
Slipstream Processors:
Improving both Performance and Fault Tolerance

ABSTRACT

Processors execute the full dynamic instruction stream to arrive at
the final output of a program, yet there exist shorter instruction
streams that produce the same overall effect. We propose creating
a shorter but otherwise equivalent version of the original program
by removing ineffectual computation and computation related to
highly-predictable control flow. The shortened program is run con-
currently with the full program on a chip multiprocessor or simul-
taneous multithreaded processor, with two key advantages:

1) Improved single-program performance. The shorter program
speculatively runs ahead of the full program and supplies the full
program with control and data flow outcomes. The full program
executes efficiently due to the communicated outcomes, at the
same time validating the speculative, shorter program. The two
programs combined run faster than the original program alone.
Detailed simulations of an example implementation show an aver-
age improvement of 7% for the SPEC95 integer benchmarks.

2) Fault tolerance. The shorter program is a subset of the full pro-
gram and this partial-redundancy is transparently leveraged for
detecting and recovering from transient hardware faults.

1.  INTRODUCTION
A conventional processor executes the full dynamic instruction
stream to arrive at the final output of the program. Theslipstream
paradigm proposes that only a subset of the original dynamic
instruction stream is needed to make full, correct, forward progress
[25]. Unfortunately, we cannot know for certain what dynamic
instructions can be validly skipped. Creating a shorter, equivalent
program is speculative — ultimately, it must be checked against
the full program to verify it produces the same overall effect.

Therefore, the operating system creates two redundant processes,
i.e., the user program is instantiated twice and each instance has its

own context. The two redundant programs execute simultaneously
on a single-chip multiprocessor (CMP) [20] or on a simultaneous
multithreaded processor (SMT) [37]. One of the programs always
runs slightly ahead of the other. The leading program is called the
advanced stream, or A-stream, and the trailing program is called
theredundant stream, or R-stream. Hardware monitors the trailing
R-stream and detects 1) dynamic instructions that repeatedly and
predictably have no observable effect (e.g., unreferenced writes,
non-modifying writes) and 2) dynamic branches whose outcomes
are consistently predicted correctly. Future dynamic instances of
the ineffectual instructions, branch instructions, and the computa-
tion chains leading up to them are speculatively bypassed in the
leading A-stream — but only if there is high confidence correct
forward progress can still be made, in spite of bypassing the
instructions.

The much-reduced A-stream is sped up because it fetches, exe-
cutes, and retires fewer instructions than it would otherwise. Also,
all values and branch outcomes produced in the leading A-stream
are communicated to the trailing R-stream. Although the R-stream
is not reduced in terms of retired instructions, it has an accurate
picture of the future and fetches/executes more efficiently. In sum-
mary, the A-stream is sped up because it is shorter and the
R-stream is sped up because it receives accurate predictions from
the A-stream.The two redundant programs combined run faster
than either can alone.

The A-stream’s outcomes are used only aspredictionsto speed up
the R-stream. But ultimately, the same information is redundantly
and independently computed by the R-stream. This is crucial
because the A-stream occasionally (but infrequently) bypasses
computation that should not have been bypassed, and it no longer
makes correct forward progress. The R-stream can detect devia-
tions because its redundantly-computed outcomes differ from the
A-stream’s outcomes. And the checks are already in place if the
existing design implements conventional branch and value predic-
tion [24]. When the A-stream deviates, the architectural state of the
R-stream is used to selectively recover the corrupted architectural
state of the A-stream.

An analogy to the slipstream paradigm (and the source of its name)
is “slipstreaming” in stock-car racing (e.g., NASCAR) [23]. At
speeds in excess of 190 m.p.h., high air pressure forms at the front
of a race car and a partial vacuum forms behind it. This creates
drag and limits the car’s top speed. A second car can position itself
close behind the first (a process calledslipstreamingor drafting).
This fills the vacuum behind the lead car, reducing its drag. And
the trailing car now has less wind resistance in front (and by some
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accounts, the vacuum behind the lead car actually helps pull the
trailing car). As a result, both cars speed up by several m.p.h.: the
two combined go faster than either can alone.

Similarly, the A-stream and R-stream mutually improve one
another’s performance. The A-stream could not be accurately
reduced without the trailing R-stream. And the R-stream is helped
along in the slipstream (control and data flow outcomes) of the
A-stream. The user perceives an overall speedup because both pro-
grams finish earlier (the R-stream finishes just after the A-stream,
so the R-stream determines when the user’s program is done). The
amount of performance improvement depends on the nature and
amount of reduction in the A-stream. Slipstreaming also relies on
proper resource allocation between the two programs (e.g., dedi-
cated processors in a CMP or careful fetch/issue scheduling in an
SMT processor).

In addition to potential performance improvements, slipstreaming
provides fault-tolerant capabilities. The trends of very high clock
speeds and very small transistors may make the entire chip prone
to transient faults [29], and there is renewed interest in fault-toler-
ant architectures forcommodity, high-performancemicroproces-
sors [24,2,22].

Slipstream processors provide substantial but incomplete fault cov-
erage, specifically, faults that affect redundantly-executed instruc-
tions are detectable and recoverable. Not all instructions are
redundantly-executed because the A-stream is a subset of the
R-stream, and this opens up opportunities for dynamically and
flexibly trading performance and fault coverage. A transient fault,
whether it affects the A-stream, the R-stream, or both streams, is
transparently detected as a “misprediction” by the R-stream
because the communicated control and data flow outcomes from
the A-stream will differ from the corresponding outcomes in the
R-stream. Fault detection/recovery is transparent because transient
faults are indistinguishable from prediction-induced deviations.

In summary, this paper makes the following contributions.

• We suggest speculatively creating a shorter but otherwise
equivalent version of the program, exploiting 1) computation
that repeatedly and predictably has no effect on the final pro-
gram output and 2) computation that influences highly-predict-
able branches.

• The shortened program is run in parallel with the full program
on a single-chip multiprocessor or simultaneous multithreaded
processor and, by communicating information from the short-
ened program to the full program, single-program execution
time is potentially improved and substantial transient fault cov-
erage is achieved.

