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Problem




Problem

The shared DRAM memory system can be used to attack
the performance of other programs on a multi-core system

No efficient way to solve in software

a OS or other applications have no direct control over the way
DRAM requests are scheduled



Background
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Memory Access Scheduling Algorithm

First-Ready First-Come-First-Serve (FR-FCFS)
a Bank scheduler
Row-hit-first
Oldest-within-bank-first
a Across-bank scheduler
Oldest-across-banks-first

Problems:
o Row-hit-first scheduling prioritises high row-buffer locality

o Oldest-first scheduling prioritises threads that generate
memory requests at a faster rate



Memory Performance Hog (MPH)

A program that exploits unfairness in FR-FCFS
o DoS in a multi-core memory system

No efficient solution in software to defend against MPH

o The software has no direct control over memory requests
scheduling

Regular application can unintentionally behave like an MPH

o A memory-intensive application can cause severe performance
degradations for other threads



Example ot MPH

= STREAM(MPH): = RDARRAY:
0 High L2 miss rate o High L2 miss rate

o High row buffer locality 2 How row buffer locality
// initialize arrays a, b // initialize arrays a, b
for (j=0; j<N; j++) for (j=0; Jj<N; j++)
index[j] = J; // streaming index index[j] = rand(); // random # in [0,N]
for (j=0; j<N; j++) for (j=0; j<N; j++)
a[index[j]] = b[index[]j]]; a[index[j]] = b[index[j]];
for (3j=0; j<N; j++) for (j=0; Jj<N; j++)
b[index[]j]] = scalar * a[index[]j]]; b[index[j]] = scalar * a[index[j]];
(a) STREAM (b) RDARRAY
| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65

rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18




Example ot MPH 1

Running STREAM and RDARRAY together causes
o Slowdown of RDARRAY by 2.9x
o Only a slowdown of STREAM by 1.2x

A result of the row hit first scheduler the bank uses
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Goal




Goal

A new algorithm to schedule memory requests on a multi-
core shared DRAM memory system

o Every thread should have “fair” access to the memory
o Overall system throughput should not be reduced
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Novelty, Key Approach, and
Ideas




Approach

In a multi-core system with N threads, no thread should
suffer more relative performance slowdown — compared to

the performance it gets If it used the same memory system
by itself — than any other thread
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Fairness

Slowdown index Xi = Li/Lz’

o Captures the price a thread pays because of other threads
using the shared memory

0 Cumulated latency across all banks L ; .

o Ideal single core cumulated latency across all banks L,

max; X;

System fairness ¥V = —;
Hllnj Xj

o Captures the overall fairness of the system

Thread 4, 4
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Mechanisms
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Fair Memory Scheduling Algorithm

Important considerations
o How much unfairness is allowed to optimize for throughput?

FairMem Scheduling Algorithm

o Bank scheduler

Two candidate requests from each bank
o Highest FR-FCFS priority
0 Request by threat with highest slowdown index

Fairness-oriented selection

o If overall system unfairness is greater than the limit use request by
threat with highest slowdown index

o Across-bank scheduler
Highest-DRAM-slowdown-index-first across banks
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DRAM changes to
enable FairMem




Implementation

Calculating L;

a For each active thread, a counter maintains the number of

memory cycles during which one request is buffered for each
bank

Calculating L;
o Simulating an FR-FCFS priority scheme to get ideal latency

High hardware overhead N
o Reusing dividers and approximating Li can reduce overhead

18



Key Results:
Methodology and Evaluation




Methodology

= Simulated dual-core processor and memory system
o DRAM: 8 banks 2K-byte row-buffer
o DRAM latency:
= Row-buffer hit 50ns (200 cycles)

= Closed 75ns (300 cycles)
= Conflict 100ns (400 cycles)

= Evaluated applications

| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate |
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%
rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18 3%
small-stream || Microbenchmark | Streaming on 4-byte-element arrays 13.86 cycles/inst. 7143 97%
art SPEC 2000 FP | Object recognition in thermal image 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT | Chess game 0.64 cycles/inst. 035 15%
health Olden Columbian health care system simulator | 7.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT | Single-depot vehicle scheduling 4.73 cycles/inst. 4595 51%
vpr SPEC 2000 INT | FPGA circuit placement and routing 1.71 cycles/inst. 508 14%
= Metrics

o Execution time

o Throughput (executed instructions per 1000 cycles) 20



Results

= Baseline(FR-FCFS): = FairMem:
a Stream slowdown of 1.22x o Stream and raarray
o rdarray slowdown of 2.45x slowdown of 1.8x
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Normalized Execution Time (base: running alone)

