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Background, Problem & Goal
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The gap in performance between memory and processors is plotted over time

Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2007.
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Goal: No delays due to cache misses

◼ How to achieve?

❑ Make the caches bigger?

❑ Inform the CPU of future accesses?

❑ Let the CPU guess future accesses?

❑ Let the memory system guess future accesses?

Expensive

Consumes 

Bandwidth

Requires Predictor

Pollutes Caches
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In-order architecture
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In-order architecture

◼ Advantages

❑ Simple to understand, program

❑ Cheap to produce

❑ Low energy consumption

◼ Disadvantages

❑ Slow

❑ Dependency-unaware

◼ Almost no ILP
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In-order with runahead execution

◼ Dundas, James, and Trevor Mudge. "Improving data cache performance by pre-
executing instructions under a cache miss." Proceedings of the 11th international 
conference on Supercomputing. ACM, 1997.

◼ Idea: Instead of blocking on memory operations, run ahead and touch 
everything

❑ But do not change the architectural state
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In-order architecture with runahead

0 A

1 B

2 C

3 D

4 E

5 F

6 G

G

F E

A B C D

8

InstructionPC

Currently executing Runahead execution



In-order architecture with runahead

◼ Advantages

❑ Simple

❑ MLP

◼ Disadvantages

❑ Small additional cost

❑ Some executed instructions are repeated

◼ Results of runahead execution are not reused

9



Out-of-Order architecture
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◼ Physical Register File (PRF)

❑ Physical Memory for Registers

◼ Architectural Register File (ARF)

❑ “Programmer model”

◼ Register Alias Table (RAT)

❑ Mapping architectural (virtual) registers to physical registers

◼ PRF much larger than ARF

◼ Register Renaming

❑ Rename the Architectural Register of an instruction to a Physical Register (and back)

◼ Retirement

❑ Effects of Instruction become observable

❑ In-order (only head of instruction window can retire)

RAT

EAX

EBX

ECX

…

PRF

R0

R1

R2

…

R127

ARF

EAX: R42

EBX: R2

ECX: R1

…



Out-of-order architecture
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Out-of-order architecture

◼ Scheduling Window

❑ How many instructions are waiting for execution

❑ Element on chip: Reservation Station

◼ Instruction Window

❑ How many instructions are waiting to be retired

❑ Element on chip: Reorder Buffer (ROB)

◼ In reality: Instruction Window larger than Scheduling Window

❑ Sched. W. subset of Inst. W.

◼ For this presentation: Instruction Window = Scheduling Window
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Out-of-order architecture
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Out-of-order architecture

◼ Advantages

❑ Dependency-Aware

❑ Fast (ILP, MLP)

❑ Instructions executed once

◼ Disadvantages

❑ Expensive

❑ Performance largely dependent on window size

❑ Blocking
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Instruction Window Size
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Key Approach and Ideas
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Make the window non-blocking

◼ A non-blocking window behaves like a bigger blocking window

❑ But costs less

◼ Existing hardware can be used while otherwise idle
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Out-of-order architecture with Runahead
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Out-of-order architecture with Runahead

◼ Advantages

❑ Dependency-Aware

❑ Fast (ILP, increased MLP)

❑ Less hardware cost than bigger instruction windows and OoO-only

❑ Increases usage, less misses

◼ Disadvantages

❑ Expensive

❑ Slight additional hardware cost

❑ Instructions are repeated
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Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoOConventional OoO
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Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Mechanisms (in some detail)
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Runahead Mode

◼ Turning the CPU into an expensive (and smart) prefetcher

◼ Everything runs the same as in “Normal Mode”

◼ Exceptions:

❑ Interrupts

❑ I/O Accesses

❑ Stores

◼ Has no effect on the architectural state

❑ “Hidden from the programmer”
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Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows 

for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9 

2003. Proceedings. The Ninth International Symposium on. IEEE, 2003. 32
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Entering Runahead Mode
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Leaving Runahead Mode

