Multiscalar Processors

GurindarS. Sohi

ScottE. Breach

T.N. Vijaykumar

sohi@cs.wisc.edu breach@cs.wisc.edu vijay@cs.wisc.edu

ComputerSciencePepartment
University of Wisconsin-Madison
Madison,WI 53706

Abstract

Multiscalar processoraise a new, aggressiveimple-
mentationparadigmfor extractinglargequantitiesof instruc-
tion level parallelismfrom ordinaryhigh level languagepro-
grams. A singleprogramis dividedinto a collectionof tasks
by a combinationof softwareand hardware. The tasksare
distributedto a numberof parallel processingunits which
reside within a processorcomplex. Each of these units
fetchesand executesinstructionsbelongingto its assigned
task. Theappearancef a singlelogical registerfile is main-
tainedwith a copyin eachparallel processinginit. Register
resultsare dynamicallyroutedamongthe many parallel pro-
cessingunits with the help of compiler-generatednasks.
Memory accesses may occur speculatively without
knowledge of precedingloads or stores. Addressesare
disambiguatedlynamically,manyin parallel,andprocessing
waitsonly for true datadependences.

This paperpresentghe philosophyof the multiscalar
paradigm, the structure of multiscalar programs,and the
hardwarearchitectureof a multiscalarprocessor.The paper
also discussegperformancessuesin the multiscalarmodel,
and comparesthe multiscalar paradigm with other para-
digms. Experimentakesultsevaluatingthe performanceof a
sampleof multiscalarorganizationsarealsopresented.

1. Introduction

The basicparadigmof sequencinghrougha program,
i.e, the fetch-executecycle using a program counter, has
beenwith us for about50 years. A consequencef this
sequencingparadigmis that programsare written with the
tacit assumptionthat instructionswill be executedin the
sameorderasthey appearin the program. To achievehigh
performancehowever,modernprocessorsttemptto execute
multiple instructionssimultaneouslyandin somecasesn a
different order than the original program sequence.This
reorderingmay be donein the compiler,in the hardwareat
executiontime, or both. Superscalaand VLIW processors
belongto this classof architectureghat exploit instruction
level parallelism(ILP).

ILP processorsand compilers typically convert the
total orderingof instructionsas they appearin the original
programinto a partial ordering determinecby dependences
on dataand control. Control dependenceénvhich appearas
conditional branches)presenta major obstacleto highly
parallel execution becausethese dependencesmust be
resolvedbeforeall subsequeninstructionsare known to be
valid.

Focusingon control dependence@ne canrepresent
static programas a control flow graph (CFG), wherebasic
blocksarenodesandarcsrepresenflow of controlfrom one
basicblock to another. Dynamic programexecutioncan be
viewed as walking throughthe programCFG, generatinga
dynamicsequencef basicblockswhich haveto be executed
for a particularrun of the program.

To achievehigh performancean ILP processomust
attemptto walk throughthe CFG with a high level of paral-
lelism. Branchpredictionwith speculativeexecutionis one
commonly-usedechniquefor raisingthe level of parallelism
thatcanbe achievedduring the walk. The primary constraint
on any parallel walk, however,is that it must preservethe
sequentiasemanticassumedn the program.

In the multiscalarmodelof executionthe CFGis par-
titioned into portions called tasks. A multiscalarprocessor
walksthroughthe CFG speculativelytakingtask-sizedsteps,
without pausingto inspectany of the instructionswithin a
task. A taskis assignedo oneof a collectionof processing
units for executionby passingthe initial programcounterof
thetaskto the processingunit. Multiple tasksthenexecuten
parallel on the processingunits, resulting in an aggregate
executiorrateof multiple instructionspercycle.

At this level, the conceptsoundssimple,however the
key to making it work is the properresolutionof inter-task
datadependencesln particular,datathatis passedetween
instructions via registers and memory must be routed
correctly by the hardware. Furthermorejt is in this areaof
inter-taskdatacommunicationthat the multiscalarapproach
differs significantly from more traditional multiprocessing
methods.

This paper describesthe multiscalar approach to
exploiting fine-grain parallelism (or instruction-levelparal-
lelismor ILP). Section2 providesanoverviewof the multis-
calarparadigm. A breakdowrof thedistributionof the avail-
able processingunit cyclesin multiscalarexecutionfollows
in Section3. In Section4, we comparemultiscalar with
otherILP paradigms.A performanceevaluationof potential
configurationsof a multiscalarprocessoiis givenin Section

5. In Section6, we summarizethis work andoffer conclud-
ing remarks.

2. An Overview of the Multiscalar Paradigm

2.1. Philosophy and Basics

The objectiveof the non-sequentialvalk of the CFG
takenby a multiscalarprocessoiis to establisha large and
accurate dynamic window of instructions from which
independentnstructionscan be extractedand scheduledor
parallelexecution. (An instructionwindow, in ILP parlance,
is anassemblagef instructionsunderconsideratiorfor exe-
cution.) To perform this function, a multiscalar processor
walks through the CFG in large steps,not instruction by
instruction(asis the casein a sequentiaprocessor)nor basic
block by basicblock, butrathertaskby task.

A task is a portion of the CFG whose execution
correspondgo a contiguousregion of the dynamicinstruc-
tion sequencée.g., partof a basicblock, a basicblock, mul-
tiple basic blocks, a single loop iteration, an entire loop, a
function call, etc.). A programis statically partitionedinto
taskswhich aredemarcatedby annotation®f the CFG (more
on this in Section2.2). For eachstepof its walk, a multis-
calarprocessoassignsa taskto a processingunit for execu-
tion, without concernfor the actualcontentsof the task,and
continuesits walk from this point to the next point in the
CFG.

A possiblemicroarchitecturdor a multiscalarproces-
soris shownin Figure 1. In mostgeneralterms,considera
multiscalarprocessorto be a collection of processingunits
with a sequencewhich assigngasksto the processinginits.
Onceataskis assignedo a processingunit, the unit fetches
and executeshe instructionsof the taskuntil it is complete.
Multiple processinginits, eachwith its own internalinstruc-
tion sequencingnechanismsupportthe executionof multi-
ple tasks,andtherebymultiple instructionsjn anygiventime
step. Theinstructionscontainedwithin the dynamicinstruc-
tion window are boundedby thefirst instructionin the earli-
estexecutingtaskandthelastinstructionin the latestexecut-
ing task. Given that eachtask may containloops and func-
tion calls, this observationmplies that the effective size of
theinstructionwindow may be extremelylarge. A key point
is that not all the instructionswithin this wide range are
simultaneouslybeing consideredfor execution,only a lim-
ited setwithin eachof the processingunits.

Considerthe CFGin Figure 2 of a programfragment
with five basic blocks, A, B, C, D, and E. Supposethe
dynamicsequencef basicblocksexecuteds A} B} C1 B}
B3 C;Di Al BZB3C?D? AIB}CiB3C3D? E. Inthis
sequencethe superscriptsaand subscriptsdentify the incar-
nation of the basicblock in relationto the outer and inner
loops, respectively. In a sequentialprocessorthe dynamic
instructionscorrespondingo this sequenceof basicblocks
aregeneratedsprogramcontrol navigateshroughthe CFG,
executingoneinstructionat atime. To ensurea correctexe-
cutionon an ILP processorjt mustappear that the instruc-
tions amongall basicblocks executein preciselythis same
sequentiabrder,regardles®f whatactuallytranspires.

Consideran iteration of the outerloop from the CFG
in Figure2 asatask.Thatis, let staticbasicblocks A, B, C,
andD (aswell asthe control flow throughthem)comprisea

Head

(| Processing L

Unit

Tail

pug Processing)

Unit

I nter connect

dcache

Data « o o . . o o Data
Bank Bank

Figure 1: A PossibleMicroarchitecture
of aMultiscalarProcessor.

0r050 0C

Figure 2: An ExampleControlFlow Graph.

task. We may assigna task correspondingo the first itera-
tion of the outerloop to a processingunit, followed by the
secondterationto the nextprocessinginit, andsoon.

The processingunit that is assignedhe first iteration
sequenceshroughits task to executethe dynamicinstruc-
tions of basichlocksAl B} C1 B B} C} D}. Likewise, the
following processingunits executethe dynamicinstructions
of basicblocksA? BZ B3 C? D? andA$ B} C$ B3 C3 D3, as
per the secondand third iterations respectively. In this
example the potentialresultof this approaclhis the execution
of three useful instructionsin a cycle. For instance,in a
given cycle, the processingunits might executeinstructions
from dynamicbasicblocksB3, C2, andB3, simultaneously.