(base: running alone)

Normalized Execution Time
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stream/health

= With FR-FCFS
o health slowdown of 8.5x
o stream slowdown of 1.05x

— S(ream

o 7 times higher L2 miss rate
o High row-buffer hit rate

g
=
4
8
2
:
= Inequality due to §
A
:

" baseline (FR-FCFS) FairMem

= FairMem splits slowdown to
2.28x(health) and 1.8x(stream)

| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate

[ stream ” Microbenchmark ] Streaming on 32-byte-element arrays | 46 .30 cycles/inst. 629.65

[ health || Olden | Columbian health care system simulator | 7.24 cycles/inst. 83.45
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Throughput

= Improvement up to 4.4x!

= But throughput reduced up to 9% when two extremely
memory-intensive applications run together

Combination Baseline (FR-FCFS) FairMem Throughput Fairness
Throughput | Unfairness | Throughput | Unfairness || improvement | improvement
stream-rdarray 248 2.00 22.5 1.06 0.91X 1.89X
art-vpr 401 4 223 5130 1.00 1.28X 2.23X
health-vpr 463 8 1.56 5084 1.09 1. 10X 1.43X
art-health 1793 162 1785 .15 41X
rdarray-art 65.9 2.24 97.1 1.06 1.47X 2.11X
stream-health 38.0 8.14 125 1.18 191X 6.90X
stream-vpr 87.2 8.73 390.6 1.11 | 448X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 406 98.6 1.06 1.93X 3.83X
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Summary
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Summary

Due to unfairness in the memory system of multi-core
architectures, applications can destroy the memory-related
performance of other applications

FairMem

a Uses a novel definition of fairness in shared memory DRAM to
track the level of unfairness and counters it

o Needs hardware implementation

Switching to FairMem greatly improves the fairness of shared
memory DRAM with only small losses in overall system
throughput
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Strengths




Strengths

Early examination of a problem that is still relevant today
with the rise of multi-core processors in the last years

Novel definition of fairness that is easy to understand and
can serve as a great basis to further work on

Sparked a lot of papers further examining the problem
o E.g. STFM

Well-written, easy to understand paper
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Weaknesses
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Weaknesses

Requires change in hardware by the manufacturer
o Introduces more overhead

Slight system throughput decreases for certain workloads

No direct measure of DRAM possible
o Only hypothesis of what algorithm is used in DRAM today

Problem is approached on a high level that leaves low level
consideration open
o No consideration about the scaling of energy consumption

when the core count increases
30



Thoughts and Ideas




Thoughts and Ideas

Could we incorporate other ideas to help with his problem?

o E.g. splitting memory intensive threads from low memory
intensive thread

Should we allow a thread to be prioritized in the DRAM
memory system to make sure it experiences no delay?

o Is it possible to combine it with the FairMem algorithm?

Are there other metrics we could track to reduce the
overhead?
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Takeaways




Key Takeaways

Memory performance hogs can exploit the scheduling of
DRAM requests to destroy the memory-related performance
of other applications

A security risk that will become more significant with the
increased use of multi-core processors

FairMem can reduce the unfairness of the system and stop
this attacks by tracking the slowdown a thread suffers

Easy to read and understand paper
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Questions/Open Discussion
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Discussion

Where can the proposed attack do the most harm?
o How dangerous is this attack in a real-world scenario?

Why is this new definition of fairness necessary?

a Is it possible to share the DRAM memory system in a different
way?

Could we use private DRAM memory for each core?
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STFM [Onur Mutlu ; Thomas Moscibroda, MICRO 2007]

ATLAS [Yoongu Kim ; Dongsu Han ; Onur Mutlu ; Mor
Harchol-Balter, HPCA 2010]

TCM [Yoongu Kim ; Michael Papamichael ; Onur
Mutlu ; Mor Harchol-Balter, MICRO 2010]
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