N ek ok)
... = ="
‘ M
.)
BN B . &
1} e "
&

Meltdown: eading Kernell M
User Space

Independently discovered and reported by three teams:

Jann Horn (Google Project Zero)
Werner Haas, Thomas Prescher (Cyberus Technology),
Daniel Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz(Graz University of Technology)

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 1

You may have already known...

Seminar of Computer Architecture

Oddl\l BusINEss Markets Tech Media Success Perspectives Video

Major chip flaws affect billions of devices
s vy 00000

¥ Top 10 Mac
Antivirus (2018) ...

My AntiVirus Review

Des trésors
insoupgonnés...

com

This Cheap Drone Is
The Most Amazing...

simplediscountfinder.com

Play This Game for 1
Minute & See Why...

N Vikings

Computer chip flaws impact billions of devices

Two major flaws in computer chips could leave a huge number of
computers and smartphones vulnerable to security concerns,
researchers revealed Wednesday.

Why Canopy Growth's
earnings are
disappointing pot
investors

And a U.S. government-backed body warned that the chips themselves need to be replaced to
completely fix the problems.

Watch: Chip hacks explained

DU Yinwei | 2018/12/12 | 2

Executive Summary of Meltdown

Observation: Out-of-order execution allows access of
invalid memory address before checking the validation.

Attack description (briefly):

= Raise exception before accessing an invalid address.

= Qut-of-order execution causes microarchitectural change.
= Use side-channel attack to recover the secret.

Mitigation: KAISER -- kernel address isolation to have
side-channels efficiently removed

nar of Computer Architecture DU Yinwei | 2018/12/12 | 3

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

» Strengths and weaknesses
= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 4

Introduction
= \What is Meltdown?

Meltdown breaks the most fundamental isolation between

user applications and the operating system. This attack
allows a program to access the memory, and thus also the

secrets, of other programs and the operating system.

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 5

Introduction

= How is it different from other attacks?
No software vulnerability
Exploit side-channel information

= Which systems are affected by Meltdown?

Every Intel processor which implements out-of-order
execution since 1995. —

[

inside” inside

CORE"i7 PENTIUM®

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 6

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

» Strengths and weaknesses
= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 7

Background — Out-of-order execution

nar of Computer Architecture

Out-of-order execution:

= Optimization technique
= CPU executes instructions as soon as all required resources are
available.

In practice, running operations speculatively before the
CPU is certain whether the instruction will be needed and

committed.

DU Yinwei | 2018/12/12 | 8

Background — Out-of-order execution

L1 Instruction Cache |~ ||
= [ntel Architecture n
g L | [
. . § ’W{F‘ 4-Way Decode
= Reorder buffer: register allocation, - [L Lo [Lo

U
v

register renaming, and retiring. | Alloction Queue |

= Unified reservation station: queues 8 _
. . =
the operations on exit ports that are | e e e e o e e
connected to Execution Units g ﬁ
2518 3] |2
Execution Units
= Tomasulo Algorithm ‘
E § |Loa:i Bl;ﬂerl |store fuﬂe.}
ég’ T R ST 1
c?) L2 Cache ——

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 9

Background — Address space

= Virtual address space: virtual addresses are translated to
physical addresses to isolate processes from each other

= Virtual space is spilt into a user and a kernel space
= The entire physical memory is typically mapped in the

kernel space

Direct map: Linux and OS X
Paged pool, non-paged pool and system cache: Windows

0

max

Physical memory

User

i

E Kernel

Seminar of Computer Architecture

247 _ 247

DU Yinwei | 2018/12/12 | 10

Background — Address space

= |n order to protect the kernel from memory corruption
bugs, address space layout randomization (ASLR) has
been introduced

= KASLR randomizes the offsets where drivers are located
on every boot.
= Still not sufficient to prevent all attacks

= Solution to KASLR attacks (KAISER) solves the Meltdown
Attack as well!