• This work is part of a larger effort using multiple on-chip,
architectural contexts in new ways. CMP/SMT processors are
strategic because they effectively utilize billion-transistor chips
with relativeease, integrating parallelism that already exists at
the system-level onto a single die. Our goal is threefold: 1) pro-
vide more functionality in the same CMP/SMT processor —
not just throughput-oriented parallelism, but also fault toler-
ance and improved single-program performance (for example),
2) provide the new functions in a non-intrusive way, by placing
hardware “around” the existing components and leveraging, as
much as possible, the existing design, and 3) enable the
user/operating system to flexibly and dynamically choose from

among several modes of operation, e.g., throughput mode, sin-
gle-program-speedup mode, or reliable mode.

2.  SLIPSTREAM MICROARCHITECTURE
A slipstream processor requires two architectural contexts, one for
each of the A-stream and R-stream, and new hardware for direct-
ing instruction-removal in the A-stream and communicating state
between the threads. A high-level block diagram of a slipstream
processor implemented on top of a two-way chip multiprocessor is
shown in Figure 1 (an SMT processor could be used instead). The
shaded boxes show the original processors comprising the multi-
processor. Each is a conventional superscalar/VLIW processor
with a branch predictor, instruction and data caches, and an execu-
tion engine — including the register file and either an in-order
pipeline or out-of-order pipeline with reorder buffer (we assume
the latter in the rest of the paper).

There are four new components to support slipstream processing.

1. The instruction-removal predictor, or IR-predictor, is a modi-
fied branch predictor. It generates the program counter (PC) of
the next block of instructions to be fetched in the A-stream.
Unlike a conventional branch predictor, however,the predicted
next PC may reflect skipping past any number of dynamic
instructions that a conventional processor would otherwise
fetch and execute. In this paper, the IR-predictor is built on top
of a conventional trace predictor [13] but other designs are pos-
sible (e.g., using conventional single-branch predictors).

2. Theinstruction-removal detector, or IR-detector, monitors the
R-stream and detects instructions that could have been
removed from the program. The IR-detector conveys to the
IR-predictor that particular instructions should potentially be
skipped by the A-stream when they are next encountered.
Repeated indications by the IR-detector build up confidence in
the IR-predictor, and the predictor will remove future instances
from the A-stream.

3. Thedelay bufferis used to communicate control and data flow
outcomes from A-stream to R-stream (the R-stream is
“delayed” with respect to the A-stream [24]).

4. The recovery controllermaintains the addresses of memory
locations that are potentially corrupted in the A-stream context.
A-stream context is corrupted when the IR-predictor removes
instructions that should not have been removed. Unique
addresses are added to and removed from the recovery control-
ler as stores are processed by the A-stream, the R-stream, and
the IR-detector. The current list of memory locations in the
recovery controller is sufficient to recover the A-stream mem-
ory context from the R-stream’s memory context. The register
file is repaired by copying all values from the R-stream’s regis-
ter file.

Note that two kinds of speculation occur in the A-stream. Conven-
tional speculation occurs when branches are predicted and the
branch-related computation has not been removed from the
A-stream. Mispredictions resulting from conventional speculation
are detectable by the A-stream, do not corrupt the A-stream con-
text, and do not involve the recovery controller.

The second type of speculation occurs when the IR-predictor
removes instruction sequences from the A-stream. The A-stream
has no way of detecting whether or not removing the instructions



was correct. Therefore, an incorrect decision by the IR-predictor
can result in corrupted A-stream state. In the remainder of the
paper, we refer to mispredictions by the IR-predictor asinstruc-
tion-removal mispredictions, or IR-mispredictions, distinguishing
this type of misprediction from A-stream-detectable ones.

In Sections 2.1 through 2.3, we describe the above components in
more detail and elaborate on Figure 1. Section 2.1 describes how
the IR-detector and IR-predictor work to create the shorter pro-
gram. Section 2.2 describes the delay buffer and its interfaces to
the A-stream and R-stream. Section 2.3 explains how IR-mispre-
dictions are detected by either the R-stream or IR-detector, and
how the A-stream context is recovered from the R-stream context
with relatively low latency.

2.1  Creating the Shorter Program
The IR-detector monitors past run-time behavior and detects
instructions that could have been removed, and might possibly be
removed in the future. This information is conveyed to the IR-pre-
dictor, and after sufficient repeated indications by the IR-detector,
the IR-predictor removes future instances of the instructions.

2.1.1  IR-predictor

In this paper, the IR-predictor is built on top of a conventional trace
predictor [13]. A trace predictor divides the dynamic instruction
stream intotraces— large dynamic instruction sequences (e.g., 16
to 32 instructions) typically containing multiple taken/not-taken
branch instructions. The next trace in the dynamic instruction
stream is predicted using a path history of past traces.

A conventional trace predictor works as follows [13]. A trace is
uniquely identified by a starting PC and branch outcomes indicat-
ing the path through the trace, and the combination of start PC plus
branch outcomes is called atrace id. An index into a correlated

prediction table is formed from the sequence of past trace ids,
using a hash function that favors bits from more recent trace ids
over less recent trace ids. Each entry in the correlated prediction
table contains a trace id and a 2-bit counter for replacement. The
predictor is augmented with a second table that is indexed with
only the most recent trace id. The second table requires a shorter
learning time and suffers less from aliasing pressure. Together, the
two tables form a hybrid predictor that outputs the predicted trace
id of the next trace.

To form an IR-predictor, three pieces of information are added to
each table entry.

1. Instruction-removal bit vector(ir-vec). This bit vector indi-
cates which instructions in the predicted trace to remove from
the A-stream. An instruction is removed if its corresponding
bit in their-vec is set.