It is importantto observethattasks,althoughseparate
groupsof instructions,are not independent.Becausetasks
are portionsof a sequentiainstruction stream,the dataand
control relations among individual instructions must be
honored during execution. A key issue in a multiscalar
implementationis the communicationof data and control
information among the parallel processingunits. That is,
how do we providethe appearancef a sequentialvalk even
thoughin reality we performa non-sequentiaivalk (perhaps
consideredadicallynon-sequentialthroughthe CFG?

To maintain a sequentialappearanceve employ a
twofold strategy. First, we ensurethat eachprocessingunit
adheresto sequential execution semanticsfor the task
assignedo it. Second,we enforcea loosesequentialorder
overthecollectionof processinginits,whichin turnimposes
a sequentiabrder on the tasks. The sequentiabrderon the
processingunits is maintainedoy organizingthe unitsinto a
circular queue. Headandtail pointersindicatethe units that

are executingthe earliestand the latestof the currenttasks,
respectively. For instancein the exampleof Figure 2, the
processingunit at the headis executingthe first iteration,
precedingthe unit executingthe seconditeration, preceding
thetail unit executingthethird iteration.

As instructionsin a taskexecuteyaluesareboth con-
sumedand produced. Thesevalues are bound to storage
locations,namelyregistersand memory. Becausea sequen-
tial executionmodelviews storageasa singlesetof registers
and memorylocations,multiscalarexecutionmust maintain
this view aswell. Furthermoremultiscalarexecutionmust
ensurethat the values consumedand producedby instruc-
tions arethe sameasthosein a sequentiakxecution. In the
example, values consumedby an instruction in dynamic
basicblock B3 mustbe the valuesresultingfrom the execu-
tion of instructionsin A} B Ci B3 B} C3 D1 A? B2, aswell
as precedinginstructionsin B3. In order to provide this
behavior, we must synchronize communication between
tasks.

In the caseof registersthe control logic synchronizes
the productionof registervaluesin predecessotaskswith
the consumptiorof thesevaluesin successotasksvia reser-
vationson registers.The registervaluesa task may produce
canbe determinedstaticallyand maintainedn a create mask
(moredetailsin Section2.2). At thetime aregistervaluein
the createmaskis produced,it is forwardedto later tasks,
i.e., to processingunits which are logical successorsf the
unit, via a circular unidirectionalring (seeFigure 1). The
reservation®n registersfor a successotaskaregivenin the
accum mask, which is the union of the create masks of
currently active predecessotasks. As values arrive from
predecessounits, reservationsare clearedin the successor
units. If a task usesone of thesevalues,the consuming
instructioncan proceedonly if the value hasbeenreceived;
otherwiset waitsfor thevalueto arrive.

In the caseof memory,the situationis somewhadif-
ferent. Unlike registervalues,it cannotbe preciselydeter-
minedaheadof time which memoryvaluesare consumecdr
producedby a task. If it is known that a task consumesa
memoryvalue (via a loadinstruction)thatis producedvia a
storeinstruction)in anearliertask,it is possibleto synchron-
ize the consumptionand productionof this value. That s,
the load in the successotask canbe madeto wait until the
storein the predecessotask hascompleted(similar in con-
cept to the situation for registers,althoughthe exact syn-
chronizatiormechanisnwould be differentdueto the dispar-
ity in thesizesof thename-spaces).

In the more commoncasewhere such knowledgeis
notavailable eithera conservativeor anaggressivapproach
may be undertaken. The conservativeapproachis to wait
until it is certainthat the load will read the correctvalue.
This option typically implies holding back loads within a
task until all predecessotasks have completedall stores,
with the likely outcome being near-sequentiakxecution.
The aggressiveapproachis to perform loads speculatively,
with the expectatiorthat a predecessotask will not storea
valueinto the samelocationat a latertime. A checkmustbe
madedynamicallyto ensurethatno predecessaiaskwritesa
valueinto a memorylocationpreviouslyreadby a successor
task. If this checkidentifiesaload andstorethatconflict (do
not occurin the properorder),the later task mustsquasthits
execution and initiate appropriate recovery action. (A

multiscalamprocessotakesthe aggressivapproach.)

Dueto the speculativenatureof multiscalarexecution,
it mustbe possibleto both confirm correctexecutionaswell
as recover from incorrect execution. The execution of
instructionswithin tasksmay be consideredas speculative
for two reasons(i) controlspeculationand(ii) dataspecula-
tion. As tasksexecutethe correctpathof executionthrough
the program CFG is resolved. If control speculation,i.e.,
predictionof the nexttask,is incorrect,the following task(s)
must be squashedand the correct task sequencaesumed.
Likewise, if ataskusesanincorrectdatavalue,the offending
taskmustbe squashedndthe correctdatavalue recovered.
In any case,the action of squashinga task resultsin the
squashingf all tasksin executionfollowing the task (other-
wise, maintainingsequentiasemanticbecomegsomplex).

To facilitate maintainingsequentiasemanticsa mul-
tiscalar processorretires tasks from the circular queue of
units in the sameorder asit assignghem. During specula-
tive execution,a taskproducesralueswhich may or may not
be correct. It is only certainthe valuesproducedby a task
are correct,and may be consumedsafely by other tasks,at
the time the retirementof a taskis imminent. Nevertheless,
values are optimistically forwarded for speculative use
throughoutthe executionof a task. Becausea taskforwards
valuesto other tasksas it producesthem (more detailsin
Section2.2 and Section2.3), most, if not all, of its values
havebeenforwardedby the time it becomeghe head. Thus,
retiring the taskmay simply be a matterof updatingthe head
pointer to free the processingunit so a new task may be
assigned.

To illustrate the power of the multiscalar model of
execution,considerthe examplein Figure 3. In this code
segmentexecutionrepeatedlytakesa symbol from a buffer
andrunsdown a linked list checkingfor a matchof the sym-
bol. If a matchis found, a function is calledto processthe
symbol. If no matchis found,anentryin thelist is allocated
for the new symbol. After aninitial startup,additionsto the
list becomeinfrequent,becausanostsymbolsmatchan ele-
ment alreadyin the list. In a multiscalarexecution,a task
assignedo a processinginit comprisesone completesearch
of thelist with a particularsymbol. The processinginits per-
form a searchof the linked list in parallel, each with a

for (indx = 0; indx < BUFSIZE; indx++) {
/* get the symbol for which to search */
symbol = SYMVAL(buffer[indx]);

/* do a linear search for the symbol in the list */
for (list = listhd; list; list = LNEXT(list)) {
[* if symbol already present, process entry */
if (symbol == LELE(list)) {
process(list);

break;
}
}
/* if symbol not found in the list, add to the tail */
if (Mist) {

addlist(symbol);

Figure 3: An ExampleCodeSegment.

symbol,resultingin an overall executionof multiple instruc-
tions per cycle. The detailsof the parallelexecutionof what
at first appearsto be a serial program are presented
throughoutherestof this paper.

2.2. Multiscalar Programs

A multiscalarprogrammustprovidethe meanso sup-
port a fast walk (throughthe CFG) that distributestasksen
masseo processingunits. Below, we describethreedistinct
typesof informationmaintainedwithin a machine-levemul-
tiscalarprogramto facilitate this end: (i) the actualcodefor
the taskswhich comprisesthe work, (ii) the details of the
structureof the CFG, and (iii) the communicationcharac-
teristicsof individual tasks.

The specificationof the codefor eachtaskis routine.
A task is specifiedas a set of instructions,in the same
fashion as a program fragmentfor a sequentialmachine.
Although the instructionset architecture(ISA) in which the
codeis representeaffectsthe designof eachindividual pro-
cessingunit, it haslittle influenceon the restof the designof
a multiscalarprocessor. Hence, the instruction set usedto
specify the task is of secondary importance. (The
significanceof this fact is that an existingISA may be used
withoutamajoroverhaul.)

The sequencerof a multiscalar processorrequires
informationaboutthe programcontrol flow structureto facil-
itate a rapid traversalof the CFG. In particular,it needsto
know which tasksare possiblesuccessorsf any given task
in the CFG. The multiscalarsequenceusesthis information
to predictoneof the possiblesuccessotasksandto continue
the CFG walk from this point. (Unlike the corresponding
casein a sequentiakxecution,control proceedgo a succes-
sor task beforethe currenttaskis complete.) Suchinforma-
tion canbedeterminedstaticallyandplacedin atask descrip-
tor. The taskdescriptoramay be intersperseavithin the pro-
gramtext (for instance beforethe codeof thetask)or placed
in a singlelocation besidethe programtext (for instance at
theend).