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 11

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

» Strengths and weaknesses

= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 12

Meltdown — A toy example

<instr.>
) '] <ins'tr.>
= Let's first look at a code snippet meemon | b
<instr.> [Exception]
<instr.> <instr.> 8.
[Terminate] <instr.> gg
<instr.> 5 °

= |n theory: cannot access the array
= |n reality: may have already executed instructions

| raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]);

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 13

Meltdown — A toy example

- probe_array[data*4096]

i I

.
[
/) -
data
! probe_array[data*4096]
DRAM
Register :

Cache

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 14

Meltdown — A toy example

- probe_array[data*4096]

CPU €——>

e i .
L]
/) :

Register is .

cleared
! probe_array[data*4096]
DRAM
Register :
But cache state remains!

Cache

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 15

Meltdown — A toy example

CPU <€«——>

N W A W
S838

Access time
[cycles]

0 50 00 150 200 250
Page

Register

4@m long

Cache

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 16

Meltdown — Building Block

S

Exception Handling/
Suppression

Transient
Instructions

Microarchitectural
State change

Accessed

— oo]

transient instruction:

executed out of order and

leaving measurable side ’
effects

Architectural
State

Seminar of Computer Architecture

leak
Transfer
(Covert Channel)
Recovery
— Recovered
Secret

DU Yinwei | 2018/12/12 | 17

Issue in Executing Transient Instructions

= Reason: prevent the process from being killed

= Exception handling:

= Fork the attacking application before accessing the invalid memory
location

= |nstall a signal handler that is executed when a certain exception

OCCUrs
\

Reducing performance overhead

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 18

Issue in Executing Transient Instructions

= EXxception suppression:
= Transactional memory

= Put the invalid memory access after a never-taken branch:

= Setup phase: Mistrain CPU into speculatively executing these
instructions.

= Second phase: speculatively execute an instruction that
leak information

= Final phase: Recover data by retrieving over covert. &7
channel

SPECTRE

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 19

Issue in Building a Covert Channel

= Sending end: the transient instruction sequence

= Receiving end: can be a different thread or even a
different process

= The covert channel is not limited to rely on cache:
= ALU contention

= But here we use Flush+Reload cache attack

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 20

Meltdown — Attack description

= Meltdown consists of 3 steps:

= The content of an attacker-chosen memory location, which is
iInaccessible to the attacker, is loaded into a register.

= A transient instruction accesses a cache line based on the secret
content of the register.

= The attacker uses Flush+Reload to determine the accessed cache
line and hence the secret stored at the chosen memory location.

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 21

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

» Strengths and weaknesses

= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 22

Countermeasures — Hardware

Trivial solution: completely disable out-of-order execution
= The performance impacts would be devastating

Serializing the permission check and the register fetch can
prevent Meltdown attack.
= This involves a significant overhead to every memory fetch

Introduce a hard split of user space and kernel space
= Expect minimal performance impacts

Note: the above methods only solve Meltdown, not Spectre

nar of Computer Architecture DU Yinwei | 2018/12/12 | 23

Countermeasures — Software (KAISER)

not mapped

switch address space

—1

Kernel memory

" A kernel I User memory >> g
. |
mapped 1 0 context switch
= Reason:r
SMAP + SMEP))
memory & o

—1

kernel

r physical

= However, there exists a residual attack surface for

Meltdown.

= Still, the best short-time solution currently available.

Seminar of Computer Architecture

DU Yinwei | 2018/12/12 | 24

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

» Strengths and weaknesses

= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 25

Evaluation— Sample Code

= Assembly code given by the paper:

; rcx = kernel address, rbx = probe array
Xor rax, rax

retry:

mov al, byte [rcx]

shl rax, Oxc

jz retry

mov rbx, qword [rbx + rax]

N A AW =

ook not so nice...

