
||Seminar in Computer Architecture

Daniel A. Jiménez
Calvin Lin

Department of Computer Sciences - The University of Texas
Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture
2001

16 May 2019 1

Dynamic Branch Prediction with Perceptrons

Simone Guggiari

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 2

1. Summary

||Seminar in Computer Architecture

▪ Use machine learning (perceptrons)

▪ Improve branch prediction accuracy

▪ Speed up overall program execution

16 May 2019Simone Guggiari 3

Overview

||Seminar in Computer Architecture

▪ Computer architecture increasingly relies on speculation to improve performance
▪ Examples:

▪ Data Prefetching [12]
▪ (local/temporal consistency)

▪ Value Prediction
▪ Branch Prediction

▪ start fetching/executing instructions before next PC is known

▪ Accuracy has big influence on performance
▪ Small accuracy increase causes big speedup
▪ Less cycles wasted

16 May 2019Simone Guggiari 4

The Problem

▪ [12] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach, Second Edition. Morgan Kaufmann Publishers,
1996.

||Seminar in Computer Architecture

▪ Increase program speed
▪ Reduce average CPI
▪ CPI = cost per instruction
▪ CPI = 1 + mis/inst * penalty/mis
▪ Penalty: depends on pipeline (fixed)
▪ Hence: reduce mispredictions/instruction

▪ Increase predictor accuracy

16 May 2019Simone Guggiari 5

The Goal

Develop novel approach to increase branch
prediction accuracy

||Seminar in Computer Architecture

▪ Assumptions:
▪ 20% branches
▪ 60% taken

▪ 2 predictors
▪ Always “not taken”

▪ Simply increase PC
▪ Misprediction: 0.2*0.6=0.12

▪ More accurate predictor
▪ Misprediction: 0.01

▪ Small accuracy increase
▪ Big speedup!

6

Example: Accuracy Influence on Different Architectures

||Seminar in Computer Architecture

▪ Problem:
▪ Which instruction to fetch after

BEQ?
▪ Branch result still unknown

▪ Options:
▪ Pipeline stall

▪ Lose cycles in all cases
▪ Guess next PC

▪ Flush if incorrect

7

Program Example

||Seminar in Computer Architecture

▪ Pipelined architecture

▪ Every time branch is encountered
▪ Stall (wait)
▪ Predict

▪ Start executing
▪ If incorrect, flush

▪ long pipelines more costly

16 May 2019Simone Guggiari 8

Branch Prediction

||Seminar in Computer Architecture

▪ Use ML to increase performance
▪ Put it in HW
▪ Simplest model of NN

▪ Perceptron
▪ Each branch has its own
▪ It predicts whether branch taken/not

▪ Advantages
▪ Better branch prediction accuracy

▪ Existing methods are less accurate
▪ e.g. 2 bit counters

▪ Considers longer branch history
▪ Linear cost (previously exponential)

▪ Performance
▪ 14.7% over other methods (gshare)

16 May 2019Simone Guggiari 9

The Main Idea

||Seminar in Computer Architecture 10

Outline

Related Work Method Design Space HW
ImplementationResults

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 11

2. Related Work

||Seminar in Computer Architecture

▪ Store previous outcome per branch
▪ Works well:

▪ Always taken
▪ T T T T T…

▪ Always not taken
▪ N N N N N …

▪ Taken >> Not taken
▪ T T T T N T T T T …
▪ Two misprediction per anomaly

▪ Not taken >> Taken
▪ Works bad

▪ Taken ≈ Not taken
▪ T N N T N T T T N T N ...

16 May 2019Simone Guggiari 12

1 Bit Counters

||Seminar in Computer Architecture

▪ 2 bits
▪ 4 states

▪ Works well:
▪ Always taken

▪ T T T T T T T T…
▪ Always not taken

▪ N N N N N N N …
▪ Taken >> Not taken

▪ T T T T N T T T T …
▪ One misprediction per anomaly
▪ Improvement over 1-bit counter

▪ Simple to implement, cheap

16 May 2019Simone Guggiari 13

2 Bit Saturating Counters

||Seminar in Computer Architecture

▪ BTB
▪ Branch Target Buffer
▪ Store next PC for current PC
▪ Expensive: cannot store it for each PC
▪ Aliasing

16 May 2019Simone Guggiari 14

BTB and BHT

▪ BHT
▪ Branch History Table
▪ Predict the direction
▪ Lookup address only if taken branch
▪ Reduce aliasing in BTB
▪ 1bit/entry

063 PC now

BTB

PC new

1024
entries

BHTPC now

▪ 0 not a taken branch (PC++)
▪ 1 taken branch (use BTB)

||Seminar in Computer Architecture

▪ Store last N branch outcomes
▪ Compute function t(x_1, …, x_N)
▪ Can learn any function (up to n bits)

