hammer all rows and check for bitflips
• If a flip from 0 to 1 is desired, initialize whole row to 0 and then check if any

bit flipped

• Do not neglect to flush cache before checking if bit was flipped, to make sure
that you don’t check in the cache but in the actual DRAM

29

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

30

Memory Massaging

• Goal:
• Force the victim to use a specific physical page which was discovered to be

prone to bitflips in the previous Memory Templating step for the targeted
variable

31

Background: Buddy Allocator

• Linux’s physical page allocator

• It consists of lists of free physical pages

• PCP List (Page Frame Cache)
• A cache for recently freed pages. It enables pages to be used again without

having to pass them to the buddy allocator

• If a page is freed, it is pushed onto the PCP list

• If a page allocation is requested, the PCP list serves the request by popping
the first element of the list

32

User space stack massaging

• Idea: free the flip prone page and place it onto the PCP list in a way
to force the victim to use it for the targeted variable we want to flip

• The presented technique works with 63% accuracy

33

User space stack massaging

34

Attacker Victim

PCP List

• Fodder Allocations
• Account for allocations the victim process will make before allocating the

page which contains the target

Fodder Fodder

Fodder
Flip

vulnerable

User space stack massaging

35

Attacker Victim

PCP List

• Unmap flip prone page

Fodder Fodder

Fodder
Flip

vulnerable

User space stack massaging

36

Attacker Victim

PCP List

• Unmap flip prone page

Fodder Fodder

Fodder

Flip
vulnerable

and the Fodder pages

User space stack massaging

37

Attacker Victim

PCP List

Fodder FodderFodder
Flip

vulnerable

• Unmap flip prone page and the Fodder pages

Flip
vulnerable

Flip
vulnerable

Flip
vulnerable Fodder

User space stack massaging

38

Attacker Victim

PCP List

• Let the victim run

Fodder Fodder
Flip

vulnerable

Victim now runs
Starts making first allocations
Now makes the key allocation, containing the targeted variable

Fodder FodderFodder

Flip
vulnerable

Fodder Fodder

Fodder

Our variable x (index of the
first array access) is now on
the flip vulnerable page

Kernel space stack massaging

• Is very similar to user space stack massaging

• Difficulty: The kernel pulls from a different PCP list

• Solution: Drain kernel memory to force the kernel to use the PCP list
which can be filled with pages by the attacker

39

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

40

Proof of concept

• The authors of the paper demonstrate two attacks

• They were able to leak a stack canary
• A canary is a small value saved just before the stack return pointer

• It prevents buffer overflow attacks, since to overwrite the return pointer one
would have to overwrite the canary and the canary is checked before returning

• They were able to leak the canary at 8 bits / second with 100% accuracy

• They were able to perform arbitrary kernel reads
• With a leakage rate of 16 to 24 bits / second on DDR3, 6 bits / min on DDR4

with 100% accuracy

• On DDR4 one can see the impact of performance due to in place RowHammer
mitigations

41

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

42

Mitigations

• Taint tracking against Spectre
• Taint tracking “taints” untrusted variables and reports a possible gadget if

such a variable is used to index into an array in a branch

• does not work anymore for SpecHammer gadgets

• Other Spectre defences usually come at a high performance cost and
sometimes work only partially

• For RowHammer numerous defenses exist
• Though since for the SpecHammer triple gadget attack only one flip is

sufficient, it is still likely to work, since the mitigations do not provide a 100%
safety guarantee

43

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

44

Conclusion

• Motivation
• Can Rowhammer be used to strengthen Spectre attacks?
• What implication does this combined attack have on existing Spectre mitigations?

• Goal
• Strengthen Spectre attack and make existing mitigations weaker or unusable

• Key idea
• Use Rowhammer to relax the requirements for a Spectre gadget

• Key Contributions
• Combining Rowhammer and Spectre to relax gadget requirements and thus rising the number of

gadgets present in the linux kernel from about 100 to 20200
• New methods to massage user and kernel stack
• Correcting oversights made by previous papers to improve Rowhammer bit-flip rate by 525x in

the best case
• Demonstrating how SpecHammer gadgets can be used to leak stack canaries or arbitrary

memory in user and kernel space

45

Paper Strengths

• The authors demonstrated that RowHammer and Spectre can be
combined to circumvent existing mitigations and increase the
number of exploitable gadgets

• The authors proposed a new technique to massage stack in user and
kernel space

• The authors were able to leak a stack canary and perform arbitrary
kernel reads using SpecHammer

• The paper only makes a small change in an attack to be able to drain
kernel pages to circumvent a new mitigation

46

Paper Weaknesses

• Attack includes the complexity for both RowHammer and Spectre

• The kernel memory massaging phase leaves a footprint, since so
many pages are allocated (to drain kernel pages) -> this could be
used to develop a mitigation

• Memory massaging phase has only been tested with nothing else
running on the processor
• Could make the success rate smaller, since another process might free more

memory in between or allocate the flip prone page

• Could make the attack slower

47

Overview

• Background

• SpecHammer
• Double Gadget
• Triple Gadget
• Memory Templating
• New Memory Massaging Technique
• Proof of concept

• Mitigations

• Conclusion

• Discussion

48

Why use SpecHammer if you can already leak
memory using only RowHammer on its own?

• RAMBleed

• Taking over a whole system

49

Could we modify Taint Tracking in a way
that it also mitigates SpecHammer?

• Would it be possible to “taint” memory locations which are identified
as susceptible to RowHammer induced bitflips?

• Would it be possible to “taint” variables which reside in memory
locations next to or between hot rows?

50

Could we also perform SpecHammer
without access to array2?

• Prime and Probe

51

x = 0000 = 0

array2[1]
array2[2]
array2[3]

array1[0]
array1[1]

array1[3]
array1[2]

t = 0
secret = 1

t = 0t = 2t = 2t = 0array2[0]

z = array2[3]
victim_secret = 3

x = 0000 = 0

array2[1]
array2[2]
array2[3]

secret = 3
array2[0]

x = 0

array2[1]
array2[2]
array2[3]

array2[0]

Backup Slides: Prime + Probe

• Fill up entire cache

• Make victim access a value that maps to a specific cache set based on
secret value

• Check from which cache set your data was evicted

52

My Mentors

53

Ataberk Olgun Giray Yaglikci Rakesh Nadig

