# RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu

Ben Jaiyen Richard Veras

Carnegie Mellon University

Onur Mutlu

Presented by Robin Burkhard 14 November 2018

### Background, Problem & Goal

### Background: DRAM Refresh

- DRAM cells leak over time
  - Rows need to be refreshed periodically
- Cells have different retention times
  - Refresh each row every 64 ms
- Refresh degrades performance
  - Bank unavailable while refreshed
  - Memory accesses have to wait
- Each refresh consumes energy



### Background: DRAM Refresh



### Retention Time Distribution



64ms refresh interval is a waste of energy and time caused by very few cells

Idea of RAIDR: Refresh weak rows at high frequency and all other rows at low frequency

# Mechanism & Implementation

### RAIDR Operation

- 1. Profiling: Get the retention time for each row
- 2. Binning: Store rows into different bins based on retention time
- 3. Refreshing: Use different refresh rates for different bins

### RAIDR Profiling

Write all bits in row to 1



Wait for first bit to change



#### Default Configuration of RAIDR for 32GB DRAM system:

64-128ms **bin** 

64ms refresh interval ~ 30 rows

128-256ms **bin** 

128ms refresh interval ~ 1000 rows

remaining rows

256ms refresh interval ~ 4 Million rows

Space-efficient implementation using **Bloom Filters** 









- no overflow property guaranteed
- false positives acceptable
- inability to remove elements acceptable

### RAIDR Refreshing

rate at extended temperature

mode (>85° C)



### Evaluation & Results

### Evaluation System

Table 1: Evaluated system configuration

| Component                     | Specifications                                                                                                          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Processor Per-core cache      | 8-core, 4 GHz, 3-wide issue, 128-entry instruction window, 16 MSHRs per core 512 KB, 16-way, 64 B cache line size       |
| Memory controller             | FR-FCFS scheduling [41, 54], line-interleaved mapping, open-page policy                                                 |
| DRAM organization DRAM device | 32 GB, 2 channels, 4 ranks/channel, 8 banks/rank, 64K rows/bank, 8 KB rows 64x Micron MT41J512M8RA-15E (DDR3-1333) [33] |

**Table 2: Bloom filter properties** 

| Retention range   | Bloom filter size $m$ | Number of hash functions $k$ | Rows in bin | False positive probability |
|-------------------|-----------------------|------------------------------|-------------|----------------------------|
| 64 ms – 128 ms    | 256 B                 | 10                           | 28          | $1.16 \cdot 10^{-9}$       |
| 128  ms - 256  ms | 1 KB                  | 6                            | 978         | 0.0179                     |



1.25 KB in Memory Controller

### Compared other Mechanisms

#### Auto Refresh

- Memory controller sends auto-refresh commands causing DRAM to refresh several rows in one rank automatically
- Common mechanism in existing systems

#### Distributed Refresh

- Memory Controller sends address of row to be refreshed and can make use of banklevel parallelism
- Same number of refreshes as Auto-Refresh

#### Smart Refresh

- Timeout counter for each row that is reset on access or refresh
- Rows only get refreshed when the counter has expired

#### No Refresh

Not used in practice

### Results: Number of Refresh Operations



### Results: System Performance



(a) Normal temperature range



(b) Extended temperature range

### Results: Energy Consumption



100 **RAIDR** Auto 18.9% Distributed No Refresh Smart 80 Energy per access (nJ) 17.3% 16.1% 60 15.4% 13.7% 12.6% 20 25% 50% 75% 100% Memory-intensive benchmarks in workload

(b) Extended temperature range

# Strengths & Weaknesses

### Strengths

- Significant reduction in number of refreshes is achieved by very simple and clever idea
- Benefits of RAIDR increase with higher DRAM capacity
- Modifications to Memory Controller are small and not too complex
- No modifications to DRAM or software needed
- Applicable to many different types of DRAM (e.g. 3D-stacked DRAMs, eDRAMs)

### Weaknesses

- RAIDR's profiling method might not identify all weak rows
  - Retention times of cells are dependent on values stored in nearby cells (Data Pattern Dependencies)
  - All 1 pattern used by RAIDR can cause cells to have higher retention times and be profiled wrong
- RAIDR is unable to adapt refresh rate for rows at runtime
  - Cells might shift randomly between different retention time states (Variable Retention Times)
  - Later change in retention time can cause a cell to be refreshed at too low rate
- DPD/VRT can cause retention errors which makes the system less reliable
- One weak cell still causes a whole row (64K cells) to be refreshed at high rate
- Setting default interval much higher than 256ms becomes inefficient again

### Thoughts and Ideas

- Deactivating rows with lower retention time than 256ms?
- Reduce refresh rate for everything and increase fault tolerance ?
- Skip refresh of rows that contain only '0's?
- Handle VRT failures at runtime and adapt refresh rate ?
- Replacing DRAM by devices that don't need to be refreshed?

### Questions & Discussion

# Backup Slides

### DRAM System Organization



Figure 2: DRAM system organization

### Idle Power Consumption



(c) Idle power consumption

### RAIDR Configurations



**Table 3: Tested RAIDR configurations** 

| Key        | Description                                                                         | Storage Overhead |
|------------|-------------------------------------------------------------------------------------|------------------|
| Auto       | Auto-refresh                                                                        | N/A              |
| RAIDR      | Default RAIDR: 2 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ )             | 1.25 KB          |
| 1 bin (1)  | 1 bin $(64-128 \text{ ms}, m = 512)$                                                | 64 B             |
| 1 bin (2)  | 1 bin $(64-128 \text{ ms}, m = 1024)$                                               | 128 B            |
| 2 bins (1) | 2 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 2048$ )                            | 512 B            |
| 2 bins (2) | 2 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 4096$ )                            | 768 B            |
| 2 bins (3) | 2 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 16384$ )                           | 2.25 KB          |
| 2 bins (4) | 2 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 32768$ )                           | 4.25 KB          |
| 3 bins (1) | 3 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ ; 256–512 ms, $m = 32768$ )  | 5.25 KB          |
| 3 bins (2) | 3 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ ; 256–512 ms, $m = 65536$ )  | 9.25 KB          |
| 3 bins (3) | 3 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ ; 256–512 ms, $m = 131072$ ) | 17.25 KB         |
| 3 bins (4) | 3 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ ; 256–512 ms, $m = 262144$ ) | 33.25 KB         |
| 3 bins (5) | 3 bins (64–128 ms, $m = 2048$ ; 128–256 ms, $m = 8192$ ; 256–512 ms, $m = 524288$ ) | 65.25 KB         |

### Scalability



### Period Counter



### Papers

- https://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh\_isca12.pdf
- http://www.pdl.cmu.edu/PDL-FTP/NVM/dram-retention\_isca13.pdf
- http://www.istc-cc.cmu.edu/publications/papers/2015/avatar-dramrefresh\_dsn15.pdf
- http://www.xcg.cs.pitt.edu/papers/baek-tc13.pdf
- https://prashantnair.bitbucket.io/isca40/ArchShield.pdf