2. Intermediate program counter values. To fetch a trace from a
conventional instruction cache, the trace is decomposed into
multiple sequential fetch blocks (fetch blocks are separated by
taken branches). A trace id only specifies the PC of the first
fetch block and a series of embedded branch predictions. PCs
of embedded fetch blocks are not available. Conventionally,
embedded fetch block PCs are produced using pre-decoded
branches in the branch target buffer (BTB) and/or instruction
cache. If this approach is used unmodified, the number of
dynamic instructions fetched in the A-stream is not reduced.
The ir-vec itself is only useful for removing instructions after
fetch and before decode. To remove A-stream instructions
before they are fetched, each predictor entry contains interme-
diate program counter values needed by the instruction fetch
unit to skip over chunks of the trace.

3. Confidence mechanism. A single resetting confidence counter
[12] limits instruction-removal to cases where it is likely to be
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correct. The counter is incremented when a newly-generated
{ trace-id, ir-vec} pair from the IR-detector matches the old
{ trace-id, ir-vec} pair at the entry being updated. If the new
pair does not match the old pair, the counter is reset to zero.
When the confidence counter has reached a certain threshold,
their-vecand intermediate PCs are used to remove instructions
from the A-stream. Otherwise, the instruction-removal infor-
mation is ignored and all instructions in the trace are
fetched/executed.

Figure 2 shows an example of A-stream instruction fetching. A
single length-32 dynamic trace is shown. The trace is decomposed
into five fetch blocks separated by taken (T) branches. Not-taken
(NT) branches are embedded within fetch blocks. The fetch blocks
are labeled with PCsA through E. Each box is an individual
instruction, and shaded boxes indicate predicted-removable
instructions. In the example, the instruction cache can supply up to
16 sequential instructions per cycle.

• Conventional fetching: The trace predictor stores only the trace
id { A, NT-T-T-NT-T-T}. PCs B, C, D, and E are produced
using the BTB/instruction cache and multiple branch predic-
tions.Five fetch cyclesare expended and a total of 32 instruc-
tions are fetched, decoded, and executed.

• Fetching using the IR-predictor: The trace predictor addition-
ally stores anir-vec {0011...} and intermediate PCsX andY.
Pre-decoded targets from the BTB/instruction cache are
ignored. Onlythree fetch cyclesare expended: 1 cycle for each
of the blocks starting at PCA, PCX, and PCY. 18 instructions
are fetched (blockA: 8, blockX: 7, blockY: 3). Among these,
the ir-vec is used to collapse the number of instructions
decoded/executed down to 12 instructions.

Note that a compressed version of their-vec is stored in place
of the full ir-vec, in order to properly line up removal bits with
corresponding instructions in the new fetch blocks {A, X, Y}.

Figure 2: A-stream instruction fetching example.

2.1.2  IR-detector

There are potentially many ways of speculatively creating a shorter
program. Here, we consider two cases of ineffectual computation
— writes that are never referenced (dynamic dead code) and writes
that do not modify the state of a location [14,15,18,19,38] — as
well as branch-predictable computation.

• Some instructions write a value to a register or memory loca-
tion and the value is overwritten before ever being used. Such
instructions, and the computation chains leading up to these
instructions, have no effect on final program state.

• Some instructions write the same value into a register or mem-
ory location as already exists at that location. Such instruc-
tions, and the computation chains leading up to them, have no
effect on final program state because their writes were not truly
modifications.

• Certain control flow in the program may be so predictable that
it appearsdeterministic. With a high level of confidence, we
may choose to remove the branches involved, along with the
computation chains feeding the branches.

To detect candidate instructions for removal, the R-stream is moni-
tored as it retires instructions. Retired instructions and values are
used to 1) construct a small reverse dataflow graph (R-DFG) and
2) detect any of the three triggering conditions for instruction
removal, i.e., unreferenced writes, non-modifying writes, and
branch instructions. When a triggering condition is observed, the
corresponding instruction is selected for removal. Then, the cir-
cuits forming the R-DFG back-propagate the selection status to
predecessor instructions. A predecessor instruction is also selected
for removal if all of its dependent instructions are known and they
have been selected for removal. All dependent instructions are
known when the consumed value is killed, i.e., when there is
another write to the same register/memory location.

The IR-detector is shown in Figure 3. The size of the R-DFG is a
single trace (32 instructions in this paper), resulting in practical
back-propagation circuitry. Although the scope of back-propaga-
tion is limited to a single trace, the IR-detector tracks multiple
traces. Maintaining multiple traces at the same time allows a much
larger scope for killing values (observing another write to the same
location) without increasing the size/complexity of each individual
R-DFG.

The operand rename table in Figure 3 is similar to a register
renamer but it can track both memory addresses and registers. It
performs data dependence checking for merging new instructions
into the R-DFG and also detects unreferenced writes and
non-modifying writes. Memory entries are invalidated and
reclaimed, and register entries simply invalidated, when the last
producer of the location is no longer within the analysis scope (the
producer field facilitates this).

A single entry of the operand rename table is shown in Figure 3,
for demonstration. To merge an instruction into its R-DFG, each
source operand is checked in the rename table to get the most
recent producer of the value (check thevalid bit and producer
field). The consumer instruction uses this information to establish
connections with its producer instructions, i.e., set up the
back-propagation logic. If the producer is not in the same trace, no
connection is made. Theref bit is set for each source operand indi-
cating the values have been used.

When an instruction writes a register/memory location, the corre-
sponding operand rename table entry is checked to detect
non-modifying/unreferenced writes and to kill values, as follows.

1. If the valid bit is set, and the current instruction produced the
same value as indicated in thevalue field, then the current
instruction is a non-modifying write. The current instruction is
selected for removal as it is merged into the R-DFG.

2. If thevalid bit is set and the new and old values do not match,
the old producer indicated by theproducerfield is killed. Fur-
thermore, if theref bit is not set, then the old producer is an
unreferenced write and is selected for removal.

After these checks are performed, all fields are updated to reflect
the new producer instruction unless it is a non-modifying write
(the old producer remains “live” in this case).
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All branch instructions are selected for removal when they are
merged into the R-DFG. This means all branches are candidates
for removal, and the confidence counter associated with each trace
prediction (Section 2.1.1) makes the actual decision to remove
branches.