▪ T T N T T N ...
▪ Exponential cost

▪ Space: N + 2*2^N
▪ Most counters unused
▪ Example

▪ 1 bit history with 2-bit counters

16 May 2019Simone Guggiari 15

N-Bit History Table

PC
BHT

H 2BC 2BC

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 16

PHT (Pattern History Table)

▪ 2-level schemes
▪ PHT (pattern history table)
▪ 2 bit saturating counters

▪ assumption: behavior similar to past
▪ change counter on outcome

▪ Problems
▪ aliasing (need enough HW budget)
▪ limited history length

▪ correlation between far away branches
▪ use hash to have variable length

||Seminar in Computer Architecture

▪ Pshare
▪ Private History
▪ Shared Counters
▪ Good for

▪ even-odd pattern
▪ 8-iteration loops

▪ Gshare
▪ Global History
▪ Shared Counters
▪ Good for

▪ correlated branches

16 May 2019Simone Guggiari 17

Pshare and Gshare

||Seminar in Computer Architecture

▪ Compute any function
▪ Uses sample input/output to learn
▪ Many applications

▪ pattern recognition, classification, image processing

▪ Static Branch Prediction [4]
▪ Estimate branch direction

▪ Input: control flow and opcode
▪ Use previously trained network
▪ 80% accuracy (over 75%)
▪ Worse than dynamic

▪ Genetic Algorithms [7]
▪ Evolve design parameters

16 May 2019Simone Guggiari 18

Neural Networks

▪ [4] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn. Evidence-based static branch prediction using machine
learning. ACM Transactions on Programming Languages and Systems,
19(1), 1997

▪ [7] J. Emer and N. Gloy. A language for describing predictors and its
application to automatic synthesis. In Proceedings of the 24th
International Conference on Computer Architecture, June 1997.

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 19

3. Branch Prediction with Perceptrons

||Seminar in Computer Architecture

▪ Model brain function
▪ Simplest model

▪ 1 layer, 1 neuron
▪ multiple input, 1 output (target)

▪ Idea
▪ Keep track of correlation

▪ Global & local history

▪ Formula
▪ dot product (w.x)
▪ bias (independent probability)
▪ allowed values (-1, +1)
▪ outcome: >=0 (taken), <0 (not taken)

16 May 2019Simone Guggiari 20

How Perceptrons Work

||Seminar in Computer Architecture

▪ Advantages
▪ Efficient HW implementation
▪ Weights revealing (correlation)

▪ Other possibilities
▪ Too costly

▪ Back propagation
▪ Decision trees

▪ Worse performance
▪ Adaline
▪ Hebb learning

▪ Obscure decision process

16 May 2019Simone Guggiari 21

Why Perceptrons

||Seminar in Computer Architecture

▪ Parameters
▪ t (true outcome)
▪ θ (training threshold)

▪ Execution
▪ adjust weight

▪ increase (agree), decrease (disagree)
▪ if consistent, go towards extreme

▪ Weight
▪ big influence on decision

16 May 2019Simone Guggiari 22

Training Perceptrons

||Seminar in Computer Architecture

▪ Linear Separability
▪ Solution to equation

▪ Hyperplane
▪ Not always exists

▪ Underlying fundamental separability
▪ “How accurate can you be”

▪ However:
▪ Empirically:

▪ Most branches are linearly separable
▪ Dynamic weights

▪ learn non-linear function (over time)

16 May 2019Simone Guggiari 23

Limitations of Perceptrons

||Seminar in Computer Architecture

▪ Architecture
▪ N perceptrons (param, HW budget)
▪ fast SRAM
▪ Special circuitry

▪ Compute output
▪ Train (update weights, param)

▪ Stages
▪ 1. Hash branch address to index
▪ 2. Fetch perceptron into registers
▪ 3. Compute y (dot product)
▪ 4. Predict branch
▪ 5. Get outcome, train weights
▪ 6. Writeback

▪ Latency
▪ (1-2 cycle)

16 May 2019Simone Guggiari 24

Putting it All Together

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 25

4. Design Space

||Seminar in Computer Architecture

▪ Constraints
▪ HW budget (B)

▪ Parameters
▪ H (history length) = # weights
▪ p (# bits to store weights, precision)
▪ θ (training threshold)
▪ N (number of perceptrons)