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 26

Evaluation — Sample Code

= A more readable one:

char detectArray[1;

flush_array(detectArray);

{

char a kernel_address;
detectArray[a*64] ;

(segfault){}

(int 1=0; 1 ; 1++){
(is_in_cache(detectArray[i*64]))
("secret byte was "yo1);

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 27

Evaluation — Environment

Environment CPU Model Cores

= Tested platform : Lab Celeron G540 2
. . Lab Core 15-3230M 2

= Linux without KAISER «/ Lab Core i5-3320M 5
= Windows 10 without KAISER v/ Lab Corei7-4790 4
. _ Lab Core 15-6200U 2

= Linux with KAISER X Lab Core i7-6600U 2
. Lab Core 17-6700K 4

= Containers such as Docker V' Lab Core i7-8700K 1
= Android (ARM) x Lab Xeon E5-1630 v3 8
Cloud Xeon E5-2676 v3 12

Cloud Xeon E5-2650 v4 12

Phone Exynos 8890 8

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 28

Evaluation — Performance

= With exception handling:
= More universal implementation

= Achieve an average reading speed of 123 KB/s when leaking 12
MB of kernel memory

= Error rate of 0.03 %
= Channel capacity is 122 KB/s

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 29

Evaluation — Performance

= With exception suppression:
= Conditional branches or Intel TSX

= Achieve an average reading speed of 503 KB/s when leaking 12
MB of kernel memory

= Error rate of 0.02 %
= Channel capacity is 502KB/s

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 30

Evaluation — In Practice

= Memory dump showing HTTP Headers on Ubuntu 16.10
On a Intel Core i7-67OOK 79cbb30: 616f 61 4e 6b 32 38 46 31 34 67 65 68 61 7a 34 |aoaNk28F14gehaz4|

79cbb40: 5a74 4d 79 78 68 76 41 57 69 69 63 77 59 62 61 |ZtMyxhvAWiicwYbal
79cbb50: 356a 4c 76 4d 70 4b 56 56 32 4b 6a 37 4b 5a 4e |5jLvMpKVV2Kj7KZN|
79cbb60: 6655 6c 6e 72 38 64 74 35 54 62 43 63 7a 6f 44 |fUlnr8dt5TbCczoD|
79cbb70: 494e 46 71 58 6d 4a 69 34 58 50 39 62 43 53 47 |INFqXmJi4XP9bCSG|
79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |1LH2ZxfVDsKW94hm|
79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|
79cbbal: 4141 41 41 41 41 3d 3d XX | AAAAAA==

79cbbb0: XXXX XX XX XX XX XX XX XX
79cbbc0: XXXX XX 65 2d 68 65 61 64
79cbbd0: XXXX XX XX XX XX XX XX XX
79cbbe0l: XXXX XX XX XX XX XX XX XX
79cbbf0: XXXX XX XX XX XX XX XX XX
79cbc00: XXXX XX XX XX XX XX XX XX
79cbc10: XXXX XX XX XX XX XX XX XX
79cbc20: XXXX XX XX XX XX XX XX XX
79cbc30: XXXX XX XX XX XX XX XX XX .. .
79cbc40: XXXX XX XX XX XX XX XX XX
79cbcb0: XXXX XX XX 0d Oa XX 6f 72 69 67 69 6e 61 6¢c 2d |....... original-|
79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|
79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 DI
79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|
79cbc90: 2047 4d 54 0d Oa 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|
79cbcal: 6e67 74 68 3a 20 31 0d Oa 43 6f 6e 74 65 6e 74 |ngth: 1..Content|
79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|
79cbcc0: 3b20 63 68 61 72 73 656 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|
79cbcd0: 0a53 65 72 76 65 72 3a 20 54 77 69 73 74 65 64 |.Server: Twisted|
79cbce0: 5765 62 2f 31 36 2e 33 2e 30 0d Oa XX 75 6e 63 |Web/16.3.0...unc|
79cbcf0: 6£f6d 70 72 65 73 73 65 64 2d 6¢c 65 6e XX XX XX |ompressed-len...|

= The XX cases represent
bytes where the side channel did not yield any results

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 31

Evaluation — In Practice

= Memory dump of Firefox 56 on Ubuntu 16.10 on a Intel
Core i7-6700K disclosing [mvm sssssssss sssssee .