Finally, any other instruction may be selected for removal if it has
been killed, all of its consumer instructions are in the same trace,
and all consumers are selected for removal. The R-DFG
back-propagation circuitry handles this case.

When a trace becomes the oldest trace in the analysis scope, an
instruction-removal bit vector (ir-vec) is formed based on the
selected instructions within the trace. Intermediate PCs for skip-
ping chunks of the trace are also computed. The trace id,ir-vec,
and intermediate PCs are loaded into the IR-predictor
(Section 2.1.1) and the R-DFG circuitry is reclaimed for a new
trace.

2.1.3  Discussion of Trace-Based Instruction-Removal

Instruction-removal in this paper is trace-based, meaning 1) confi-
dence is measured for a trace as a whole (single confidence
counter), and 2) back-propagation is confined to a trace. Both con-
ditions guarantee dependence chains are removed as a whole, or
not at all. Doing otherwise risks removing a producer instruction
but not the corresponding consumer instruction. Even if both pro-
ducer and consumer are always removable, in practice the IR-pre-
dictor could remove one and not the other if separate confidence
counters are maintained (e.g., table aliasing can displace the con-
sumer’s counter). This scenario results in many spurious
IR-mispredictions. It is explicitly avoided by maintaining a single
confidence counter per trace and confining back-propagation to a
trace.

Trace-based instruction-removal has serious drawbacks, however.

1. Often, there are stable and unstable removal patterns within a
trace. The stable patterns correspond to dependence chains that
are consistently removable. Unrelated, unstable patterns dilute
overall confidence andno instructions are removed as a result.

2. Traces themselves are unstable if they embed unpredictable
branches. When a trace is unstable, its confidence counter is
rarely saturated. Thus, removable instructions before and after
the difficult branch are not removed in practice. Terminating
traces at difficult branches can reduce the number of unstable
traces. But accurate trace prediction relies on a consistent
(static) trace selection policy.

3. Confining back-propagation to a trace limits the amount of
instruction-removal.

We believediluted confidenceand unstable tracesare largely
responsible for modest A-stream reduction in some of our bench-
marks (Section 5). We are currently developing a more effective
instruction-removal mechanism,not available in this paper: 1) it
measures confidence for instructions individually, so unrelated
instructions do not dilute confidence; 2) traces are not used, so
trace stability is not an issue; 3) chains are not confined within a
small region, except to reduce R-DFG complexity if needed; 4)
dependence chains tend to be removed together even though
per-instruction confidence counters are used.

2.2  Delay Buffer
The delay buffer is a simple FIFO queue that allows the A-stream
to communicate control flow and data flow outcomes to the
R-stream. During normal operation, the A-stream pushes both a
completehistory of branch outcomes and apartial history of oper-
and values onto the delay buffer. This is shown in Figure 1 with a
solid arrow from the reorder buffer of the A-stream (left-most pro-
cessor) to the delay buffer. Value history is partial because only a
subset of the program is executed by the A-stream. Complete con-
trol history is available, however, because the instruction-removal
process involves predicting all control flow first and then modify-
ing it so that the A-stream may skip instructions (the job of the
combined IR-predictor/trace predictor, described in Section 2.1.1).

The R-stream pops control and data flow information from the
delay buffer. This is shown in Figure 1 with solid arrows from
delay buffer to the instruction cache and execution core of the
R-stream (right-most processor). Branch outcomes from the delay
buffer are routed to the instruction cache to direct instruction fetch-
ing. Source operand values and load/store addresses from the delay
buffer are merged with their respective instructions after the
instructions have been fetched/renamed and before they enter the
execution engine. To know which values/addresses go with which
instructions, the delay buffer also includes information about
which instructions were skipped by the A-stream (for which there
is no data flow information available).

Notice that neither the A-stream nor the R-stream use the conven-
tional branch predictors in their respective processors. This is indi-
cated with an open-switch symbol between branch predictors and
instruction caches in Figure 1. As already mentioned, the IR-pre-
dictor/trace predictor provides all branch predictions to the
A-stream. For branch-related computation that is executed in the
A-stream, the corresponding branch predictions are validated —
although validation itself may be speculative due to removal of
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other, presumed-ineffectual computation. For branch-related com-
putation that is bypassed, branch predictions are presumed correct.
Via the delay buffer, the R-stream sees a complete branch history
as determined by the A-stream — whether it is correct or not —
and the conventional branch predictor is not used.

The delay buffer contents can be summarized as follows.

• Control flow: Control flow outcomes are encoded as the
sequence of trace ids and correspondingir-vecs. The ir-vec,
which encodes instructions not executed in the A-stream, is
used by the R-stream to match data flow outcomes with
instructions.

• Data flow: There is an entry in the data flow buffer for each
instruction executed in the A-stream. An entry contains oper-
and register names and values and load/store addresses.

2.3  IR-misprediction Detection and Recovery
An instruction-removal misprediction, or IR-misprediction, occurs
when A-stream instructions were removed that should not have
been. The A-stream has no way of detecting the IR-misprediction,
therefore, it continues instruction retirement and corrupts its archi-
tectural state. Two things are required to recover from an
IR-misprediction. First, the IR-misprediction must be detected
and, second, the corrupted state must be pinpointed for efficient
recovery actions.

We break down IR-mispredictions into two types, the first type is
removal of mispredicted branches and the second type is removal
of effectual writes.

1. Removal of mispredicted branches. The trace predictor may
mispredict a branch and the IR-predictor removes the branch
from the A-stream. The R-stream will detect this IR-mispre-
diction because the branch outcome from the delay buffer will
differ from the R-stream’s computed branch outcome. I.e., it
appears as a branch misprediction in the R-stream.

2. Removal of effectual writes. The IR-predictor predicts a store
instruction is an unreferenced write but the store is actually ref-
erenced in the future (or the IR-predictor predicts the store is a
non-modifying write but it actually produces a new value at the
location). Removing the store instruction causes dependent
loads to load an incorrect value, uses of the load value will pro-
duce more incorrect values, etc. The first incorrect source oper-
and value popped from the delay buffer will be detected by the
R-stream as a value misprediction — in our implementation,
source operand value prediction is used [17].