To coordinateexecutionamongdifferent tasks, it is
necessarnyto characterizeeachtask accordingto the set of
valuesthat may be consumedby the task and the set of
valuesthatmay be producedby thetask. In asequentiakxe-
cution, this informationis discoveredduring the instruction
decode processas instructions are fetched and inspected.
However the objectivein a multiscalarexecutionis to assign
a task to a processingunit and to proceedto the next task
withoutinspectingthe contentsof the assignedask.

The procedureto handleregistervaluesis straightfor-
ward. (Memory valuesare handledas describedn Section
2.3.) A staticanalysisof the CFGis performedby the com-
piler to supply the create mask that indicatesthe register
valuesa taskmay producé. A naturallocationfor the create
maskis within the taskdescriptor. Sincea taskmay contain

11t is not strictly requiredto specifywhich valuesa taskmay
consume.As ataskexecuteandconsumewvalues,jt waitsfor apar-
ticularvalueonly if thevaluehasnotyetbeenproducedby anactive
predecessaiask). Otherwise,it finds the valuewithin local storage
[1]. Thevaluepresentwithin local storageis the productof an ear-
lier taskthathasforwardeda valuearoundthering.

multiple basic blocks whose execution is governed by

(dynamically resolved)control conditions,it is not possible
to determinestatically which registervalueswill be created
dynamically. As such,the createmaskmustbe conservative,
andtherebyincludesall registervaluesthatmay be produced.

As a processingunit executesthe instructionsin a
task, registervaluesare producedwhich mustbe forwarded
to succeedingasks. Becausethe unit cannotdeterminea
priori which instructions comprise its assignedtask (the
instructionsmay not evenhavebeenfetched),it cannotknow
which instructionperformsthe updateto a registerthat must
be forwardedto othertasks. In accordancevith sequential
semanticspnly the lastupdateof aregisterin thetaskshould
be forwardedto othertasks. The option existsto wait until
all instructionsin a taskhavebeenexecutedi.e., no further
updatesof registersare possible). However, this strategyis
not expedientsince it often implies that other tasks must
wait, possiblya considerableeriod of time, for a valuethat
is alreadyavailable.

Thecompiler,onthe otherhand,hasknowledgeof the
lastinstructionin ataskto updatea particularregister. It can
mark this instruction as a special (operate-and-forward)
instruction that, in addition to carrying out the specified
operation forwardsthe resultto following processingunits.
Furthermoreasa unit executeghe instructionsof its task;, it
canidentify thoseregistersfor which valuesare not going to
be producedalthoughstaticallyit appeared value might be
produced).By virtue of the fact thatlatertasksmustwait for
any registerthat an earlier task indicatesit might produce
(regardlessof whethera value is actually produced),it is
necessaryo release suchregistersin orderto continueexe-
cution. Whenaregisteris releasedthe valueis forwardedto
laterunits.

For the samereasonsa processingunit cannotdeter-
mine which dynamicinstructionscompriseits assignedask,
it likewise cannotdeterminea priori on which instructiona
taskwill completej.e., atwhatpoint control flows out of the
task. At thetime the CFG s partitionedby the compiler,the
boundariesof a task and the control edgesleaving the task
areknown. An instructionat oneof theseexiting edgesmay
be markedwith special stopping conditions so that at the
time such an instruction is encounteredoy the processing
unit the appropriateconditionscanbe evaluated.|f the stop-
ping conditionsassociatedvith the instructionare satisfied,
thetaskis complete.

The specificatiorof forwardingandstoppinginforma-
tion is bestviewedasthe additionof a few tag bits (forward
and stop bits, respectively)to each instruction in a task.
Neverthelesst maybe necessaryo implementthesetag bits
differently if the basicISA is notto be changed.One possi-
ble implementatioris to provideatableof tagbits to be asso-
ciatedwith eachstaticinstruction. As the hardwarefetches
theinstructionsfrom the programtext andthe corresponding
tag bits from the table, it concatenatethe pair to producea
new instruction. The new instructionscan be maintainedin
the instructioncache,so that the overheadof accessingwo
memory locations(one for the instructionsand one for the
bits) is incurredonly in the caseof a cachemiss. Therelease
of a registermay be indicatedby addinga specialrelease
instructionto the baselSA or by overloadingan existing
instructionof thebaselSA.

A pictorial representatiorof the information assem-
bled within ataskof a multiscalarprogramis givenin Figure
4. This depictioncentersaroundthe assemblylanguagefor
the example of Figure 3. In addition to the assembly
languagethe figure containsa task descriptor,a set of for-
ward bits, and a setof stopbits. Recallthat the taskunder
consideratiorconsistof oneiterationof the outerloop. The
task executeghe iterationsof the inner loop to searchfor a
match of a symbolin a linked list. If a matchis found, a
function is called to processthe symbol. If no match is
found,anentryin thelist is allocatedfor the symbol. Thus,
the task hastwo possiblesuccessotasks,both of which are
the targetsof a branchinstruction. The successotasksare
eitherthe nextiterationof the outerloop (Targl= OUTER),
or anexit from the outerloop (Targ2= OUTERFALLOUT).
The task completeswhen the end of the outer loop is
reached.Consequentlythe lastinstructionin the outerloop
is taggedwith a setof bits which indicatea “Stop Always”
condition.

Thetaskcreatessaluesthatareboundto the registers:
$4,$8,$17,$20,%$23. Thelastinstructionto write into regis-
ters$4,$20,and$23hasa forwardbit set. Since$8 and$17
are updatedrepeatedlyin the inner loop, and only the last
updateneeddo beforwarded theregistersarereleasedtthe
exit of theinnerloop. Along the samelines, $4 is releasedf
the inner loop is skipped, since the instruction that last
updatesaandforwards$4 (in theinnerloop)is notexecutedn
this case. It shouldbe notedthata valueboundto a register
is only sentonceper task. Hence,all subsequentorwards
and releasesof a value already forwarded or releasedare
ignored. To illustrate, the releaseof $4 is encounteredand
ignored)if the instructionthat last updatesand forwards $4
(in the inner loop) is executed. (An alternative to this
approachwhich may havethe undesirableeffect of creating
complexintra-taskcontrol structuresjs to incorporateaddi-
tional basicblocksto eliminatesucha scenario.)

So far in our discussionwe have assumedthat all
valueswhich arecreatedby a taskarecommunicatedo other
tasks. To maintainprogramsemanticshowever,we do not
needto communicateall valuescreatedby a task. Rather,
only valuesthat are potentially live outsidea task,i.e., are

not dead at the end of a task, needto be communicated.

Going backto the exampleof Figure 3, we canseethatthe

only registervalue thatis live outsidethe taskis the induc-

tion variable,$20; only $20 mustappearin the createmask.
No otherregistervalueneedgso beforwarded,andnorelease
instructionsneedbe present. Furthermoreany storesmade
to the stackframe inside the process function neednot be

communicatedo later tasks. Sincethe live rangesof regis-
ters are already known to a compiler, incorporatingdead
register analysisis fairly straightforward. At the time of

writing of this paper,we arestill investigatingthe subjectof

deadmemoryvalueanalysis.

A multiscalar program may be generatedfrom an
existing binary by augmentingthe binary with task descrip-
tors and tag bits. This multiscalar information may be
located within or perhapsto the side of the programtext.
Thejob of migratinga multiscalarprogramfrom onegenera-
tion to anothergeneratiorof hardwaremight be assimpleas
taking an old binary, determiningthe CFG (a routine task),
decidingupona task structure,and producinga new binary.
The old multiscalarinformationis removedand replacedby
new multiscalarinformation to form an updatedversion of

‘Targ Spec Branch, Branch 2
Targl OUTER a @
Targ2 OUTERFALLOUT @ o
Create mask $4,$8,$17,$20,$23 g g
i n

OUTER:

addu $20, $20, 16 F

Id $23, SYMVAL-16($20) F

move $17, $21

beq $17, $0, SKIPINNER
INNER:

Id $8, LELE($17)

bne $8, $23, SKIPCALL

move $4, $17

jal process

jump INNERFALLOUT
SKIPCALL:

Id $17, NEXTLIST($17)

bne $17, $0, INNER
INNERFALLOUT:

release $8, $17

bne $17, $0, SKIPINNER

move $4, $23 F

jal addlist
SKIPINNER:

release $4 Sto

bne $20, $16, OUTER Alwag)/s
OUTERFALLOUT:

Figure 4: An Exampleof a MultiscalarProgram.

thebinary. The coreof the binary,however the fundamental
instructionswhich describethe work of eachtaskremainvir-
tually the same. Only multiscalarspecific instructionsand
any adjustmentsto relative addressesieed be accommo-
dated. This approachbodeswell for a smooth software
growth pathfrom one hardwaregeneratiorto the next, espe-
cially if recompilationfrom the sourcecodeis not practical.

