Memory Performance Attacks:

Denial of Memory Service in
Multi-Core Systems

Thomas Moscibroda Onur Mutlu
Microsoft Research

Presented by Florian Ettinger

ETH Zrich
17 October 2018

Problem

Problem

The shared DRAM memory system can be used to attack
the performance of other programs on a multi-core system

No efficient way to solve in software

a OS or other applications have no direct control over the way
DRAM requests are scheduled

Background

DRAM controller

L2 Cache 0 L2 Cache N-1
To/From Cores Requests Requests
A ‘ *
4] e N
a Crossbar
= \. J
(a] T R L e R R PR P -
o ! + Y i Memory Request
{"‘, ! | Buffer
= : BANK 0 BANK B-1 '
o .] . e 1
| REQUEST REQUEST :
B BUFFER BUFFER)
S T T T S R T T e e e s e o :
) - Memory Access
S Bank 0 . s . Bank B-1 Scheduler
- Scheduler Scheduler I
.6 p—
@]
-
- B
& DRAM Bus Scheduler
%2 J :
.. Selected Address and DRAM Command
v DRAM Address/Command Bus

To/From DRAM Ranks To DRAM Ranks

Memory Access Scheduling Algorithm

First-Ready First-Come-First-Serve (FR-FCFS)
a Bank scheduler
Row-hit-first
Oldest-within-bank-first
a Across-bank scheduler
Oldest-across-banks-first

Problems:
o Row-hit-first scheduling prioritises high row-buffer locality

o Oldest-first scheduling prioritises threads that generate
memory requests at a faster rate

Memory Performance Hog (MPH)

A program that exploits unfairness in FR-FCFS
o DoS in a multi-core memory system

No efficient solution in software to defend against MPH

o The software has no direct control over memory requests
scheduling

Regular application can unintentionally behave like an MPH

o A memory-intensive application can cause severe performance
degradations for other threads

Example ot MPH

= STREAM(MPH): = RDARRAY:
0 High L2 miss rate o High L2 miss rate

o High row buffer locality 2 How row buffer locality
// initialize arrays a, b // initialize arrays a, b
for (j=0; j<N; j++) for (j=0; Jj<N; j++)
index[j] = J; // streaming index index[j] = rand(); // random # in [0,N]
for (j=0; j<N; j++) for (j=0; j<N; j++)
a[index[j]] = b[index[]j]]; a[index[j]] = b[index[j]];
for (3j=0; j<N; j++) for (j=0; Jj<N; j++)
b[index[]j]] = scalar * a[index[]j]]; b[index[j]] = scalar * a[index[j]];
(a) STREAM (b) RDARRAY
| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65

rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18

Example ot MPH 1

Running STREAM and RDARRAY together causes
o Slowdown of RDARRAY by 2.9x
o Only a slowdown of STREAM by 1.2x

A result of the row hit first scheduler the bank uses

3.0 30
- STREAM » {RDARRAY X -
E 25 E 251 -
= =]
= g
£ 20 = 207 2.9%—
= = i
g g 1
Z 15 1.2x Z 157 -
B D T
S 10 - —— S 10+ - v —
505 S 051 —
Z Z

0.0 0.0-

o J T
stream alone with rdarray rdarray alone with stream

Goal

Goal

A new algorithm to schedule memory requests on a multi-
core shared DRAM memory system

o Every thread should have “fair” access to the memory
o Overall system throughput should not be reduced

11

Novelty, Key Approach, and
Ideas

Approach

In a multi-core system with N threads, no thread should
suffer more relative performance slowdown — compared to

the performance it gets If it used the same memory system
by itself — than any other thread

13

Fairness

Slowdown index Xi = Li/Lz’

o Captures the price a thread pays because of other threads
using the shared memory

0 Cumulated latency across all banks L ; .

o Ideal single core cumulated latency across all banks L,

max; X;

System fairness ¥V = —;
Hllnj Xj

o Captures the overall fairness of the system

Thread 4, 4

14

Mechanisms

15

Fair Memory Scheduling Algorithm

Important considerations
o How much unfairness is allowed to optimize for throughput?

FairMem Scheduling Algorithm

o Bank scheduler

Two candidate requests from each bank
o Highest FR-FCFS priority
0 Request by threat with highest slowdown index

Fairness-oriented selection

o If overall system unfairness is greater than the limit use request by
threat with highest slowdown index

o Across-bank scheduler
Highest-DRAM-slowdown-index-first across banks

16

DRAM changes to
enable FairMem

Implementation

Calculating L;

a For each active thread, a counter maintains the number of

memory cycles during which one request is buffered for each
bank

Calculating L;
o Simulating an FR-FCFS priority scheme to get ideal latency

High hardware overhead N
o Reusing dividers and approximating Li can reduce overhead

18

Key Results:
Methodology and Evaluation

Methodology

= Simulated dual-core processor and memory system
o DRAM: 8 banks 2K-byte row-buffer
o DRAM latency:
= Row-buffer hit 50ns (200 cycles)

= Closed 75ns (300 cycles)
= Conflict 100ns (400 cycles)

= Evaluated applications

| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate |
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%
rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18 3%
small-stream || Microbenchmark | Streaming on 4-byte-element arrays 13.86 cycles/inst. 7143 97%
art SPEC 2000 FP | Object recognition in thermal image 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT | Chess game 0.64 cycles/inst. 035 15%
health Olden Columbian health care system simulator | 7.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT | Single-depot vehicle scheduling 4.73 cycles/inst. 4595 51%
vpr SPEC 2000 INT | FPGA circuit placement and routing 1.71 cycles/inst. 508 14%
= Metrics

o Execution time

o Throughput (executed instructions per 1000 cycles) 20

Results

= Baseline(FR-FCFS): = FairMem:
a Stream slowdown of 1.22x o Stream and raarray
o rdarray slowdown of 2.45x slowdown of 1.8x
235 2
w— b2 5¢ line | e—aseline