£94b76a0: e5 e5 e5 e5 e5 e5 e5 e5 e5 eS e eS5 e5S5 e5 e5 e5 |.. ...l |
£94b76b0: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX IpR.k............ |
Saved aSSWO rd S £94b76c0: 09 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |......covvnnn.. |

p £94b76d0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.....covnvunninnn. |
£94b76e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 81 |......cuvnnnn.. |
£94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6¢c 70 68 69 6e 31 |........ Dolphini|
£94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e eb5 e5 e5 e5 e5 e5 e5 [8............... |
£94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX IpR.k............ |
£94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |...oovvnunnnnnn, |
£94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J.....ounnn. |
£94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....oovnunninnn, |
£94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |......c.... inst|
£94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203.......... |
£94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX
£94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX
£94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65
£94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 eb e5 e5 eb
£94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX
£94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX
£94b7800: e5 e5 eb e5 eb eb eb e5 e5 eb eb eb e5 eb
£94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c/
£94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/ul
£94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|
£94b7840: 69 63 6f 6e 73 2f 33 35 34 2f 33 35 34 33 39 39 |icons/354/354399|
£94b7850: 2d 36 34 2e 70 6e 67 3f 6d 6f 64 69 66 69 65 64 |-64.png?modified|
£94b7860: 3d 31 34 35 32 32 34 34 38 31 35 XX XX XX XX XX |=1452244815..... |

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 32

Evaluation — Limitation

= They did not manage to successfully leak kernel memory
with the meltdown attack neither on ARM nor on AMD.

= Reasons:

= The implementation might simply be too slow
= Processor lacks certain features

= However, the toy example works reliably.

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 33

Executive Summary of Meltdown

Observation: Out-of-order execution allows access of
invalid memory address before checking the validation.

Attack description (briefly):

= Raise exception before accessing an invalid address.

= Qut-of-order execution causes microarchitectural change.
= Use side-channel attack to recover the secret.

Mitigation: KAISER -- kernel address isolation to have
side-channels efficiently removed

nar of Computer Architecture DU Yinwei | 2018/12/12 | 34

Outline

= |ntroduction

= Background
= Qut-of-order execution
= Address spaces

= Meltdown attack

= Countermeasure

= Evaluation

= Strengths and weaknesses

= Discussion

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 35

Strengths

= The paper presented a potential attack on a wide range of
modern processors which could cause catastrophic
problems

= This attack didn’t exploit any software vulnerability and
therefore can be launched in all operating systems

= The paper gave both short-term software solution and
long-term hardware solution and verified the former’s
effectiveness

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 36

Weaknesses

They included too much background information and
made the paper not easy to read

They didn’t give a practical attack on platforms other than
Intel and didn’t know the exact reason

They didn’t propose a better software solution

They didn’t evaluate the performance impacts by the
KAISER patch

nar of Computer Architecture DU Yinwei | 2018/12/12 | 37

Takeaway
Problem
Algorithm
* From a computer security perspective: Program/Language

Runtime System

= Attacks can happen at any level — previously
we’ve seen memory performance attack and ISA (Architecture)
Row-hammer attack

= Knowledge in computer architecture can aid
security professions to find out new “bugs”

= Covert channel (side channel) is a

fascinating topic Onur Mutlu, Computer Architecture
Lecture 1, Fall 2018

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 38

Takeaway

= From a computer architecture perspective:

= Design new architecture with a high-security guarantee at the very
beginning

= Balance cost, performance, and security when designing

= |_ook back at the architecture from time to time in order to look for
new faults

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 39

Meltdown: Reading Kernel Memory from User Space

Questions?

