

Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, Onur Mutlu

Carnegie Mellon University, LSI Corporation

2015 IEEE 21st International Symposium on High Performance Computing Architecture (HPCA 2015)

Why flash memory?

USB flash stick

Solid State Drive

Devices using Flash Memory

- We erase in blocks consisting of multiple pages.
- We program and read in pages.

- We erase in blocks consisting of multiple pages.
- We program and read in pages.

- We erase in blocks consisting of multiple pages.
- We program and read in pages.

- We erase in blocks consisting of multiple pages.
- We program and read in pages.
- After programming we erase old copied pages.
- Flash controller **manages** operations.
- ECC controller corrects data.

Flash Memory Cells

- A cell stores charge as electrons in the floating gate.
- We program cells by applying a high positive voltage to our control gate.
- The positive charge attracts electrons through the tunnel oxide from the substrate.

Erasing Cells

We erase cells by applying a high negative voltage.

Trap Assisted Tunnelling

- Repeated program/erase cycles trap electrons in the tunnel oxide.
- An **electric field** is created by the trapped charge.
- Charge from the floating gate **leaks** to the substrate

- Trapped charge leaves tunnel oxide.
- **Increases** floating gate **charge**.

- Trapped charge **leaves** tunnel oxide.
- Increases floating gate charge.
- Or **decreases** if de-trapping towards the substrate.

- Trapped charge **leaves** tunnel oxide.
- Increases floating gate charge.
- Or **decreases** if de-trapping towards the substrate.
- Leaves a **positive** charge that attracts charge from the floating gate.

- Trapped charge **leaves** tunnel oxide.
- Increases floating gate charge.
- Or **decreases** if de-trapping towards the substrate.
- Leaves a **positive** charge that attracts charge from the floating gate.

Retention Loss

- Use charge as **indicator** for **bit** values.
- Assign 0 to a high charge and 1 to a low charge.
- **Read reference voltage** separates differently charge cells.
- Charge leaks over time caused by trap assisted tunnelling or charge de-trapping.
- Changed values introduce retention errors.

Threshold Voltage Distribution

Threshold Voltage Distribution in Multi Level Cell Flash Memory

Read-Retry

Executive Summary

Problem

- Density of flash memory rises and diminishes lifetime.
- Correcting errors increases read latency.

Goal

- Deepen understanding of voltage threshold distributions of flash memory.
- Improve both lifetime and system performance.
- Recover non-correctable data.

Method

- Retention Optimized Reading
 - Improved Read-Retry
- Retention Failure Recovery

Result

- **Lifetime** improvement by 64%.
- **Read latency** reduction by 70.4%.
- Raw bit error rate drop by 50%.

Problem

- Multi level cell
 - Higher error rate due to smaller threshold windows.
- Lifetime
 - Retention errors:
 - Limit the time flash memory can be read from.
 - May lead to loosing data.
- Read Latency
 - Retention errors:
 - Introduce overhead by error correction codes.
 - Increase number of read-retries.

Goal

- Building a strong understanding, characterization, and analysis of threshold voltage distribution over retention age.
- Introduce a dynamic technique improving lifetime and read latency.
- Devise a new mechanism to recover non-correctable data.

FPGA-Based Flash Memory Testing Platform

- Different amounts of program/erase cycles for multiple groups of flash memory.
- Data of retention ages ranging from 0 to 40 days.
- All experiments were conducted under room temperature (20°C).

Source: Y. Cai et al., "FPGA-Based Solid-State Drive Prototyping Platform", FCCM 2011

Retention Optimized Reading

Retention Optimized Reading

Improved Read-Retry

Raw Bit Error Rate to Program/Erase Cycles

Source: Y. Cai et al., "Data retention in MLC NAND flash memory:... " in IEEE 21st Int. Symp. HPCA, 2015

Evaluation

Evaluation

- We have a storage overhead of 768 KB out of 512 GB. → 0.00015% overhead
- Execution overhead depends on program/erase cycles, retention age and amount of data written.

Retention Age	P/E Cycles	Latency
1 day	8000	3 seconds
7 days	8000	15 seconds
30 days	8000	23 seconds

Assuming flash capacity is full (512 GB).