This kind of IR-misprediction may be detected by the R-stream
well after the store was initially removed. The IR-detector can
detect these IR-mispredictions much sooner by comparing its
computedir-vecs against the corresponding predictedir-vecs
— if they differ, computation was removed that should not
have been. Thus, the IR-detector serves the dual-role of updat-
ing the IR-predictor and checking for IR-mispredictions.
Although checking by both the R-stream and IR-detector is
redundant, it will become clear why final checking by the
IR-detector isrequired when we explain recovery, below.

When an IR-misprediction is detected, the reorder buffer of the
R-stream is flushed. The R-stream architectural state now repre-

sents a precise point in the program to which all other components
in the processor are re-synchronized. The trace predictor/IR-pre-
dictor is backed up to the precise program counter, the delay buffer
is flushed, and the reorder buffer of the A-stream is flushed and its
program counter set to that of the R-stream.

All that remains is restoring the corrupted register and memory
state of the A-stream so it is consistent with the R-stream. Because
register state is finite, the entire register file of the R-stream is cop-
ied to the A-stream register file. The movement of data (both regis-
ter and memory values) occurs via the delay buffer, in the reverse
direction, as shown with dashed arrows in Figure 1.

During normal operation, therecovery controllerreceives control
signals and the addresses of store instructions from the A-stream,
the R-stream, and the IR-detector, as shown in Figure 1. The con-
trol signals indicate when to start or stop tracking a memory
address (only unique addresses need to be tracked). After detecting
an IR-misprediction, stores may either have to be “undone” or
“done” in the A-stream. These two cases are described below.

• The addresses of stores retired by the A-stream but not yet
checked/retired by the R-stream will need to be restored after
detecting an IR-misprediction. In effect, the A-stream store
must be “undone” since the R-stream has not yet performed the
store. These stores only need to be tracked between the time
they are retired from the A-stream and the companion (redun-
dant) stores are retired from the R-stream, as shown in Figure 4
(“store 1”).

• Although all IR-mispredictions areeventuallydetectable as a
value misprediction in the R-stream, a virtually unbounded
number of addresses would need to be tracked by the recovery
controller if we did not place a “time limit” on the detection of
IR-mispredictions. This is why the IR-detector compares pre-
dicted ir-vecsagainst computedir-vecs. The recovery control-
ler tracks addresses of stores retired in the R-stream and
skipped in the A-stream, only until the IR-detector verifies that
the stores are truly ineffectual, as shown in Figure 4 (“store
2”). When an IR-misprediction is detected, all unverified, pre-
dicted-ineffectual stores are “done” in the A-stream by copying
data from the redundant locations in the R-stream.

3.  TRANSIENT FAULT TOLERANCE
A formal analysis of the fault tolerance of slipstream processors is
left for future work. For now, we informally analyze three key sce-
narios, shown in Figure 5, to better understandpotential fault tol-
erance. In Figure 5, the horizontal lines represent the dynamic
instruction streams of the A-stream and R-stream, with older
instructions on the left. For this simple analysis, we assume only a
single fault occurs and that the fault is ultimately manifested as an
erroneous value. A single fault can affect instructions in both
streams simultaneously. This is not a problem because the two
redundantly-executed copies of an instruction execute at different
times (time redundancy) [24], therefore, a single fault that affects
both streams will affect different instructions. Since only one copy
of an instruction is affected by a fault, we arbitrarily choose the
R-stream copy, indicated with X’s in Figure 5. An X indicates the
first erroneous instruction in program order.

Scenario #1 in Figure 5 shows the A-stream and R-stream execut-
ing redundantly, i.e., all instructions overlap and have the same
data flow. The fault is detectable because the operands of the first



erroneous instruction differ between A-stream and R-stream.
Without more information, however,the fault is indistinguishable
from an IR-misprediction. Under the circumstances, the processor
must assume an IR-misprediction since misspeculation is by far
the common case. We point out three successively stronger fault
tolerance claims.

1. If we assume a fault cannot flip bits in the R-stream’sarchitec-
tural state, then it does not matter that faults and IR-mispredic-
tions are indistinguishable. Recovery succeeds using the
R-stream state. Under this model, faults in the pipeline are
transparently recoverable. Faults that hit the R-stream register
file and data cache are unrecoverable, and worse, undetectable
as a fault.

2. If all IR-predictions prior the first erroneous instruction have
been verified, then the source of error is known to be a fault.
Software is invoked to diagnose the system and perform recov-
ery operations (e.g., restart). But we default back to (1) if there
are prior unresolved IR-predictions.

3. ECC can be used to protect the R-stream register file and data
cache, in which case all transient faults within scenario #1 are
transparently recoverable.

Scenario #2 in Figure 5 shows a region of the program that is not
executed redundantly (the A-stream bypassed these instructions).
A transient fault in the R-stream is undetectable because there is
nothing to compare the erroneous values with. Although an error
may be detected in later, redundantly-executed instructions, the
R-stream architectural state is already corrupted and the system is
unaware of this fact.

Scenario #3 shows the A-stream diverging from the R-stream due
to an IR-misprediction, and a transient fault occurs after the diver-
gent point. The IR-misprediction is detected and subsequent erro-
neous instructions are flushed before the fault can do damage.

In summary, slipstream processors potentially improve the fault
tolerance of the chip. The system transparently recovers from tran-
sient faults affecting redundantly-executed instructions.

4.  SIMULATION ENVIRONMENT
We developed a detailed execution-driven simulator of a slipstream
processor. The simulator faithfully models the architecture
depicted in Figure 1 and outlined in Section 2: the A-stream pro-
duces real, possibly incorrect values/addresses and branch out-
comes, the R-stream and IR-detector check the A-stream and
initiate recovery actions, A-stream state is recovered from the
R-stream state, etc. The simulator itself is validated via a func-
tional simulator run independently and in parallel with the detailed
timing simulator [33]. The functional simulator checks retired
R-stream control flow and data flow outcomes.