Open discussion question

Timing Attacks on RSA: Revealing Your Secrets through the Fourth Dimension

by Wing H. Wong
semiconductor and logic gates (made of

Introduction . ; ;
1e measured. First of all, this attack can't be easily

If Alice wants to secure her home, she could buy high-quality locks and install several of them on her door. However, a clever burglar might simply unscrew the hinges, remove the door and walk away with all of Alice's
. valuables with minimal effort. This example of an indirect attack on household security is somewhat artificial but there exists a parallel in the world of encryption that is quite real. It is called the timing attack and it has
been used to defeat some of the most popular encryption techniques. sted

Do you think your computer system is secure because you use strong cryptography? Do you know attackers may be able to attack your cryptography in a completely unexpected direction without directly breaking the
cryptographic algorithm?

RSA [7] is a public key cryptographic algorithm that is widely used today to secure electronic data transfer. It is included as part of the Web browsers from Microsoft and Netscape and is used by the SSL (Secure Sockets
Layer) which provides security and privacy over the internet. The RSA algorithm was invented by the team of Rivest, Shamir, and Adleman at MIT in 1978. Independently, Cliff Cocks discovered the same idea in the early
1970's [5]. A public key cryptosystem uses a one way function that is easy to compute in one direction and hard to compute in the reverse direction. For example, it is relatively easy to generate two prime numbers p, g and
compute their product N = pg. But given N it is difficult to find its factors p and q. Encryption uses a public value, or key, which is distributed and known to anyone who wants to send a message. Decryption involves a
related private key which is kept secret by the intended recipient and cannot be deduced from the public key. Public key cryptography works without requiring both parties involved to keep an agreed upon secret; the
private key never needs to be sent to the sender.

RSA's public key includes a number N which is the product of two large prime numbers p, g. The strength of RSA comes from the fact that factoring large numbers is difficult. The best-known factoring methods are still
very slow. For example, in a recent RSA challenge (August 1999), a 512-bit RSA challenge number was factored using 292 workstations and high-speed computers. The factoring took 35.7 CPU-years to accomplish which
is equivalent to approximately 80,000 MIPS years. The feat required 3.7 months of calendar time [8]. Because so many people have been trying to find efficient ways to factor large numbers, so far without great success,
we can probably assume that RSA is safe from a factoring attack for a typical key N of 1024 bits in length. RSA can be made more secure against factoring by increasing the key length to 2048 bits or more.

Despite this formidable mathematical strength, research has shown that it is feasible to recover RSA private keys without directly breaking RSA. This type of attack is known as a €©timing attack€ in which an attacker

observes the running time of a cryptographic algorithm and thereby deduces the secret parameter involved in the operations. While it is generally agreed that RSA is secure from a direct attack, RSA@s vulnerability to s to deduce sensitive information from power
timing attacks is not so well known and often overlooked. This paper explains the principles of timing attacks on RSA, summarizes the results of timing attacks implemented by various researchers, and discusses defenses

against such attacks.

Timing Attacks on RSA

Kocher [4] was the first to discuss timing attacks. At the RSA Data Security and CRYPTO conferences in 1996, Kocher presented his preliminary result, warned vendors about his attack, and caught the attention of
cryptographers including the inventors of the RSA cryptosystem. Timing attacks are a form of @side channel attack€ where an attacker gains information from the implementation of a cryptosystem rather than from any
inherent weakness in the mathematical properties of the system. Unintended channels of information arise due to the way an operation is performed or the media used. Side channel attacks exploit information about timing,
power consumption, electromagnetic emanations or even sound to recover secret information about a cryptosystem [9].