Architectural 

Register

File

Branch History 

Register

Return Address 

Stack

Blocking memory 

operation finishes

Restore

Pipeline

flush

Physical 

Register

Files

Both RATs

Same 

procedure as 

branch 

misprediction

Run

Reset

Checkpointed
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Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows 

for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9 

2003. Proceedings. The Ninth International Symposium on. IEEE, 2003. 36



The root of all evil

Blocking load r0 = [memaddr]

r1 = r0 + 1

Load r2 = [r1]
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Full Instruction Window
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Dependency

r1 = r0 + 1

Load r2 = [r1]
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Instruction Window
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Instruction and Data Validity

INV

INV

INV

OR
INV

DestinationSource

Any source invalid implies destination invalid, 

makes instruction “invalid”

The instruction causing the runahead mode is 

invalid by definition

If an instruction reaches the head of the 

instruction window:

if invalid: pseudo-retire immediately

else: wait for execution
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Instruction and Data Validity
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mov ebx, eax

; eax is 42

; ebx is invalid ; ebx is 42, valid

; eax is valid; eax is invalid



What about store operations?

◼ Instructions in Runahead mode must not change the architectural state

◼ In previous work (ACM 1997), store operations were ignored

❑ But they are actually essential to performance

mov dword ptr[edx+8], eax
//...
mov ebx, dword ptr[edx+8]
mov ecx, dword ptr[ebx]

41

ecx depends on ebx

and memory state, 

ebx depends on eax

ptr[2] = in;
//...
tmp = *(ptr[2]);



New “cache”

◼ Never writes back

◼ 512B

◼ STO-bit

❑ Inverse cache-cold-bit

◼ INV-bit
Runahead

Cache

S
T
O

I
N
V
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Store operations

Invalid store instruction scheduled

Sets the invalid bit of the store 

buffer
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Load operations

Invalid store instruction scheduled

Sets the invalid bit of the store 

buffer
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mov dword ptr[esp+8], eax
// few instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:

Mutlu, O.

HPCA03



Store operations

Invalid store instruction retired

sets INV, 

sets STO
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Load operations

Invalid store instruction retired

sets INV,

sets STO
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mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:
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Store operations

Valid store instruction executed

Clears the invalid bit of the store 

buffer

Requests the affected cache line

On miss: Propagate through 

hierarchy
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Load operations

Valid store instruction executed

Clears the invalid bit of the store 

buffer

Requests the affected cache line

On miss: Propagate through 

hierarchy
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mov dword ptr[esp+8], eax
// some instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:
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Store operations

Valid store instruction retired

Writes value, clears INV, sets STO
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Load operations

Valid store instruction retired

Writes value, clears INV, sets STO
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mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:

Mutlu, O.

HPCA03



Without Runahead Cache Load operations

Valid store instruction retired

Store decays to NOP
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mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now marked 

valid, but is actually 

stale
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Without Runahead Cache Load operations

Invalid store instruction retired

Store decays to NOP
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mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now marked 

valid, but is actually 

stale and invalid

Image:
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Load operations

Store Buffer    R. Cache    L1     Miss
On miss: Propagate through 

hierarchy
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Key Results: 

Methodology and Evaluation
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Methodology

◼ Running Long Instruction Traces (LITs) in a simulator

❑ Each LIT is 30 ∙ 106 instructions

❑ Chosen to be representative of benchmark

❑ Injected instructions to simulate interrupts

❑ In total 147 LITs
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Target Machine
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Core Frequency 4 GHz

Instruction Window Size 128

Scheduling Window Size 16 int, 8 mem, 24 fp

Load and store buffer size 48 load, 32 store

L1 Cache 32 KB 8-way

L2 Cache 512 KB 8-way

Bus Latency (L2 Miss Latency) 495 CPU cycles
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Summary
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Summary

◼ Goal

❑ Efficiently increase performance by removing the bottleneck of memory latency

◼ Mechanisms

❑ Transform the blocking instruction window into a nonblocking instruction window

❑ Add a runahead cache to delay the divergence point

◼ Results

❑ Runahead itself gives a performance increase of 11% on the evaluated workload

❑ When working with a runahead cache, this improvement is doubled to 20%
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Strengths
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Strengths

◼ Small changes with big effects

◼ Allows for combination with other optimizations

◼ Successful adaption and extension of in-order runahead

◼ Increases Memory Level Parallelism (MLP)

◼ Well-written
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Weaknesses
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Weaknesses

◼ Parts of paper did not age well

◼ Missing/Hidden information in paper

❑ e.g. What happens on a page fault?