The Simplescalar [3] compiler and ISA are used. Binaries are com-
piled with -O3 level optimization. The Simplescalar compiler is
gcc-based and the ISA is MIPS-based; as a result, programs inherit
any inefficiencies of the gnu compiler and MIPS ISA. We used the
SPEC95 integer benchmarks, shown in Table 1, for evaluation.
Benchmarks were run to completion.

Microarchitecture parameters are enumerated in Table 2. The CMP
is composed of two conventional 4-way superscalar processors,
each with private instruction and data caches and a 64-entry ROB
(a shared level-two cache always hits). A large IR-predictor/trace
predictor is used for accurate instruction removal. For all experi-
ments, the IR-predictor/trace predictor uses length-32 traces and a
resetting-counter confidence threshold of 32. The IR-detector has a
scope of 8 length-32 traces. The delay buffer length is 256 instruc-
tions. The recovery controller tracks any number of store
addresses, although we observe not too many outstanding
addresses in practice. The recovery latency (after the IR-mispre-

ROB of A-stream Delay Buffer ROB of R-stream IR-detector

recovery controller

(possible store-undo)
add store 2

(possible store-do)
remove store 1add store 1

remove store 2

store 1: executed in A-stream
store 2: skipped in A-stream

Figure 4: Tracking memory addresses for potential recovery.

Scenario #2

XR-stream

A-stream

X

Scenario #3

X

Scenario #1

Figure 5: Transient fault scenarios.

Table 1: Benchmarks.

benchmark input dataset instr. count

compress 40000 e 2231 248 million
gcc -O3 genrecog.i -o genrecog.s 117 million
go 9 9 133 million
jpeg vigo.ppm 166 million
li test.lsp (queens 7) 202 million
m88ksim -c < ctl.in (dcrand.big) 121 million
perl scrabble.pl < scrabble.in (dictionary) 108 million
vortex vortex.in (persons.250, bendian.*) 101 million



diction is detected) is 5 cycles to startup the recovery pipeline, fol-
lowed by 4 register restores per cycle, and lastly 4 memory restores
per cycle. As there are 64 general purpose integer and floating
point registers, the minimum recovery latency is 21 cycles (5 +
64/4) if no memory locations are restored.

5.  RESULTS
The performance of three models is presented.

• SS(64x4) — A single copy of the program is run on one con-
ventional 4-way superscalar processor with 64 ROB entries.

• SS(128x8) — A single copy of the program is run on one con-
ventional 8-way superscalar processor with 128 ROB entries.

• CMP(2x64x4) — This is a slipstream processor using a CMP
composed of two SS(64x4) cores.

For fair and direct comparisons,the same trace predictor is used
for accurate and high-bandwidth control flow prediction in all
three processor models. Of course, only CMP(2x64x4) uses an
IR-predictor on top of the trace predictor. Performance is measured
in retired instructions per cycle (IPC). IPC for the slipstream pro-
cessor is computed as the number of retired R-stream instructions
(i.e., the full program, counted only once) divided by the number
of cycles for both the A-stream and R-stream to complete (total
execution time).

The graph in Figure 6 shows the IPC improvement of
CMP(2x64x4) with respect to SS(64x4). (For a point of reference,
the IPC of SS(64x4), our base model, is given in Table 3.)
CMP(2x64x4) improves performance by 7% on average. The IPC
of half of the benchmarks improve by more than 7% —li , vortex,
perl, andm88ksimimprove by 7%, 7%, 16%, and 20%, respec-
tively — while gcc improves by 4% and the other three show little
or no improvement. The significance of this result is that a second,
otherwise unusedprocessor on the chip can be exploited for
improving single-program performance.

The performance improvement due to doubling the window size
and issue bandwidth of the superscalar processor is shown in
Figure 7. On average, SS(128x8) improves performance by 28%.
We feel the slipstream paradigm has competitive potential.

1. With the initial and relatively unexploredslipstream imple-
mentation, we achieve one-fourth the IPC-performance gains
of the larger superscalar processor. And if superscalar com-
plexity is considered, then a CMP composed of two small
superscalar processors will potentially have a faster cycle time
than one large superscalar processor.

2. A CMP with slipstreaming provides more functionality and
flexibility than a single superscalar processor. For example,
depending on the load of the machine, the extra processor may
be used to run another job or cooperate with the other proces-
sor on a single job.

3. The peak bandwidth of CMP(2x64x4) is only 4 IPC, hence
there is less room for improvement than with SS(128x8). This
suggests implementing a slipstream processor using an 8-wide
SMT processor, which we leave for future work.

Figure 6: Performance of CMP(2x64x4) (slipstream processor)
with respect to SS(64x4).

Table 2: Microarchitecture configuration.

single processor

instruction
cache

fetch bandwidth:

• 2-way interleaved to fetch full cache block

• fetch past multiplenot-taken branches in single cycle

size/assoc/repl = 64kB/4-way/LRU

line size = 16 instructions

miss penalty = 12 cycles

data cache

size/assoc/repl = 64kB/4-way/LRU

line size = 64 bytes

miss penalty = 14 cycles

superscalar
core

reorder buffer (default): 64 entries

dispatch/issue/retire bandwidth (default): 4-way

n fully-symmetric function units (n = issue bandwidth)

n loads/stores per cycle (n = issue bandwidth)

execution
latencies

address generation = 1 cycle

memory access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

slipstream components

IR-predictor

trace predictor (hybrid):

• 216-entry path-based pred.: 8 traces in path history

• 216-entry simple pred.: 1 trace in path history

resetting-counter confidence threshold = 32

IR-detector
trace length (R-DFG size) = 32 instructions

scope = 8 traces/256 instructions

delay buffer
data flow buffer: 256 instruction entries

control flow buffer: 128 {trace-id, ir-vec} pairs

recovery
controller

number of outstanding store addresses = unconstrained

recovery latency (after IR-misprediction detection):

• 5 cycles to start up recovery pipeline

• 4 register restores per cycle (64 regs performed first)

• 4 memory restores per cycle (mem performed second)

• ∴ minimum latency (no memory) = 21 cycles
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Figure 7: Performance of SS(128x8) with respect to SS(64x4).