Timing attacks exploit the timing variations in cryptographic operations. Because of performance optimizations, computations performed by a cryptographic algorithm often take different amounts of time depending on the €NCryption

input and the value of the secret parameter. If RSA private key operations can be timed reasonably accurately, in some cases statistical analysis can be applied to recover the secret key involved in the computations. apher Joan Daemen
ardware and

Before discussing timing attacks on RSA, we must first consider the mathematics of the cryptosystem. RSA is a public key cryptosystem that uses a public exponent e for encryption and a private exponent d for decryption. t< of 128, 192

It uses a modulus N which is a product of two large prime numbers p and g, i.e., N = pg. The exponents e and d must be chosen to satisfy the condition ed = 1 mod (p - 1)(g - 1). Then the RSA key pair consists of the ! !

public key (N, e) and the private key d. For example, if we select two prime numbers p = 11 and g = 3, then N = 11 * 3 = 33. Now compute (p - 1)(g - 1) = 10 * 2 = 20 and choose a value e relatively prime to 20, say 3. Then

dhas t he chosen siich that ad'=1mad 20 One nossible valie for dis 7 since 3 % 7 = 21= 1mad 20 So we aet the nihlic kev (A= 33, o= 3), and the carresnondina nrivate kev d = 7 We discard the oriainal factors na

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 41

Open discussion question

Seminar «

TLBLEED

Overview

TLBleed is a new side channel attack that has been proven to work on Intel CPU’s with Hyper-
threading (generally Simultaneous Multi-threading, or SMT, or HT on Intel) enabled. It relies on
concurrent access to the TLB, and it being shared between threads. We find that the L1dtlb and
the STLB (L2 TLB) is shared between threads on Intel CPU cores.

Result

This means that co-resident hyperthreads can get a certain amount of information on the data
memory accesses of the other HT, without needing any shared cache. Whereas the cache can be
partitioned to protect against cache attacks (such as in Cloak using TSX, or using CAT, or using

page coloring), this is practically impossible for the TLB, and no such systems have been pro-
posed. Thus in the presence of cache defenses, TLBleed remains a risk in this threat model.

Requirements (a.k.a. threat model)

The threat model is identical to Colin Pervical’s seminal 2005 work, Cache Missing for Fun and

Profit, which arguably introduced practical cache side channels. Different from TLBleed, it re-
quires concurrent access to the cache shared between Hyperthreads. TLBleed gets all informa-
tion through the shared TLB, which can’t be partitioned between processes in software (either
application or OS).

1212 | 42

Meltdown Attack Lab

= \Website

= Hands-on experience
and very detailed
Instruction

Seminar of Computer Architecture

Meltdown Attack Lab

SEED Lab: A Hands-on Lab for Security Education

Overview SEED Project

Discovered in 2017 and publicly disclosed in January 2018, the « Home Page
Meltdown exploits critical vulnerabilities existing in many
modern processors, including those from Intel and ARM. The
vulnerabilities allow a user-level program to read data stored
inside the kernel memory. Such an access is not allowed by the
hardware protection mechanism implemented in most CPUs, but
a vulnerability exists in the design of these CPUs that makes it
possible to defeat the hardware protection. Because the flaw
exists in the hardware, it is very difficult to fundamentally fix the
problem, unless we change the CPUs in our computers. The Meltdown vulnerability represents a special
genre of vulnerabilities in the design of CPUs. Along with the Spectre vulnerability, they provide an
invaluable lesson for security education.

The learning objective of this lab is for students to gain first-hand experiences on the Meltdown attack.
The attack itself is quite sophisticated, so we break it down into several small steps, each of which is
easy to understand and perform. Once students understand each step, it should not be difficult for them
to put everything together to perform the actual attack.

Lab Tasks (Description)

* VM version: This lab has been tested on our pre-built SEEDUbuntul6.04 VM.
* Note:

o

Meltdown only works against Intel CPU, so if the host machine does not use Intel CPU, the
attack in this lab will not work.