2.3. Multiscalar Hardware

The function of the multiscalarhardwareis to walk
throughthe CFG, assigntasksto the processingunits, and
executethesetaskswith the appearancef sequentiakxecu-
tion. The job of determiningthe order of the tasksis the
responsibilityof the sequencer.Given the addresof a task
descriptor, the sequencerfetches the task descriptor and
invokesthe task on the processingunit by (i) providing the
addressof the first instruction, (ii) specifying the create
mask, and (iii) constructingthe accum mask for the task.
The sequencedeterminesthe next task to be assignedby
usinginformationin the taskdescriptorto predictone of the
possiblesuccessotasks(usinga staticor dynamicprediction
scheme). A processingunit independentlyfetchesand exe-
cutes the instructions of its task (until it encountersan
instructionwith the stop bit set, which indicatesthe task is
complete). The processingunits are connectedvia a uni-
directionalring which is usedto forward information (reser-
vations,values.etc.)from oneunit to the next[1].

The datacachebanksandthe associatednterconnect
(betweenthe datacachebanksandthe units) are straightfor-
ward (exceptfor the scale). Updatesof the datacacheare
not performedspeculatively. Instead,additional hardware,
known asan Address Resolution Buffer or ARB [3-5], is pro-
vided to hold speculativememory operations detectviola-
tions of memorydependencesand initiate correctiveaction

asneeded The ARB may be viewed asa collection of the
speculativememory operationsof the active tasks. The
valuescorrespondingo theseoperationsresidein the ARB
andupdatethe datacacheastheir statuschangegrom specu-
lative to non-speculativeln additionto providing storagefor
speculativeoperationsthe ARB tracksthe units which per-
formed the operationswith load and store bits. A memory
dependenceiolation is detectedby checkingthesebits (if a
load from a successounit occurredbefore a store from a
predecessounit, a memory dependencavas violated). As
the ARB is afinite resourcejt may run out of space.If this
situation should occur, a simple solution is to free ARB
storageby squashindasks. This strategyguaranteespacen
the ARB andforward progress.No deadlockproblemsexists
becausejn the worst case,all taskswhich consumeARB
storagemay be squashedthe headwhich doesnot require
ARB storages not squashed) A lessdrasticalternativeis to
stall all processinginits but the head. As the headadvances,
entriesarereclaimedandthe stall lifted (we areinvestigating
the useof this approach).

Going backto the exampleof Figure 3, if two sym-
bols being processecconcurrentlyhappento be the same,
and a call to the process function for the first search
updatesthe memory location correspondingo the symbol,
the secondsearchmust seethe updatedmemory location.
Thatis, if the unit processinghe secondsymbolloadsfrom
the memorylocationbefore the unit processinghefirst sym-
bol storesinto the memorylocation,a squashmustoccur. (A
squashdoesnot occurif the dynamicsequencef eventsis
such that the secondunit loads from the memory location
after thefirst unit storesto the memorylocation.) Likewise,
whena symbolis insertedinto the list, subsequensearches
must see the updatedlist. In the samefashion, the cases
wherelater tasksdo not seethe updatedist aredetectecand
the taskssquashedaccordingly.Moreover, the storagepro-
vided by the ARB is usedto renamememorysuchthatmulti-
ple function calls can be executedin parallel, yet retain
sequentiasemantics.Thatis, if multiple callsto pr ocess
areto proceedn parallel,eachcall requiresits own (suitably
renamed)stack frame which, as per a sequentialexecution,
reuseshe samememorylocations.

The microarchitecturellustrated in Figure 1 is just
one possibleconfigurationfor a multiscalarprocessorpther
microarchitecturesire certainly possible. The invariant that
hasto be preserveds the appearancef a sequentiabrdering
amongst the instructions, with the register and memory
valuesflowing from earlier tasksto later tasks. An alterna-
tive microarchitecturenight sharethe functional units (such
asthe floating point units) betweenthe different processing
units. Anotherpossiblemicroarchitecturés onein which the
ARB andthe datacachesare movedacrossthe interconnect
to the sameside as the processingunits. (In this case,the
functionality of the ARB and datacachesis providedby a
collection of temporally inconsistent caches/bufferswith
memory valuesforwarded betweenthem on a ring, analo-
gousto the mechanisnfor registers.)A properdiscussiorof
thesealternatemicroarchitecturess beyondthe scopeof this

2 Sincethe taskat the headis the only taskthatis guaranteed
to benon-speculativapnemoryoperationsarriedout by all units, ex-
ceptthehead arespeculative.

paper.

3. Distribution of Cyclesin Multiscalar Execution

We now take a more detailedlook at the multiscalar
model by consideringthe distribution of the availablepro-
cessingunit cyclesin multiscalarexecution. Recallthat our
objectiveis to have eachprocessingunit performinguseful
computationwith the processinginits collectively executing
multiple instructionsin a given cycle. The bestcaseis to
performasmuchusefulcomputationper cycle asthe proces-
sorcomplexis capable.Thebestcase(of all usefulcomputa-
tion) maynotberealizedbecausef cyclesin which aunit (i)
performsnon-usefulcomputation(ii) performsno computa-
tion, or (iii) remains idle. Each cycle spent in these
categoriess acyclethatis lostfrom the bestcase.

The non-useful computationcycles representwork
thatis ultimately squashed¢omputationrmay be squasheds
a result of the useof (i) an incorrectdatavalue or (ii) an
incorrect prediction. The no computationcycles may be
attributedto (i) waiting for a value createdby an instruction
in a predecessotask, (i) waiting for a value createdby an
instruction in the sametask (for example,a high-latency
operationor a cachemiss),or (iii) waiting for the taskto be
retired at the head (becauseall instructionswithin the task
haveexecuted).Theidle cyclesaccountfor time in which a
processinginit hasno assignedask(duefor the mostpartto
re-assigningtasksin squashrecovery). Below, we discuss
severalconceptsandseethe influenceon the non-usefuland
no computationcyclesin multiscalarexecution. (We do not
addresghe loss due to idle cyclesasit amountsto a rela-
tively insignificant portion of the total in most cases.)
Although we discussa concept/issu@inderone heading the
impacttypically spanganultiple headings.

3.1. Non-Useful Computation Cycles

Since squashinga particular task means likewise
squashinall tasksthatfollow it, a squasimayhavea severe
impacton the performancef a multiscalarprocessor.Recall
thatcomputatiormay be squasheasa resultof the useof (i)
anincorrectvalueor (i) anincorrectprediction. To reduce
the impact of this squashoverheadwe may (i) reducethe
chance®f a squashby synchronizingdatacommunicatioror
(ii) determineearly,beforemuchnon-usefukcomputatiorhas
beenperformedthata squashs inevitable.

3.1.1. Synchronization of Data Communication

The communicationof register data valuesis syn-
chronizedasa consequencef theregisterfile mechanisn{as
intended). On the otherhand,the communicatiorof memory
data values must be synchronizedexplicitly. A memory
order sguash occursif alatertaskloadsfrom a memoryloca-
tion beforean earliertask storesto this samememoryloca-
tion.

Our experiencen the programsthat we have exam-
ined is that suchsquasheslo indeedoccurin practice,but
rarely arethe squasheslueto updatingan arbitrary memory
location. Almost all memory order squasheghat we have
encounteredn our experimentoccurdueto updatesof glo-
bal scalarsand structuresypically file and buffer pointers
and counters. (Typically thesevariableshave their address
taken,andthereforecannotberegisterallocated.)

Fortunately, accessedo static global variables are
amongstthe easiestmemory accessedor a compiler to
analyze,much easierthan accesseso arbitrary heaploca-
tions. Once (potentially) offendingaccessesarerecognized,
accessego the memory location can be synchronizedto
ensurethat conflicting loads and storesoccurin the proper
order.

