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Executive Summary
■ Motivation

❑ True random number generation enables security 
applications like cryptography and simulations

❑ Many systems lack TRNG hardware devices, but got DRAM

■ Problem
❑ Existing DRAM-based RNG solution are either

not fundamentally non-deterministic or are too slow
■ Goal

❑ A low-latency, high-throughput TRNG based on DRAM
■ Solution

❑ Reduce timing constraints when reading values from DRAM 
and extract randomness from failing DRAM cells

■ Evaluation
❑ Tested on 282 LPDDR4 DRAM devices
❑ Achieves 100 ns latency and 717.4 Mb/s throughput
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Problem & Goal
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Problem
■ True random number generators (TRNGs) generate TRNs 

by extracting randomness from some physical entropy 
source

■ This can be slow (e.g. through human input) or require 
extra hardware

■ Existing DRAM-based solutions are too slow for 
high-throughput applications
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Goal

■ A high-throughput, low latency DRAM-based TRNG

❑ Can we do this by exploiting some DRAM characteristic?
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Background
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True Random Number Generators
■ Numbers from a TRNG only depend on some random noise 

obtained from a physical process, and not any previously 
generated numbers

■ An effective TRNG must satisfy six key properties:
❑ Low implementation cost
❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
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DRAM Organization
■ DRAM is structured hierarchically

■ Module → Rank → Chip → Bank
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■ A bank contains an array, further divided into subarrays

DRAM Organization

Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
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Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
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DRAM Operation
■ Three main commands for reading:

ACTIVATE, READ and PRECHARGE

Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
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Process variation 
during manufacturing 
results in cells having 
unique behavior

DRAM Accesses and Failures

Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf 13



DRAM Accesses and Failures

Weaker cells have 
a higher probability 
to fail

14Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf



Novelty, Key Approach & Ideas
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■ With a reduced tRCD, some cells fail with a probability close 
to 50%

Novelty

■ Use these cells as an entropy source for random number 
generation!
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Integrate this into the memory controller

Key Approach

Identify RNG cells Sample those cells 
for random data
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Mechanisms
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RNG Cell Identification
■ Write some initial data pattern into DRAM

■ Calculate the Shannon (information theoretic) entropy of 
each cell’s generated bitstream

■ Read every cell 1000 times with a reduced tRCD
(each time with a fresh ACTIVATE)
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RNG Cell Sampling
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■ For maximum throughput, alternate between reading two 
separate rows with the highest number of RNG cells

Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
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Full System Integration
■ Ideally, all of this should be done automatically by the 

memory controller
❑ Implement identification and sampling in firmware
❑ Expose some application interface for data retrieval

■ For high availability, store unused data in a cache

■ Possible interfaces:
❑ Memory-mapped configuration status registers
❑ I/O instructions in x86 like IN, OUT
❑ New ISA instruction, like Intel’s RDRAND
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Key Results:
Methodology and Evaluation

22



Testing Environment
■ 282 2y-nm LPDDR4 DRAM chips tested with custom 

infrastructure
❑ From “3 major DRAM manufacturers”

■ Also tested with 4 DDR3 chips in SoftMC
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■ Can RNG cells be found across different DRAM modules?

■ Are the sampled values truly random?

■ Are the six TRNG properties satisfied?

Evaluation Criteria
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RNG Cell Distribution

■ RNG cells are widely available ✔
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NIST Tests
■ Test suite by the US National Institute of Standards and 

Technology

■ Tests for 15 different randomness properties
❑ Bit frequencies, longest run etc…

■ Result: 15/15 PASSED ✔ 
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
■ Shown by NIST tests

❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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Throughput

■ Avg. 108.9 Mb/s per channel
■ With 4 channels: avg 435.7 Mb/s, max 717.4 Mb/s !
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Related Works
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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Latency
■ Worst case for 64 bits of data: 960 ns

❑ 1 bit per word, 1 bank, 1 channel

■ With 8 banks and 4 channels:  220 ns

■ 4 bits per word: 100ns
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Related Works
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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System Interference
■ Need to reserve some rows for RNG

❑ Only six rows needed per bank
❑ Amounts to 0.018% of total storage (2GB)

■ Need to occasionally reduce tRCD
❑ No significant impact when tested while running SPEC 

CPU2006 benchmarks
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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Energy Overhead
■ Output traces from Ramulator analyzed with DRAMPower

■ Result: 4.4 nJ/bit
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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Implementation Cost
■ Requirements:

❑ Adjustable tRCD
■ Possible with some AMD processors

❑ Custom memory controller firmware
■ With exposed API
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TRNG Key Characteristics
■ Recall the six properties for an effective TRNG:

❑ Fully non-deterministic
❑ High throughput
❑ Low latency
❑ Low system interference
❑ Low energy overhead
❑ Low implementation cost
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■ Can RNG cells be found across different DRAM modules? 
❑ ✔ Yes, and in fairly high numbers

■ Are the sampled values truly random?
❑ ✔ Yes, as shown with NIST tests

■ Are the six TRNG properties satisfied?
❑ ✔ Yes, within reason

Evaluation Criteria

42



Summary
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Executive Summary
■ Motivation

❑ True random number generation enables security 
applications like cryptography

❑ Many systems lack TRNG hardware devices, but got DRAM

■ Problem
❑ Existing DRAM-based RNG solution are either

not fundamentally non-deterministic or are too slow
■ Goal

❑ A low-latency, high-throughput TRNG based on DRAM
■ Solution

❑ Reduce timing constraints when reading values from DRAM 
and extract randomness from failing DRAM cells

■ Evaluation
❑ Tested on 282 LPDDR4 DRAM devices
❑ Achieves 100 ns latency and 717.4 Mb/s throughput
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D-RaNGe Summary
■ Reducing the time limit between DRAM activate and read 

(tRCD) can result in incorrect values being read from DRAM 
cells
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■ The resulting bitstream of some these cells can be shown 
to exhibit true randomness

■ We can exploit these errors to use DRAM as a 
high-throughput (435.7 Mb/s), low-latency (100 ns) True 
Random Number Generator



Strengths
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Strengths
■ Novel idea with good results

❑ Much better than related works
(best latency/throughput ratio)

■ Includes recommendations on how to implement in 
practice

■ Can be useful for real-world applications

■ Thoroughly tested with PoC

■ Paper well structured and easy to read

47



Weaknesses
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Weaknesses
■ Not much detail about why randomness occurs

❑ If caused by production imperfections, what if production 
methods improve?

■ Underestimation of implementation cost
❑ Will it really be that simple to implement?
❑ Increased complexity
❑ What if the memory controller has no firmware?

■ Are 1000 iterations enough for RNG cell identification?
❑ The NIST tests were run 1M times

■ The possibility of “temperature attacks” is not given much 
consideration
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Thoughts & Ideas
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Thoughts & Ideas
■ Does it work for SRAM too?

❑ Paper only addresses methods based on startup values

■ What about a dedicated hardware device based on 
D-RaNGe?

By Retro-Computing Society of Rhode Island - Own work, CC BY-SA 
3.0, https://commons.wikimedia.org/w/index.php?curid=7372673

Source: 
https://ubld.it/products/truerng-hardware-random-number-generator/
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Takeaways
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Key Takeaways
■ Novel method for extracting randomness from DRAM

■ Works in practice

■ Pushing limits can have unforeseen consequences
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Open Discussion
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Discussion Starters
■ What constitutes “high-throughput”?

❑ 1 Mb/s for flash memory? [1]

■ Is it really useful for IoT?
❑ Most microcontrollers use flash memory and/or SRAM, not 

DRAM

■ Are attacks like the temperature attack reasonable?
❑ What are other possible attacks?

■ Will improved production methods make D-RaNGe 
obsolete?

■ Is using DRAM as a TRNG kind of hacky?
[1] Ray, B., & Milenković, A. (2018). True random number generation using read noise of flash memory cells. IEEE Transactions on
Electron Devices, 65(3), 963-969.
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Appendix
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Activation Failure Characterization
■ What affects the number of activation failures?

■ Aspects to consider:
❑ Spatial distribution of failures
❑ Data pattern dependence
❑ Temperature effects
❑ Entropy variation over time
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Spatial Distribution of Failures

■ Observations:
❑ Region and bitline affects failure rate
❑ Differing amounts of failures across subarrays and local bitlines
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Data Pattern Dependence

■ Observations:
❑ Data pattern affects entropy extraction
❑  Some patterns provides higher coverage
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Temperature

■ Temperature affects probability of failure to varying 
degrees

60



Entropy Variation over Time
■ Stable over a time period of 15 days
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Exclusive Access
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■ We also want exclusive access to these rows to reduce 
system interference
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NIST Tests
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