Even if the OS of the host machine is patched, the attack still works, because we did not
patch the Linux OS running inside the VM.

o

Recommended Time:

* Supervised situation (e.g. a closely-guided lab session): 2 hours
* Unsupervised situation (e.g. take-home project): 1 week

Files that are Needed

* Meltdown_Attack.zip

Helpful Documents

* Meltdown and Spectre

WWELIET] yracuse University

DU Yinwei | 2018/12/12 | 43

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Meltdown_Attack/

Useful Resources

= YouTube video of attack demos:
= https://youtu.be/L1N1P2zxaZE
= https://youtu.be/bReA1dvGJ6Y
= https://youtu.be/RbHbFkh6eeE
= https://youtu.be/kwnh7gq356Jk

= Recommended papers:

= FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-
Channel Attack

= KASLR is Dead: Long Live KASLR

= Breaking Kernel Address Space Layout Randomization with Intel
TSX

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 44

https://youtu.be/L1N1P2zxaZE
https://youtu.be/bReA1dvGJ6Y
https://youtu.be/RbHbFkh6eeE
https://youtu.be/kwnh7q356Jk
https://eprint.iacr.org/2013/448.pdf
https://gruss.cc/files/kaiser.pdf
http://delivery.acm.org/10.1145/2980000/2978321/p380-jang.pdf?ip=195.176.111.17&id=2978321&acc=CHORUS&key=FC66C24E42F07228.A04051DB0C098788.4D4702B0C3E38B35.6D218144511F3437&__acm__=1542724814_4fd2d3bf366462cce6108d4beb270d24

Thanks for your listening!

Meltdown: Reading Kernel Memory from User Space

Seminar of Computer Architecture First name Surname (edit via “Insert” > “Header & Footer”) | 1.12.2014 | 45

des

®
3]
®©
Q
w
| -
o)
n
-]
S
o
e
>
—
o
&
0]
=
[
-
| -
Q
X
o)
=
S
®
0]
4

Supplementary Si

Meltdown

Meltdown — Optimization

1 ; rcx = kernel address, rbx = probe array
2 XOor rax, rax

3 retry:

4 mov al, byte [rcx]

5 shl rax, Oxc

6 jz retry

= Case of O: " o vom, quord [rbx + rax]

= |f the exception is triggered while trying to read from an
iInaccessible kernel address, the register where the data should be
stored, appears to be zeroed out.

= |f the zeroing out of the register is faster than the execution of the
subsequent instruction, the attacker may read a false value in the
third step.

= Meltdown retries reading the address until it encounters a value
different from ‘0’.

= Meltdown assumes that the secret value is indeed ‘0’ if there is no
cache hit at all

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 47

Meltdown — Optimization

Single-bit transmission:
= The performance bottleneck in the generic attack is Flush+Reload

= By transmitting only one bit, we only have to perform one
Flush+Reload at one time.

= Drawback: our side channel has a bias towards a secret value of ‘0’.

The number of bits read and transmitted at once is a tradeoff
between some implicit error-reduction and the overall transmission
rate of the covert channel.

nar of Computer Architecture DU Yinwei | 2018/12/12 | 48

Meltdown — Optimization

= Dealing with KASLR:

= With KASLR, the direct-physical map is randomized and not fixed
at a certain address.

= Need to obtain the randomized offset before mounting the
Meltdown attack.

= However, the randomization is limited to 40 bit — we can find out
the randomized address quickly.

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 49

Background — Out-of-order execution

From instruction unit

Instruction FP registers
queue
Load-store
operations
v Operand

| Address unit . FIoatung-ponnt buses
operations

Store buffers

¥ § v Load buffers

Y

Operation bus

3
2
1

Reservation
stations

Data yAddress

Memory unit FP adders

FP multipliers

Common data bus (CDB)

Seminar of Computer Architecture DU Yinwei | 2018/12/12 | 50

Background — Cache Attack

Exploit timing differences that are introduced by the
caches.

Evict+Time, Prim+Probe, and Flush+Reload

We use Flush+Reload: exploits the shared, inclusive last-

level cache

= Frequently flush a targeted memory location (clflush)

= Measure the time it takes to reload the data

= Determine whether data was loaded into the cache by another
process

Building a covert channel to leak information from one

security domain to another.

nar of Computer Architecture DU Yinwei | 2018/12/12 | 51