Such synchronizationmay be accomplishedin a
variety of ways. It may possibleto createanartificial depen-
denceon a register(to synchronizememorycommunication
with registercommunication)to delay the load for a given
numberof cycles(to reducethe probability of it occurring
beforethe store),or to useexplicit signal-awaitsynchroniza-
tion. Note that any synchronizationmay createinter-task
dependencesvhich, as we shall see,can contributeto no
computatiorcycles.

3.1.2. Early Validation of Prediction

The determination of whether a task should be
squashediueto anincorrectpredictionis normally madeat
suchtime asthe exit point of the immediatelyprecedingask
is known. As onemight expect this pointis in mostcasest
the end of the executionof a task. During this passageof
time, manycyclesof non-usefulcomputatiormay havebeen
performedn latertasks.

For examplejf loop backis predictedeachtime for a
loop, we may haveto wait for all instructionsin thelastitera-
tion to be executedbeforewe recognizethe following itera-
tions are non-usefulcomputationthat must be squashed.If
an iteration consistsof hundredsof instructions,the time
takento determinethatno moreiterationsshouldbe executed
may represenmany hundredsof cyclesof non-usefulcom-
putation.

To minimizethelossdueto thesecycles,we may con-
sidervalidatingpredictionearly. If somecomputatioris per-
formedsoonafterataskis initiated to determinewhetherthe
next task was indeedpredictedcorrectly, the time spentfor
non-useful computation may be significantly reduced.
Returningto the loop example,if the last loop iteration is
recognizedsoonafterthe iterationbeginsexecution the next
unit may be redirectedo the taskat theloop exit ratherthan
executeanother(non-usefulloop iteration.

Severaloptions exist for validating prediction early.
One option is to introduce explicit validate prediction
instructionsinto a task. Anotheroption, directedspecifically
at loop iterations,which doesnot require new instructions
(but still requires additional instructions as comparedto
sequentiabxecution),is to changethe structureof the (com-
piled) loop so that the testfor loop exit occursat the begin-
ning of theloop.

3.2. No Computation Cycles

It is importantto distinguishbetweenidle cyclesand
no computationcycles. In the idle cyclescase the process-
ing unit doesnot performuseful computationbecausét has
no assignedask. In the no computatiorcyclescase the pro-
cessingunit doeshave an assignedask, but it is unableto
performusefulcomputation. Of theselost cycles,somemay
be an unavoidablecharacteristicinherentin the sequential
code,while othersmay be a by-productof the taskpartition-
ing andschedulingor multiscalarexecution.

3.2.1. Intra-Task Dependences

An obvioussourceof no computatiorcyclesis depen-
dencesbetweenthe instructionsof the sametask. As each
taskis like a small program,andeachprocessingunit is like
a uniprocessorany of the plethoraof techniqueswvailableto
reduceost cyclesin a uniprocessomay be appliedto reduce
the impact of such cycles. Examplesof thesetechniques
include (but neednot be limited to) codescheduling out-of-
orderexecutionandnon-blockingcaches.

3.2.2. Inter-Task Dependences

A moresignificantsourceof no computationcyclesin
multiscalarexecutionare dependencebetweenthe instruc-
tions of differenttasks. Thatis, cyclesin which a later task
waits for valuesfrom an earliertask. If a producinginstruc-
tion is encounteredlate and a consuming instruction is
encountereckarly amongtasks executingconcurrently,the
consumingtask may stall on the producingtask. In sucha
casenear-sequenti@xecutionmayresult.

Considerour working example. If the inductionvari-
able for the outer loop had beenupdatedat the end of the
loop (aswould normally be the casein codecompiledfor a
sequentialexecution),then all iterationsof the outer loop
would be serialized sincethe nextiterationneedsthe induc-
tion variableearly in orderto proceed.|f, onthe otherhand,
we updateand forward the induction variable early in the
task, but keepa copy of the inductionvariablefor local use
or modify the local useto factor in the update(as we have
donein the codeof Figure4), thenthe critical paththrough
the computationis not unnecessarilyaggravated,and the
tasksmay proceedn parallel.

In our experiencavith benchmarkprogramswe have
found this sequentialoutlook to be quite pervasive. The
sequentialpoint of view is understandablesince the pro-
grammerassumes sequentiamachinemodel. Furthermore,
thereis no reasonto assumea performancamprovementis
to be gainedby makinglocal copiesof variablesor by mak-
ing arcanemodificationsto existing code. Neverthelessfor
efficient multiscalarexecution,it is crucial to removesuch
limitations. In many casesa compiler may havegreatsuc-
cess(for example,arithmeticinduction variables). In other
casesa compilermay haveonly limited succesgfor exam-
ple, memory induction variables). In some cases,these
impedimentsmay be unavoidableor require changego the
sourceprogramto be overcome.

3.2.3. Load Balancing

In multiscalarexecutionsincetasksmustbe retiredin
order,cyclesmaybe lostif tasksarenot of the propergranu-
larity and (roughly) the same size in terms of dynamic
instructions. That is, a processingunit which completesa
comparativelyshort task performsno computationwhile it

waitsfor all predecessdasksto beretiredatthe head.

8 Theseno computatiorcyclesmay bereducedf we providea
somewhatorecomplicatedmplementatiorof the “circular queue”
which connectsthe units and additional resourceg¢o maintain the
resultsof speculativeaskexecution.

A key factor in minimizing cycles lost due to load
balancing(and many of the otherlost cyclesfor that matter)
is to chooseaasksof anappropriateggranularity. Flexibility in
the choice of the grain size of a task implies that only
minimal restrictionsbe placedon whatmay be containedn a
task. In particular,a taskshouldbe free to containfunction
calls. (In our working example,the appropriategranularity
for a taskis an iteration of the outerloop, which containsa
functioncall.)

Sincea function may havemanycall sites,we provide
differing views on how a function shouldbe executed.From
one call site we may want the function to be executedas a
collectionof tasks. Whereasfrom anothercall site we may
want the entire function to be executedas part of a single
task. To accommodatesuch differing views with a single
version of the code, a function may be treated as a
suppressed function, i.e., a functionin which all multiscalar-
specific annotations are ignored under appropriate cir-
cumstances.

4. Comparison of Multiscalar with Other Paradigms

4.1. Conventional Wisdom

The multiscalar paradigm challenges conventional
wisdom in ILP processingin severalrespects.Herein, we
examinea numberof casesn which the multiscalarapproach
counterghetenetsof conventionalvisdom.

Branch prediction accuracy must limit ILP.

Theissueat handis the ability to establisha largeandaccu-
rateinstructionwindow for ILP extraction. The usualargu-
mentsupposeshatif the averageiranchpredictionaccuracy
is 90%, then speculatingive branchesaheadmeansthereis
only abouta 60% chancethat instructionsbeyondthe fifth
brancharealongthe correctdynamicexecutionpath(an85%
accuracyyieldslessthan45%chance).

A multiscalar processorcan speculateacrossmany
morethanfive brancheswhile still havinga very high proba-
bility of following the correct dynamic path. In essence,
suchbehaviomay be providedby only selectivelypredicting
branches. A multiscalar processorbreaks the sequential
instructionstreaminto tasks. Althoughthetasksmaycontain
internal branchesthe sequencemnly needsto predict the
brancheghat separatdasks. The branchesontainedwithin
a taskdo not haveto be predicted(unlessthey are predicted
separatelyvithin the processinginit).

In the exampleof Figure 3, branchesn the outerloop
delineatethe tasksand are predicted(with high accuracy).
No brancheswithin the linked list search have to be
predicted. In fact, theindividual branchedhatarepartof the
procesof traversingthe linked list would likely be predicted
not takenbecause symbolonly matchesone elementof the
list. Neverthelessthe branchfor the matchwill eventually
be taken. Supposewne encounteran averageof 20 branches
(matchtests)in traversingthe linked list, the executionof an
8-unit multiscalar processormight span 160 conditional
branchesyetstill befollowing the correctdynamicpath.

The conventionalapproachwhich must sequentially
predictall branchesasit proceedsijs practically guaranteed
to predictwrong eventually(andwill neverhaveinstructions
from more than onelist searchin progresssimultaneously).
The multiscalarapproachpn the otherhand,may overcome

this limitation. The ability of a multiscalar processorto
selectively bypassbranchespossibly obviatesthe needfor
techniquessuch as guardedexecution,whose net result is
alsoavoidingthe predictionof “bad” branchedqalbeit non-
loop branches)but at the expenseof executingextrainstruc-
tions[7,9,10].

