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Executive Summary
n Motivation: DNA sequencing technological improvements 

have resulted in longer reads, which results in higher 
quality genome assembly.
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Executive Summary
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have resulted in longer reads, which results in higher 
quality genome assembly.

n Problem: Genomic sequencing technology is scaling, 
compute performance isn’t.

n Goal: Introduce a co-processor to accelerate genomic
sequence alignment – Darwin.

n Solution: Co-design algorithms and hardware targeted at 
long (3rd-gen) read assembly.

n Evaluation:
q 3-4 orders of magnitude faster reference-guided assembly 
q 2 orders of magnitude faster de novo assembly 
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Background
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n Goal: Find the complete sequence of A, C, G, T’s in DNA.

DNA Sequencing
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n Challenge: There is no machine/technology/method that 
takes long DNA as an input, and gives the complete 
sequence as output.



DNA Sequencing
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All sequencing machines chop DNA into pieces and identify 
relatively small pieces (but not how they fit together).



DNA Sequencing
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q 10K-100K bp
q high error rate (~15%)

q 50-300 bp
q low error rate (~0.1%)

long readsshort reads

Size of human genome: 3.2 Billion bp



DNA Sequence Alignment
n Compare a query sequence Q and a reference sequence R, 

to maximize an alignment score.
q Identify insertions, deletions or mismatches.



Alignment Algorithms
n Smith-Waterman algorithm

q Identifies similar regions between two input sequences
q Compares segments of all possible lengths
q Ensures optimal local alignment

16



Filtering Algorithms
n Problem

q Smith-Waterman (and similar algorithms) are computationally 
expensive.

n Solution
q Use filtering step based on seed-and-extend paradigm.
q This approach uses seeds, substrings of fixed size k from Q, 

and finds their exact matches in R, called seed hits.

17



18

Genome 
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery



Novelty
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Novelty
n D-SOFT – Filtering algorithm

q Tunable sensitivity (tolerance to inexact matches).
q High precision.

n GACT – Alignment algorithm
q Arbitrarily long sequences, with optimal alignment for error 

rates of up to 40%.
q Constant memory for the compute-intensive step.

n Darwin implementation
q FPGA.
q ASIC (simulated, by scaling up frequency).
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Mechanisms
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Mechanisms – D-SOFT
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Mechanisms – SeedLookup
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Mechanisms – D-SOFT

>h?
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h = 8



Mechanisms – GACT
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Key Results: 
Methodology and Evaluation
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Summary
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Summary
n Volume of genomic data is rapidly increasing.

q Need for efficient sequence alignment, unmet by present-day 
hardware.

n Darwin – a co-processor for genomic sequence alignment 
that combines hardware-accelerated alignment (GACT) and 
filtering (D-SOFT) algorithms.
q D-SOFT

n Tunable sensitivity.
q GACT

n Can process arbitrarily long sequences
n Requires constant memory for the compute-intensive step.

n 2-4 orders of magnitude improvement in sequencing 
performance, compared to baseline.
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34



Strengths
n HW/SW co-design

q Memory system is optimized for filtering (which is more 
expensive than alignment).
n 4 DRAM channels store identical copies of the seed position table.
n Seed hits are stored sequentially.

n Filtering algorithm offers tunable sensitivity.
n Alignment algorithm is linear-time and constant-memory.
n Filtering and alignment can be used in other genomics 

applications:
q Whole sequence alignments, metagenomics, multiple 

sequence alignments…
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Weaknesses
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Weaknesses
n Poor baseline

q Baseline is single-threaded CPU
q Hardware/Accelerator baseline is missing

n Multi-threaded / PIM / GPU / FPGA…
n Speedups are only given with reference to CPU, running a single-thread.

n Tiling is not novel – used typically in greed mapping.
q Seems heuristic?
q Guarantee of optimality?

n ASIC performance is only simulated by scaling up the frequency, 
with the FPGA version as a baseline.

n No direct comparison of D-SOFT / GACT with other 
filtering/alignment algorithms?
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Thoughts and Ideas
n What other algorithms can be modified to maximally exploit 

HW/SW codesign?
n What if we used different filters?

q How would that affect sensitivity?
q What’s the sensitivity of this filtering? How does it respond to 

alignments that are not true alignment?
n Can we use PIM? Could we do (some?) of the computation 

in-memory, to avoid having to move data from the DRAM 
memory to the accelerators?
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Takeaways
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Takeaways
n Specialized hardware is increasingly important

q Specialization gives efficiency, parallelization gives speedup.
q Specialization may require changes to the algorithms

n Case in point: GACT, D-SOFT.

n Memory access time dominates
q Optimizing access patterns is critical for performance.
q Computation in memory pays off.

n Previous points show the importance of HW/SW co-design.
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Open Discussion
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Discussion Starters

Could Darwin be used for Whole Genome Alignment?
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Discussion
n What must be changed in Darwin to achieve WGA?
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The threshold parameter h concerns the number of seed hits per diagonal band.
At most 1 seed hit is extended per diagonal band. This reduces redundant 
extensions for seed hits within the same diagonal band. 



Discussion Starters

Can merge the filter + alignment operations be merged to 
gain efficiency?

For example, by incorporating them directly into the 
sequencer?

45



Discussion

46



Discussion

47



Darwin: A Genomics Co-processor Provides up to
15,000×acceleration on long read assembly

João Sanches Ferreira
ETH Zürich
9 May 2019

Yatish Turakhia Gill Bejerano William J. Dally

ASPLOS’18



Backup Slides
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Alignment Algorithms
n Smith-Waterman algorithm
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Alignment Algorithms
n Smith-Waterman algorithm

19



Approximate String Matching
n Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

N E - T H E R L A N D S
S W I T Z E R L A N D -

NETHERLANDS x SWITZERLAND

match
deletion
insertion
mismatch



Algorithm – D-SOFT
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Algorithm – GACT
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Mechanisms – GACT
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Mechanisms – Darwin Overview
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Mechanisms – D-SOFT HW Implementation
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Mechanisms – GACT HW Implementation
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