◼ Limited by memory bandwidth

◼ Prefetch distance limited by memory speed

❑ The faster a full window stall resolves, the less prefetch requests are generated
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Future?
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Future?
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5 GHz

224

97 unified

72 load, 56 store

32 KB, 8-way, 64-byte line size

5 cycles

256KB, 4-way, 64-byte line size

12 cycles

320 cycles-ish (80ns / 4 GHz)

NOW



Thoughts and Ideas
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Sun Rock

◼ https://arstechnica.com/gadgets/2008/02/sun-can-you-smell-what-the-rock-is-cookin/

◼ Magic Everything-CPU

❑ Out-of-order retirement

❑ Hardware scout

❑ Hardware Transactional Memory

◼ Cancelled in 2010

◼ “This processor had two incredible virtues: It was incredibly slow and it consumed vast amounts of energy. 
It was so hot that they had to put about 12 inches of cooling fans on top of it to cool the processor,” said 
[Larry] Ellison. “It was just madness to continue that project.”

◼ Chaudhry, Shailender, et al. "High-performance throughput computing." IEEE Micro 25.3 (2005): 32-45.

◼ https://www.reuters.com/article/us-oracle/special-report-can-that-guy-in-ironman-2-whip-ibm-in-real-life-
idUSTRE64B5YX20100512, accessed 1.11.18
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Thoughts and ideas

◼ How to reuse the added structures?

❑ Easier hardware debugging by having the architectural register file collected anyways

❑ Adding instructions to use runahead cache as a scratch buffer?

◼ As transactional memory?

❑ Using the checkpointed architectural register file for context switches?

◼ pushad
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Takeaways
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Takeaways

◼ It is easier to reuse resources

◼ Adapting existing techniques might work very well
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Further reading

◼ Mutlu, Onur. Efficient runahead execution processors. Diss. 2006.

◼ Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency 
tolerance." IEEE Micro 26.1 (2006): 10-20.

◼ Mutlu, Onur, et al. "On reusing the results of pre-executed instructions in a runahead execution 
processor." IEEE Computer Architecture Letters 4.1 (2005): 2-2.

◼ Chappell, Robert S., et al. "Simultaneous subordinate microthreading (SSMT)." Computer Architecture, 
1999. Proceedings of the 26th International Symposium on. IEEE, 1999.

◼ Hashemi, Milad, Onur Mutlu, and Yale N. Patt. "Continuous runahead: Transparent hardware acceleration 
for memory intensive workloads." The 49th Annual IEEE/ACM International Symposium on 
Microarchitecture. IEEE Press, 2016.

◼ Ramirez, Tanausu, et al. "Runahead threads to improve SMT performance." High Performance Computer 
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on. IEEE, 2008.

◼ Chaudhry, Shailender, et al. "High-performance throughput computing." IEEE Micro 25.3 (2005): 32-45.

◼ Cain, Harold W., and Priya Nagpurkar. "Runahead execution vs. conventional data prefetching in the IBM 

POWER6 microprocessor." Performance Analysis of Systems & Software (ISPASS), 2010 IEEE 

International Symposium on. IEEE, 2010.

◼ “Port Contention for Fun and Profit” (brand new, not published yet)

75



Questions
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Open Discussion
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Open Discussion

◼ What’s a simple worst case where Runahead Execution would not give any 
benefits?

◼ Would it be beneficial to also catch and treat page faults in runahead mode?

◼ If you had to choose between SMT and Runahead Execution: Which one?

❑ It is possible to combine them (at a small cost). Is there a reason you would not want 
to?

❑ SMT leak: “Port Contention for Fun and Profit” (“PortSmash”) CVE-2018-5407

◼ Runahead Execution implemented in in-Order CPUs, but not in OoO-CPUs

❑ Why?

❑ How does the addition of L3-cache impact Runahead Execution?

◼ What if instead of having an L3, the L2 was just bigger? What changes?
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Open Discussion

◼ Intel Atom processors used to be in-Order Architectures, but did not feature 
runahead execution. Why?

◼ Other ideas for runahead execution?

❑ Continuous Runahead Execution

❑ Subordinate Simultaneous Multithreading

◼ Other ideas to overcome the memory wall?
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Backup Slides
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