A wide window of pending instructions requires the com-
plexity of concurrently monitoring the issue state of all
individual instructionsin thiswindow.

In general,nstructionsfrom a wide window are selectedor
executionin parallel and often out-of-orderwith respectto
the sequentiaprogram. In a multiscalarimplementationthe
window canbe very wide, yet at any giventime only a few
instructionsneedto be inspectedfor the ability to issue(as
few asonefor eachprocessingunit). The boundarief the
window of pendinginstructionscanbe identifiedamongthe
activetasksasthefirst instructionbeingconsideredor issue
atthe headandthelastinstructionat the tail. As ataskmay
containa hundredor moredynamicinstructiong(considerthe
linked list examplein Figure 3), the effective window size
canbemanyhundredf instructions.

To issue n instructions simultaneously, there must be
logic of n? complexity to perform dependence cross-
checksamong the instructions.

Thatis, issuecomplexitygrowsasn? to supporin-way issue.
In a superscalaiprocessor this observationconstrainsthe

capacity of the issue logic. In a multiscalar processor,
though,issuelogic is distributedto simultaneouslyfetch and

executemultiple instruction streams. Each processingunit

issuesits instructionsin an independentnanner. The com-

plexity only consistsof multiple copiesof relatively simple

low-dimensionscalarissuelogic. The sequencetogic does
not haveto examineindividual instructionsasis typically the

casen thesuperscalaapproach.

All loads and stores must be identified, and the refer-
enced addresses must be computed, before memory
accesses can bere-ordered.

In a conventionaimplementationjoadsandstoresaregiven
sequencenumbers(or are kept in original sequence)and
maintainedin a buffer alongwith the addressf the associ-
atedmemoryaccess.If aloadis to be issued,the buffer is

checkedo ensurethatno earlierstoreto the sameaddressor
an unresolvedaddresss pending. If a storeis to beissued,
the bufferis checkedo ensurethatno earlierload or storeto

the sameaddresor an unresolvedaddresds pending. In a
multiscalarimplementationJoads and storesmay be issued
independentlywithout knowledge of loads and storesin

predecessaor successotasks.

4.2. Other Paradigms

The superscalaand VLIW approachesfor the most
part,follow the conventionawisdomoutlinedabove. A typ-
ical superscalaprocessoffetchesthe streamof instructions,
examining all instructions as it proceeds (perhapsmultiple
instructions are examinedat once, but all are examined).
Generally,this examinationis doneto extractand process
branchinstructions,to identify instructiontypesso that they
may be routedto the properinstructionbuffersor reservation
stations,andto do someprocessingo alleviatedatadepen-
dencese.g., registerrenaming[8, 11]. A typical VLIW pro-
cessorrelieson the compilerto performstaticallythesesame

functions performedby the superscalaprocessordynami-
cally.

In the superscalaapproachit is possibleto generate
a fairly accuratewindow that may be a few branchesdeep
(using a sophisticateddynamic branch predictor), because
run-timeinformationis available. Moreover,it is possibleto
generate very flexible instructionschedule.For example jt
may be possibleto allow a load in a calleefunction to exe-
cutein parallelwith a storefrom a callerfunction. Neverthe-
less, a superscalaprocessothas no advanceknowledgeof
the program CFG; it must discoverthe CFG asit decodes
branches.This lack of vision regarding“what lies ahead”
and the needto predict every branch limits its ability to
createaslargeor asaccuratea window asis possible. More-
over, to extract parallelism from the window requires
predominantlycentralizedresourcesincluding much associ-
ative logic, which canbe difficult to engineerasthe level of
ILP increases.

In the VLIW approachthe resultingwindow may not
be very large or may containinaccuraciesrisingfrom static
branchprediction,sincerun-timeinformationis not available
to thecompiler. Dueto this lack of run-timeinformationand
the presenceof inherent“boundaries” in the program,the
ability to moveoperationsn a VLIW processomay be hin-
dered. For examplejt maynot be possibleto providea static
guaranteeo allow a load operationin a callee function to
executein parallelwith a storeoperationfrom a caller func-
tion (especiallyif the calleefunctionis determineddynami-
cally). Furthermore,a VLIW implementationrequires a
large storagename-spacemultiported registerfiles, exten-
sive crossbarinterconnectsand stallsif the run-time situa-
tion is different from the situation assumedwhen a code
schedulewas generatedfor example,a cachemiss at run-
time). Moreover,going from onegeneratiorto anothermay
requirethe problematicre-engineeringf programbinaries.

In many ways a multiscalarprocessoiis similar to a

multiprocessomwith very low schedulingoverheafl (Both
are capableof dispatchinglarge blocks of parallel code.)
However,thereis a major difference. Whereasa multipro-
cessorrequiresa compiler to divide a programinto tasks
whereall dependenceelationsbetweentasksare known (or
are conservativelyprovidedfor) [2], a multiscalarprocessor
requires no such knowledge of control and data indepen-
dence. If a compilercandivide a programinto tasksthatare
guaranteedo be independent(for exampleiterationsof a
vectorizabldoop), of coursea multiscalarprocessocanexe-
cutethemin parallel. However,the strengthin the multis-
calar approachlies in executingtasksthat are very likely
independentor where dependencads relatively low (and
thereforelLP exists),but in the cases for which this informa-
tion cannot be determined statically (such as the code of

4 When compared to a multiprocessor with a low
synchronization/schedulingverhead,it is worth noting that the
name-spacesedto synchronizethe variousunits in multiscalaris a
commonregistername-space- the sameregistername-spacthatis
usedfor all computations. In a multiprocessor,we would need
separatename-spacefprivate registers)for local computation,and
(sharedregistersor main memory)for sharedcommunicationwith
(possibly explicit) movementof values from one name-spacdo
another. This movementddsoverhead.

Figure3).

A multiprocessorwith low schedulingoverhead,as
could be achievedwith multiple processor®n a chip with a
sharedcache,is still a multiprocessor. The fundamental
automatic parallelizationproblem is no different from the
one computerscientistshavestruggledwith for manyyears.
It may increasethe amountof parallelismover conventional
parallelprocessordy differencesin scaleratherthandiffer-
encesin kind. Thatis, the lower communicationoverhead
may makesomesmall piecesof codeefficient for multipro-
cessingn moreinstanceghanare possiblein a conventional
multiprocessor.However, new kinds of parallelismare no
easietto discover.

A multiscalarprocessorshould also not be confused
with a multithreadedprocessor.In a multithreadedproces-
sor, thereare multiple threads,or loci of control, which are
control independentand (typically) data independent.In
contrast,the different “threads” executingon a multiscalar
processomare relatedas different parts of a sequentialwalk
through the same program, and are not control and data
independent.

5. Performance Evaluation

5.1. Methodology

All of the resultsin this paperhavebeencollectedon
a simulatorthat faithfully represents multiscalarprocessor.
The simulatoracceptsannotatedig endianMIPS instruction
setbinaries(without architecteddelayslotsof anykind) pro-
duced by the multiscalar compiler, a modified version of
GCC 2.5.8. In orderto provide resultswhich reflectreality
with asmuchaccuracyaspossible the simulatorperformsall
of the operationsof a multiscalarprocessoland executesall
of theprogramcode,exceptsystemcalls,on a cycle-by-cycle
basis. (Systemcalls arehandledby trappingto the OS of the
simulationhost.)

The pipeline structureof a processingunit is a tradi-
tional 5 stagepipeline (IF/ID/EX/MEM/WB) which can be
configuredwith in-order/out-of-ordeand 1-way/2-wayissue
characteristics. Instructions complete out-of-order and are
servicedby a collectionof pipelinedfunctionalunits (1 or 2
simple integer FU, 1 complexinteger FU, 1 floating point
FU, 1 branchFU, and 1 memoryFU) accordingto the class
of the particularinstruction with the latenciesindicatedin
Table 1. The unidirectionalring connectinga multiscalar
configuration of the processingunits imposesa cycle for
communicationlatency betweenunits and matchesthe ring

Integer Latency || Float Latency
Add/Sub 1 SPAdd/Sub 2
Shift/Logic 1 SPMultiply 4
Multiply 4 SPDivide 12
Divide 12 DP Add/Sub 2
Mem Store 1 DP Multiply 5
Mem Load 2 DP Divide 18
Branch 1

Table 1: FunctionalUnit Latencies.

width to theissuewidth of theindividual units.