Normalized Execution Time

FairMem g | e FairMem
2.0 = 207
. = |
i STREAM 2 | RDARRAY
1S § 151
S <
. = 1
1.0 '§ 1.0+
ED
0.5 £ 05
& .
7z 1
0.0 : 0.0- :
stream alone with rdarray rdarray alone with stream

21

Normalized Execution Time (base: running alone)

(base: running alone)

Normalized Execution Time

Results

30 30 30 30
— — rdarray s |0 |th —
—VPT fmm— o rf —\lpr e haal th
25 25 25 25
20 20 20 20
15 15 1.54 15

0.5+

0.0-

Normalized Execution Time (base: running alone)

=
il

0.5

0.0-

1.0 4

0.5 1

0.0-

Normalized Execution Time (base: running alone)

0.5+

0.0-

Normalized Execution Time (base: running alone)

baseline (FR-FCES) FairMem baseline (FR-FCES) FairMem baseline (FR-FCFS) FairMem baseline (FR-FCES) FairMem
90 90 90 - 90
i3 — 1A 5 — (11T 54 — (1) a5 — (101
ey 80 s fealth 80 o 80 — ot

Normalized Execution Time (base: running alone)

baseline (FR-FCFS) FairMem

ormalized Execution Time (base: running alone)

N
£

-FCFS)

FairMem

Normalized Execution Time (base: running alone)

stream/health

= With FR-FCFS
o health slowdown of 8.5x
o stream slowdown of 1.05x

— S(ream

o 7 times higher L2 miss rate
o High row-buffer hit rate

g
=
4
8
2
:
= Inequality due to §
A
:

" baseline (FR-FCFS) FairMem

= FairMem splits slowdown to
2.28x(health) and 1.8x(stream)

| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate

[stream ” Microbenchmark] Streaming on 32-byte-element arrays | 46 .30 cycles/inst. 629.65

[health || Olden | Columbian health care system simulator | 7.24 cycles/inst. 83.45

23

Throughput

= Improvement up to 4.4x!

= But throughput reduced up to 9% when two extremely
memory-intensive applications run together

Combination Baseline (FR-FCFS) FairMem Throughput Fairness
Throughput | Unfairness | Throughput | Unfairness || improvement | improvement
stream-rdarray 248 2.00 22.5 1.06 0.91X 1.89X
art-vpr 401 4 223 5130 1.00 1.28X 2.23X
health-vpr 463 8 1.56 5084 1.09 1. 10X 1.43X
art-health 1793 162 1785 .15 41X
rdarray-art 65.9 2.24 97.1 1.06 1.47X 2.11X
stream-health 38.0 8.14 125 1.18 191X 6.90X
stream-vpr 87.2 8.73 390.6 1.11 | 448X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 406 98.6 1.06 1.93X 3.83X

24

Summary

25

Summary

Due to unfairness in the memory system of multi-core
architectures, applications can destroy the memory-related
performance of other applications

FairMem

a Uses a novel definition of fairness in shared memory DRAM to
track the level of unfairness and counters it

o Needs hardware implementation

Switching to FairMem greatly improves the fairness of shared
memory DRAM with only small losses in overall system
throughput

26

Strengths

Strengths

Early examination of a problem that is still relevant today
with the rise of multi-core processors in the last years

Novel definition of fairness that is easy to understand and
can serve as a great basis to further work on

Sparked a lot of papers further examining the problem
o E.g. STFM

Well-written, easy to understand paper

28

Weaknesses

29

Weaknesses

Requires change in hardware by the manufacturer
o Introduces more overhead

Slight system throughput decreases for certain workloads

No direct measure of DRAM possible
o Only hypothesis of what algorithm is used in DRAM today

Problem is approached on a high level that leaves low level
consideration open
o No consideration about the scaling of energy consumption

when the core count increases
30

Thoughts and Ideas

Thoughts and Ideas

Could we incorporate other ideas to help with his problem?

o E.g. splitting memory intensive threads from low memory
intensive thread

Should we allow a thread to be prioritized in the DRAM
memory system to make sure it experiences no delay?

o Is it possible to combine it with the FairMem algorithm?

Are there other metrics we could track to reduce the
overhead?

32

Takeaways

Key Takeaways

Memory performance hogs can exploit the scheduling of
DRAM requests to destroy the memory-related performance
of other applications

A security risk that will become more significant with the
increased use of multi-core processors

FairMem can reduce the unfairness of the system and stop
this attacks by tracking the slowdown a thread suffers

Easy to read and understand paper

34

Questions/Open Discussion

35

Discussion

Where can the proposed attack do the most harm?
o How dangerous is this attack in a real-world scenario?

Why is this new definition of fairness necessary?

a Is it possible to share the DRAM memory system in a different
way?

Could we use private DRAM memory for each core?

36

Additional Slides

Additional papers

STFM [Onur Mutlu ; Thomas Moscibroda, MICRO 2007]

ATLAS [Yoongu Kim ; Dongsu Han ; Onur Mutlu ; Mor
Harchol-Balter, HPCA 2010]

TCM [Yoongu Kim ; Michael Papamichael ; Onur
Mutlu ; Mor Harchol-Balter, MICRO 2010]

38