The uppermost graph in Figure 8 shows the fraction of dynamic
instructions removed from the A-stream for each of the bench-
marks. Each bar is broken down into the sources of instruc-
tion-removal.

• BR: branch instruction.

• WW: A write followed by awrite to the same location, with no
intervening reference.

• SV: Writing thesamevalue to a location.

• P:{BR | WW | SV}: Instructions that were removed due to
back-propagation from other removed instructions. These
instructionsinherit any combination of BR, WW, and SV sta-
tus.

The number of removed instructions correlates closely with perfor-
mance improvement. Nearly 50% ofm88ksim’s instructions were
removed and it has the largest performance improvement (20%).
Successively fewer instructions were removed inperl, vortex, li ,
and gcc — 20%, 16%, 10%, and 8% of all instructions were
removed, respectively — and performance reflects this. On aver-
age, the three largest sources of instruction removal are BR (33%
of the removed instructions), SV (30%), and P:BR (27%). We have
observed that WW and SV tend to occur simultaneously and prior-
ity is given to SV when accounting.

The lowermost graph in Figure 8 shows what happens when only
branch instructions (BR) and their computation chains (P: BR) are
candidates for removal, i.e., ineffectual writes are not removed.
This is relevant because branch predictability is more likely to be
influenced by algorithm than by compiler, whereas the compiler
may have more influence on ineffectual writes. Interestingly, the
fraction of removed instructions increases substantially for all
benchmarks exceptm88ksim, whose fraction drops from half to
one-quarter. The results are counterintuitive because there is less
opportunity for instruction-removal when ineffectual writes are not
considered.Diluted confidence, discussed in Section 2.1.3, may
explain the results. With fewer candidate instructions for removal,
there is also less chance that unrelated instructions dilute the confi-
dence of consistently-removable branches. Overall confidence is

higher and more instructions are removed in practice, despite less
total opportunity. The average IPC improvement with only
branch-removal remains at 7%, but per-benchmark IPCs change:
perl (16%),li  (11%),m88ksim (11%),vortex (7%), andgcc (5%).

Figure 8: Breakdown of removed A-stream instructions.

Branch mispredictions per 1000 instructions for each benchmark is
provided in Table 3. A key observation is that instruction-removal
is most successful for highly-branch-predictable benchmarks. The
gccbenchmark is an interesting case. Although its branch mispre-
diction rate is similar toli ’s, IR-prediction is more successful with
li . Unstable traces, discussed in Section 2.1.3, may explain the dis-
crepancy. We hypothesizegcc, more than li , has consis-
tently-removable branches and unpredictable branches grouped
together in traces. The traces are unstable and the consis-
tently-removable branches are not removed in practice. Using a
non-trace-based IR-predictor could fix the problem.

The trace predictor’s update latency (which is accurately modeled)
increases with slipstreaming. Comparing the second and third rows
of Table 3, the effect on branch misprediction rate is not too
severe, in fact, delayed updates reduce the rate slightly forli ,
m88ksim, andperl. The confidence threshold of 32 results in fewer
than 0.05 IR-mispredictions per 1000 instructions. And the aver-
age IR-misprediction penalty is at most 26 cycles, close to the min-
imum of 21 cycles, which implies only a handful of memory
locations need to be restored after an IR-misprediction.
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6.  RELATED WORK
Advanced-stream/Redundant-stream Simultaneous Multithreading
(AR-SMT) [24] is based on the realization that microarchitecture
performance trends and fault tolerance are related. Time redun-
dancy — running a program twice to detect transient faults — is
cheaper than hardware redundancy but it doubles execution time.
AR-SMT runs the two programs simultaneously [37] but delayed
(via the delay buffer), reducing the performance overhead of time
redundancy. Results are compared by communicating all retired
A-stream results to the R-stream, and the R-stream performs the
checks. Here, the R-stream leverages speculation concepts [17] —
the A-stream results can be used as ideal predictions. The R-stream
fetches/executes with maximum efficiency, further reducing the
performance overhead of time redundancy. And the method for
comparing the A-stream and the R-stream is conveniently in place,
in the form of misprediction-detection hardware. In summary,
AR-SMT leverages the underlying microarchitecture to achieve
broad coverage of transient faults with low overhead, both in terms
of performance and changes to the existing design.

DIVA [2] and SRT [22] are two other examples of fault-tolerant
architectures designed for commodity high-performance micropro-
cessors. DIVA detects a variety of faults,including design faults,
by using a verified checker to validate computation of the complex
processor core. DIVA leverages an AR-SMT technique — the sim-
ple checker is able to keep pace with the core by using the values it
is checking as predictions. SRT improves on AR-SMT in a variety
of ways, including a formal and systematic treatment of SMT
applied to fault tolerance (e.g.,spheres of replication).

Researchers have demonstrated a significant amount of redun-
dancy, repetition, and predictability in general purpose programs
[6,9,10,17,18,19,30,32]. This prior research forms a basis for cre-
ating the shorter program in slipstream processors. A technical
report [25] showed 1) it is possible to ideally construct signifi-
cantly reduced programs that produce correct final output, and 2)
AR-SMT is a convenient execution model to exploit this property.

Tullsen et. al. [36,37] and Yamamoto and Nemirovsky [39] pro-
posed simultaneous multithreading for flexibly exploiting
thread-level and instruction-level parallelism. Olukotun et. al. [20]
motivate using single-chip multiprocessors.