All memoryrequestsare handledby a single 4-word
split transactiormemorybus. Eachmemoryaccesgequires
a 10 cycleaccesdatencyfor thefirst 4 wordsand1 cyclefor
each additional 4 words. Both loads and storesare non-
blocking. In addition, each processingunit is configured
with 32 kbytesof direct mappednstructioncachein 64 byte
blocks. (An instructioncacheaccesseturns4 wordsin a hit
time of 1 cyclewith anadditionpenaltyof 10+3cycles,plus
any buscontention,on a miss.) A crossbainterconnectshe
units to twice as many interleaveddata banks. Each data
bankis configuredas8 kbytesof directmappeddatacachein
64 byte blockswith a 256 entry addressesolutionbuffer, for
atotal of 64 kbytesand128kbytesof bankeddatastoragefor
4-unit and 8-unit multiscalar processorsrespectively. (A
datacacheaccesseturnsl wordin a hit time of 2 cyclesand
1 cycle for multiscalarand scalar processorsrespectively,
with an additionalpenaltyof 10+3 cycles,plus any buscon-
tention,onamiss.)

The sequencemaintainsa 1024 entry direct mapped
cacheof taskdescriptors.The control flow predictionof the
sequenceusesa PAs configuration[12] with 4 targetsper
predictionand6 outcomehistories. The predictionstoragds
composedf afirst level historytablethatcontains64 entries
of 12 bits each(2 bits for eachoutcomedueto 4 targets)and
a setof secondevel patterntablesthat contain4096 entries
of 3 bits each(1 bit targettaken/nottakenand 2 bits target
number). The control flow predictionis supplementedby a
64 entryreturnaddresstack.

5.2. Benchmarks

We usedthe following programsasbenchmarkgwith
inputs other than standardand/or modificationsindicatedin
parentheses): compress, egntott, espresso (ti.in), gcc
(integrate.i), sc (loadal), and xlisp (6 queens)from the
SPECint92suite,tomcatv (N=129) from the SPECfp92suite,
wc from the GNU textutils1.9and cmp from the GNU diffu-
tils2.6 (two Unix utilities used as benchmarksby the
IMPACT group[6], with inputs providedby them), aswell
astheexamplefrom Figure3 (with aninputfile of 16 tokens,
eachappearingt50timesin thefile).

Instruction

Program Count Percent

Scalar Multiscalar | Increase
Compress 71.04M 81.21M 14.3%
Eqgntott 1077.50M 1237.73M 14.9%
Espresso 526.50M 615.95M 17.0%
Gce 66.48M 75.31M 13.3%
Sc 409.06M 460.79M 12.6%
Xlisp 46.61M 54.34M 16.6%
Tomcatv 582.22M 590.66M 1.4%
Cmp 0.98M 1.09M 10.9%
Wc 1.22M 1.43M 17.3%
Example 1.05M 1.09M 4.2%

Table 2: BenchmarKknstructionCounts.

Table 2 presentsthe dynamic instruction counts for
both scalarand multiscalarexecution. (We have only one
versionof a multiscalarprogram;the samemultiscalarbinary
is usedfor all the multiscalarconfigurationsin our experi-
ments.) Theextrainstructionsin a multiscalarprogramserve
to ensure correct execution (such as the use of release
instructions)or to enhanceerformancgsuchasthe creation
of local copiesof loop induction variablesand validating
prediction). At present, these instructions unavoidably
increasaheoverallinstructioncount.

5.3. Results

In Tables3 and4 we presentheinstructionspercycle
(IPC) for a scalar execution, the speedups(over the
correspondingcalarexecution)for 4-unit and 8-unit multis-
calar configurations and the task prediction accuracies.In
eachcase,we report resultsof the entire executionof the
benchmark,not just isolated parts. The resultsof Table 3
reflectthe performanceor processingunits with in-order 1-
way or 2-way issue. Similarly, the resultsof the Table 4
reflectthe performancdor processinginitswith out-of-order
1-way or 2-way issue. The speedupsare for a multiscalar
processocomparedo a scalarprocessorin which both use
identicalprocessinginits. Fromthe datapresentedn Tables
2, 3, and 4, it is possibleto determinethe cycle countsin
eachcase. (For examplewith 2-way, out-of-orderissuepro-
cessingunits, a scalarprocessotakes817,845cyclesto exe-
cute Example, whereasan 8-unit multiscalarprocessotakes
228,771cycles.)

In interpretingthe results,it is usefulto keepa few
points in mind. First, Amdahl’s law: achieving infinite
speedupn only 50% of the codespeedsup total performance
by only a factor of 2. Second,the IPC of our basescalar
configurationds fairly high dueto our useof aggressivero-
cessingunits. Third, we havemadeno attempt,at this point,
to schedulethe multiscalar code to tolerate the additional
cycle of latency it experiences(as comparedto a scalar
configuration) for cache hits. Fourth, we have not spent
sufficient effort in reducing the additional instructions
encounteredn multiscalar execution. Finally, we do not
give the multiscalarcodeany “unfair” optimizationadvan-
tages;any optimizationssuchasloop unrolling are madeon
bothscalarandmultiscalarcode.

In compress all time is spentin a single (big) loop,
which containsa complexflow of controlwithin. This loop
is bound by a recurrence(getting the index into the hash
table) that resultsin a long critical path throughthe entire
program. The problemis furtheraggravatedy the hugesize
of thehashtable,which resultsin a high rateof cachemisses.

Most (85%) of the instructionsin egntott are in the
cmppt function, which is dominatedoy aloop. Thecompiler
automaticallyencompassethe entire loop body into a task,
allowing multiple iterationsof theloop to executdn parallel.

The top function in espresso is massive_count (37%
of instructions). The massive_count function hastwo main
loops. In both casesthe loop body is a task, allowing the
multiple iterationsto run in parallel. In the first loop, each
iteration executesa variable numberof instructions(cycles
arelostdueto load balance).In the secondoop (which con-
tainsa nestedoop), aniterationof outerloop includesall the
iterations of the inner loop (in this situation, the task

1-WaylssueUnits 2-WayIssueUnits
Program || Scalar Multiscalar Scalar Multiscalar

4-Unit 8-Unit 4-Unit 8-Unit

IPC Speedup| Pred | Speedup| Pred IPC Speedup| Pred | Speedup| Pred
Compress|| 0.69 1.17 86.8% 1.50 86.1% || 0.87 1.04 86.8% 1.34 86.4%
Eqgntott 0.83 2.05 94.8% 291 94.6% || 1.10 1.82 94.8% 2.58 94.6%
Espresso || 0.85 1.34 85.9% 1.59 85.9% || 1.11 1.22 85.3% 141 85.2%
Gce 0.81 1.02 81.2% 1.08 80.9% || 1.04 0.92 81.2% 0.98 80.9%
Sc 0.75 1.36 90.5% 1.68 90.0% || 0.94 1.28 90.0% 1.56 89.5%
Xlisp 0.80 0.91 80.6% 0.94 79.5% | 1.03 0.86 80.0% 0.88 78.7%
Tomcatv 0.80 3.00 99.2% 4.65 99.2% || 0.97 271 99.2% 3.96 99.2%
Cmp 0.95 3.23 99.4% 6.24 99.4% || 1.32 3.02 99.4% 5.82 99.4%
Wc 0.89 2.37 99.9% 4.33 99.9% || 1.09 2.36 99.9% 4.27 99.9%
Example 0.79 2.79 99.9% 3.96 99.9% || 1.07 2.43 99.9% 3.47 99.9%
Table 3: In-OrderlssueProcessindJnits.