Retention Failure Recovery

Fast and Slow Leaking Cells

- Separate cells into fast and slow leaking cells.
- Over the same time t fast leaking cells leak more charge than slow leaking cells.
- Threshold separating cells is the average threshold voltage shift.

Fast Leaking Cells

Average Threshold Voltage Shift

Slow Leaking Cells

Retention Failure Recovery

Evaluation

Source: Y. Cai et al., "Data retention in MLC NAND flash memory:... " in IEEE 21st Int. Symp. HPCA, 2015

Executive Summary

Problem

- Density of flash memory rises and diminishes lifetime.
- Correcting errors increases read latency.

Goal

- Deepen understanding of voltage threshold distributions of flash memory.
- Improve both lifetime and system performance.
- Recover non-correctable data.

Method

- Retention Optimized Reading
 - Improved Read-Retry
- Retention Failure Recovery

Result

- **Lifetime** improvement by 64%.
- **Read latency** reduction by 70.4%.
- Raw bit error rate drop by 50%.

Strengths

- Retention optimized reading enhances memory lifetime under low overhead.
- Retention failure recovery decreases raw bit error rate.
- Mechanisms complement each other, but can be implemented individually.
- We may adjust ECC capabilities to increase power efficiency.
- Paper
 - Presents a simple and intuitive algorithm.
 - Conducts research with high potential impact.

Weaknesses

- How does temperature affect threshold voltage shifts?
- **How many flash memory devices were used?**
- How does retention failure recovery affect storage overhead?
- The paper is hard to understand in detail and covers a lot of topics.
- Why was retention optimized reading **not compared** to adaptive voltage threshold?1
- The paper has many similarities with previously published papers.
- Figure explanations are quite sparsely provided.

¹Papandreou et al., "Using Adaptive Read Voltage Thresholds to Enhance the Reliability of MLC NAND...", Proceedings of the 24th edition of the great lakes symposium on VLSI, 2014

Key Takeaways

- Retention errors limit flash memory lifetime.
- Read-retry increases read latency.
- We gained a clear understanding of threshold voltage distributions.
- Retention optimized reading improves lifetime and read latency.
- Retention failure recovery reduces errors.

Open Discussion

- In what order should we assign our 2 bit values to our 4 states?
 - They are often assigned this way: Erased 11, P1 10, P2 00, P3 01.
 - Because if the threshold voltage were to shift to the left we only get one bit error.

Open Discussion

How should we assign our 2 bit values to pages?

Row Index	LSB of the 2 ¹⁷ cells	MSB of the 2 ¹⁷ cells
0	Page 0	Page 2
1	Page 1	Page 4
2	Page 3	Page 6
•••		•••
127	Page 253	Page 255

Source: Table adapted from Wang, Wei, et al. "Reducing MLC flash memory retention errors through programming initial step only.", MSST 31st Symposium on. IEEE, 2015

Open Discussion

- We have seen that reducing the number of read-retries has a great impact on read latency.
- Can you think of yet another method to reduce the number of read-retries?
 - My idea would be to use binary search implemented into our current read-retry mechanism.

Improved Read-Retry

Additional Papers

- Bez et al., "Introduction to Flash Memory", 2003
- Cai et al., "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime", 2012
- Cai et al., "Error Analysis and Retention-Aware Error Management For NAND Flash Memory", 2013
- Cai et al., "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling", 2013
- Papandreou et al., "Using Adaptive Read Voltage Thresholds to Enhance the Reliability of MLC NAND Flash Memory Systems", 2014
- Aslam et al., "Read and Write Voltage Signal Optimization for Multi-Level-Cell (MLC) NAND Flash Memory", 2016
- Coutet et al., "Influence of temperature of storage, write and read operations on multiple level cells NAND flash memories", 2018

Big Thanks to Giray & Mohammed for their support.

No, really, thanks.

Backup Slides

Flash Correct-and-Refresh

- Read page with fixed read reference voltage.
- Error correction informs about range of actual voltage threshold.
- Identify cells in a wrong state.
- Identify right shift errors and left shift errors.
- Left shift errors are caused by retention loss.
- Right shift errors are cause by cell-to-cell interference when programming other cells.

Source: Figure adapted from Y. Cai et al., "Flash Correct-and-Refresh:...", 2012.

Fast and Slow Leaking Cells