Farcy et. al. [8] proposed resolving branch mispredictions early by
extracting the computation leading to branches. Zilles and Sohi
[41] similarly studied the computation chains leading to mispre-
dicted branches and loads that miss in the level-two cache. They
suggest identifying a difficult subset of the program forpre-execu-
tion [27,28], potentially prefetching branch predictions and cache
lines that would otherwise be mispredictions and cache misses.
Pre-execution typically involves pruning a small kernel from a
larger program region and running it as a prefetch engine [26].
Roth and Sohi [28] developed a new paradigm calledData-Driven
Speculative Multithreadingthat implements pre-execution. Rather

than spawn many specialized kernels on-the-fly, our approach uses
a single,bona fideprogram (A-stream). That is, the A-stream’s
context is persistent and redundant with the R-stream, with several
key advantages. First, we avoid the conceptual and possibly real
complexity of forking private contexts, within which the special-
ized kernels must run. Second, Zilles points out there may be diffi-
culty in binding prefetched predictions to fetched branches [41],
whereas the one-to-one correspondence between redundant
instructions in the A-stream and R-stream avoids this problem
entirely. Third, redundant programs can be exploited for transient
fault tolerance.

Speculative multithreading architectures [e.g.,1,7,21,33,34,35]
speed up a single program by dividing it into speculatively-parallel
threads. The speculation model usesone architectural contextand
future threads are spawned within temporary, private contexts,
each inherited from the preceding thread’s context. Future thread
contexts are merged into the architectural context as threads com-
plete. Our speculation model uses redundant architectural contexts,
so no forking or merging is needed. And strictly speaking, there
are no dependences between the architecturally-independent
threads, rather, outcomes are communicated as predictions via a
simple FIFO queue. Register and memory mechanisms of the
underlying processor are relatively unchanged by slipstreaming
(particularly if there is an existing interface for consuming value
predictions at the rename stage). In contrast, speculative multi-
threading often requires elaborate inter-thread register/memory
dependence mechanisms. Besides performance, using redundant
contexts adds other value to the chip, i.e., fault tolerance. We are
not advocating one kind of multithreading model over another,
rather, we are proposing another alternative and pointing out its
novel implications.

Running background threads to perform some function on behalf
of the primary program is increasing in popularity. SSMT [5] is a
generic approach in which a subordinate thread monitors events in
the primary thread (e.g., mispredictions and cache misses) and
adjusts hardware components to compensate and optimize perfor-
mance. Subordinate threads also allow exception handling to pro-
ceed in parallel with code after the excepting instruction [40].

The DataScalar paradigm [4] runs redundant programs on multiple
processor-and-memory cores to eliminate memory read requests.
DataScalar trades relatively inexpensive computing power for
reduced memory traffic.

7.  CONCLUSIONS AND FUTURE WORK
Making effective use of a billion transistors is a major challenge.
Simultaneous multithreading and chip multiprocessing payoff sub-
stantially in this regard, because existing parallelism can be
migrated from the system level to the chip levelrelatively easily.
Even larger payoffs are possible if the same transistors are reused
for single-program performance and functions normally reserved

Table 3: Misprediction measurements.

comp gcc go jpeg li m88k perl vortex

SS(64x4)
IPC 1.72 2.69 2.15 3.24 2.88 2.82 3.08 3.24

branch misp./1000 instr. 16 6.4 11 4.1 6.5 1.9 2.0 1.1

CMP(2x64x4)

branch misp./1000 instr. 16 6.6 11 4.2 6.2 1.8 1.9 1.1

IR-mispredictions/1000 instr. 0.03 0.03 0.02 0.01 0.02 0.03 0.02 0.05

avg. IR-misprediction penalty 22 23 22 22 23 24 24 26



for niche computers. The slipstream paradigm allows the operating
system to flexibly choose among multiple operating modes based
on system and user requirements. The requirements may include:
high job throughput and parallel-program performance (conven-
tional SMT/CMP), improved single-program performance and
reliability (slipstreaming), or fully-reliable operation with little or
no impact on single-program performance (AR-SMT / SRT).

A slipstream processor simultaneously runs two copies of the pro-
gram. One of the programs (A-stream) always runs slightly ahead
of the other (R-stream). The R-stream is monitored for ineffectual
and branch-predictable computation, and the information learned
is used to speculatively but accurately reduce the A-stream. Out-
comes from the A-stream are communicated to the R-stream. The
R-stream uses the outcomes to execute more efficiently and, at the
same time, validate the speculative A-stream. The two programs
combined finish sooner than either would alone. A detailed but rel-
atively-unexplored implementation demonstrates substantial per-
formance improvements are possible, 7% on average.

The shorter program is a subset of the full program and this par-
tial-redundancy is transparently leveraged for detecting and recov-
ering from transient hardware faults. The importance of providing
reliability with low overhead — both in terms of design changes
and performance — cannot be overstated. For example, a recent
conference panel [11] debated the problem of usingcommercial
off-the-shelfcomponents (COTS) in reliable applications. Com-
modity components are inexpensive and high-performance, in part
because they lack fault tolerance — therein lies the quandary.
While software is currently the larger problem, future chips are
susceptible due to technology and microarchitecture trends.

There are many future research topics for slipstream processors.
Below, we discuss some of the more pressing topics.

• We need a better understanding of slipstream performance to
identify bottlenecks and ultimately produce more effective
A-streams. A high priority is determining the amount and qual-
ity of instruction-removal needed to improve performance, and
then developing effective IR-predictors based on the results.

• Basic microarchitecture research is needed to develop mecha-
nisms for each of the new slipstream components, explore the
design space, and optimize the components for both practical
implementation and good performance. We also want to dem-
onstrate the new components interface to a conventional pipe-
line without fundamentally reorganizing it.

• Slipstreaming needs to be implemented on an SMT core and,
in general, we should evaluate multiple CMP/SMT configura-
tions. SMT introduces new problems, such as competition for
resources. Adaptively turning on/off slipstreaming may be
needed, so performance is not degraded when the A-stream is
only slightly reduced. Adaptivity is also useful in a CMP, to
determine whether or not the second PE should instead be used
for an independent program.

• For reliability, we need to formally analyze fault coverage and
also improve coverage under partial-redundancy constraints.

• The current slipstream model, due to process replication, has
many system-level issues that need to be addressed (coherence
and consistency, O/S support, interrupts, I/O, etc.). For exam-
ple, we are looking at ways of reducing memory overhead
while retaining the simplicity of software memory renaming.
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