1-WaylssueUnits 2-WayIssueUnits
Program || Scalar Multiscalar Scalar Multiscalar

4-Unit 8-Unit 4-Unit 8-Unit

IPC Speedup| Pred | Speedup| Pred IPC Speedup| Pred | Speedup| Pred

Compress|| 0.72 1.23 86.7% 1.56 86.0% || 0.94 1.07 86.7% 1.33 86.3%
Eqgntott 0.84 2.23 94.8% 3.35 94.6% || 1.21 1.79 94.8% 2.64 94.5%
Espresso || 0.88 1.47 85.9% 1.73 85.8% | 1.31 1.12 85.3% 1.25 85.4%
Gce 0.83 1.06 81.1% 1.13 80.6% || 1.15 0.91 81.1% 0.95 80.6%
Sc 0.80 1.42 90.5% 1.75 90.0% || 1.10 1.24 90.2% 1.50 90.2%
Xlisp 0.82 0.95 75.6% 1.01 77.1% | 1.12 0.85 74.6% 0.90 76.5%
Tomcatv 0.96 2.92 99.2% 4.17 99.2% || 1.43 2.16 99.2% 2.93 99.2%
Cmp 0.95 3.24 99.2% 6.28 99.1% || 1.68 2.76 99.2% 5.30 99.2%
Wc 0.89 2.37 99.9% 4.34 99.9% || 1.13 2.34 99.9% 4.26 99.9%
Example 0.86 3.27 99.9% 4.86 99.9% || 1.28 241 99.9% 3.57 99.9%

Table 4: Out-Of-OrderissueProcessindJnits.

partitioningneededh manualhint to selectthis granularity).

Both gcc andxlisp distributeexecutiortime uniformly
acrossa greatdealof code. Thesearealsothe programsthat
we have,to date,spentthe leastamountof time analyzing.
In both thesecases,for the task partitioning that we use
currently, squashes(both prediction and memory order)
result in near-sequentiaéxecutionof the important tasks.
Accordingly, the overheadsin our multiscalar execution
(extra instructionsand extra cachehit latency) resultin a
slow down in some cases. (Incidentally, the instruction
count is slightly lower than what is typically observed
becausewe unroll the memset and memcpy functions.) For
gcec our experienceto date suggestghat parallelism,which
may be exploitedby multiscalar exists;we arelessconfident
aboutxlisp atthis point.

In sc, the dominant user routine is RealEvalAll,
thoughit only accountdor lessthan12% of thetotal instruc-
tions. RealEvalAll containsa two-level nestedloop that
makesa call to RealEvalOne for appropriatecells of the
spreadsheetReal Eval One furthercallseval whichis arecur-
sive function to evaluatea cell. The body of the innerloop
of RealEvalAll is a task with the call to RealEvalOne
suppressednanually. The loop in RealEvalAll visits every
cell of the spreadsheetif acell is notempty,RealEvalOne is

calledto evaluatet, elseno actionis takenatthecell. Since
RealEvalOne executesfor hundredsof cycles, the load
imbalance betweenthe work at each cell is enormous.
Accordingly, we restructuredhe Real EvalOne loop to build
a work list of the cells to be evaluated and to call
Real Eval One for eachof the cellsonthework list.

For tomcatv nearly all time is spentin a loop whose
iterations are independent. Accordingly, we achievegood
speedupfor 4-unit and 8-unit multiscalar processors.The
higher-issueconfigurationsare stymied becauseof the con-
tentionon the cacheto memorybus.

The programscmp and wc are straightforward,with
eachspendingalmostall its time in aloop. Theloops,how-
ever, containan inner loop (the loop in wc also containsa
switch statement).In thesecasesthe performancdoss may
be attributedmainly to cycleslost dueto branchesandloads
insideeachtask(intra-taskdependences).

Our example spends80% of its time in the code
shownin Figure 3, performingthe symbolfetch, match,and
processor add sequence.The remainingtime is spentin
fetchingthe datafrom theinputfile into the buffer. Sincethe
iterationsof the outerloop are mostly independen{dynami-
cally), we attain excellent speedups. Interestingly, other
known ILP paradigmssuch as superscalamand VLIW are

unlikely to extractany meaningfulparallelism,in anefficient
mannerfor this example.

6. Summary and Conclusions

This paperpresentedhe multiscalarprocessingoara-
digm, a new paradigm for exploiting fine-grain, or
instruction-levelparallelism. A multiscalarprocessousesa
combinationof hardwareand softwareto extractILP from
ordinaryprograms. It doesso by dividing the programcon-
trol flow graph (CFG) into tasks,and steppingthroughthe
CFG speculatively,taking large steps, a task at a time,
without pausingto inspectthe contentsof a task. The tasks
are distributedto a collection of processingunits, each of
which fetchesand executeghe instructionsin its task. Col-
lectively, this processorcomplex uses multiple program
countersto sequencehroughdifferent partsof the program
CFG simultaneouslyresultingin multiple instructionsbeing
executedn acycle.

We describedhe philosophyof the multiscalarpara-
digm, the structure of multiscalar programs, and the
hardwarearchitectureof a multiscalarprocessor. We also
discusseaeveralissuesrelatedto the performanceof a mul-
tiscalar processor,and comparedthe multiscalar paradigm
with otherlILP processingaradigms.Finally, we carriedout
a performance evaluation of several multiscalar
configurationon anensemblef well-knownbenchmarks.

The performanceesultspresentedn this paper,in our
opinion, only hint at the possibilities of the multiscalar
approach. As we investigatethe dynamicsof multiscalar
execution,we continueto evolve the compilerandto better
understandts interactionwith the hardware. At presentwe
optimistically view performanceimpedimentsas problems
for which we havenot yet developedsolutions. Our expecta-
tion is that with improved software support, and more
streamlinechardware multiscalarprocessorsill be ableto
extractlevels of ILP that are far beyondthe capabilitiesof
existingparadigms.(We planto makeupdatedresultsavail-
able on the multiscalar WWW page: URL
http://www.cs.wisc.edu/"mscalar.)

Acknowledgements

This work was supportedn partby NSF grant CCR-
9303030and by ONR grantN00014-93-1-0465.We would
like to thank Jim Smith for his contributionsto the multis-
calarprojectin generalandthis paperin particular.

References

[1] S.E.Breach,T. N. Vijaykumar,andG. S. Sohi,“The
Anatomyof the RegisterFile in a MultiscalarProces-
sor,” Proc. MICRO-27, pp. 181-190, December
1994.

[2] D. K. Chen,H. M. Su,andP. C. Yew, “The Impact
of Synchronizationand Granularity on Parallel Sys-
tems,” Proc. 17th Annual International Symposium
on Computer Architecture, pp.239-248May 1990.

[3] M. Franklin and G. S. Sohi, “ARB: A Hardware
Mechanismfor Dynamic Memory Disambiguation,”
submitted to |EEE Transactions on Computers.

(4]

(5]

(6]

(7]

(8]
9]

(10]

(11]

(12]

M. Franklinand G. S. Sohi, “The ExpandableSplit
Window Paradigmfor Exploiting Fine-GrainParal-
lelism,” in Proc. 19th Annual Symposium on Com-
puter Architecture, QueenslandAustralia, pp.58-67,
May 1992.

M. Franklin, “The Multiscalar Architecture,” Ph.D.
Thesis,ComputerSciencesTechnicalReport#1196,
University of Wisconsin-Madison, Madison, WI
53706,November1993.

R. E. Hank, S. A. Mahlke, R. A. Bringmann,J. C.
Gyllenhaal,andW. W. Hwu, “SuperblockFormation
Using Static ProgramAnalysis,” Proc. MICRO-26,
pp.247-255Decemberl993.

P. Y.-T. Hsu and E. S. Davidson, “Highly Con-
currentScalarProcessing,”Proc. 13th Annual Sym-
posium on Computer Architecture, pp.386-395June
1986.

R. M. Keller, “Look-Ahead Processors,’ACM Com-
puting Surveys, vol. 7, pp.66-72,Decembed 975.

S. A. Mahlke, D. C. Liu, W. Y. Chen,R. E. Hank,

andR. A. Bringmann,“Effective Compiler Support
for PredicatecExecutionUsing the Hyperblock,” in

MICRO-25, Portland,Oregon, pp. 45-54, December
1992.

D. N. Pnevmatikatognd G. S. Sohi, “Guarded Exe-
cutionandBranchPredictionin DynamiclLP Proces-
sors,” in Proc. 21th Annual International Symposium
on Computer Architecture, Chicago, lllinois, pp.
120-129 April 1994.

G. S.TjadenandM. J.Flynn, “Detection andParallel
Executionof Independentnstructions,” IEEE Tran-
sactions on Computers, vol. C-19, pp. 889-895,0c-
tober1970.

T.-Y. YehandY. N. Patt,A Comparisorof Dynam-
ic BranchPredictorsthat Use Two Levelsof Branch
History,” in Proc. 20th Annual International Sympo-
sium on Computer Architecture, SanDiego, Califor-
nia, pp.257-266May 1993.