▪ Trade-offs
▪ Big history length H

▪ Reduce N, introduce aliasing
▪ Optimal (in this case): H=12..62

▪ Weights
▪ signed ints
▪ 7..9 bits

16 May 2019Simone Guggiari 26

Parameters

B = H*p*N

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 27

5. Experimental Results

||Seminar in Computer Architecture

▪ Comparison with other predictors
▪ Gshare/bi-mode

▪ Only use global info
▪ Generate traces for branch instruction

▪ Use benchmarks (SPEC2000, SPEC95)
▪ Feed to simulation

▪ Measure overall performance
▪ Results used to tune parameters

▪ “exhaustive” search
▪ early prune of space with poor performance

▪ Not maximal length
▪ But optimal wrt budget and parameters

16 May 2019Simone Guggiari 28

Methodology

B = H*p*N

||Seminar in Computer Architecture

▪ Advantages
▪ Consider much longer histories

▪ gshare → 18
▪ perceptrons → 62

▪ Accuracy increase
▪ Also performance

▪ Take into consideration branches far away
▪ Correlation significant

16 May 2019Simone Guggiari 29

Impact of History Length on Accuracy

||Seminar in Computer Architecture

▪ Small HW (4 KB)
▪ 5.77% (our)
▪ improvement of

▪ 14.7% (gshare)
▪ 10.0%(bimode)

▪ largest performance increase

▪ Large HW (256 KB)
▪ 4.74% (our)
▪ improvement of

▪ 4.7% (gshare)
▪ 5.3%(bimode)

16 May 2019Simone Guggiari 30

Performance

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 31

Performance
▪ Small HW (4 KB) ▪ Large HW (256 KB)

||Seminar in Computer Architecture

▪ Advantages
▪ consider long history lengths

▪ Experiment
▪ artificially limit it to 18 bits
▪ gshare better (4.83%) vs perceptron (5.35%)
▪ causes

▪ destructive aliasing
▪ larger perceptrons

▪ gshare learns any function
▪ not only linearly separable

▪ Optimal lengths (in this case)
▪ gshare → 18

▪ no further improvements
▪ perceptrons → 62

16 May 2019Simone Guggiari 32

Why Does it Do Well?

||Seminar in Computer Architecture

▪ Linearly separable functions
▪ Experiment

▪ compute how many are linearly separable
▪ first ten bits
▪ different benchmarks

▪ Directly proportional
▪ Worst case

▪ 099.go
▪ inseparable (82.82%)

▪ perceptron → 12.1% accuracy
▪ gshare → 8.77% accuracy

▪ separable (17.18%)
▪ perceptron → 3.68% accuracy
▪ gshare → 3.80% accuracy

16 May 2019Simone Guggiari 33

When Does it Do Well?

||Seminar in Computer Architecture

▪ Confidence
▪ Drive HW speculation
▪ y (output)

▪ not binary
▪ encodes certainty

▪ Low confidence
▪ execute both paths

▪ High confidence
▪ execute only chosen one

▪ Analysis
▪ Perceptron finds correlations
▪ Learns which bits are more important
▪ Use to profile and give insights to other methods

16 May 2019Simone Guggiari 34

Additional Advantages of Predictor

||Seminar in Computer Architecture

▪ Loss of performance [8]
▪ Simulation

▪ Normal loads
▪ perceptron better

▪ High loads
▪ switch every 60’000 branches
▪ extreme condition
▪ perceptron similar

▪ Use hybrid approach

16 May 2019Simone Guggiari 35

Effects of Context Switching

▪ [8] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid branch
predictors to improve branch prediction accuracy in the presence of
context switches. In Proceedings of the 23rd International Conference
on Computer Architecture, May 1996.

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 36

6. Implementation

||Seminar in Computer Architecture

▪ Input x is (-1, +1)
▪ No dot product
▪ Add/subtract
▪ Similar to multiplication circuit

▪ Sum of partial results (number*bit)
▪ Iterative computation

▪ only need sign bit
▪ precision computed later

16 May 2019Simone Guggiari 37

Computing the Perceptron Output

||Seminar in Computer Architecture

▪ 54x54 multiplier
▪ 2.7 ns

▪ 2 cycles @ 700MHz
▪ Training

▪ efficient implementation
▪ parallel each bit

▪ (no dependency)
▪ fast (9 bits)

16 May 2019Simone Guggiari 38

Delay and Training

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 39

Pipelined Operation

▪ Avoid delay
▪ Pipeline computation
▪ Use previous cached value
▪ Compute outcome later

▪ Operations
▪ 1. on request, return cached result of previous computation
▪ 2. when result known, use it to train
▪ 3. update global history compute hash for next index
▪ 4. read perceptron
▪ 5. compute prediction for next time

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 40

7. Conclusion

||Seminar in Computer Architecture

▪ Novel approach to improve branch prediction accuracy

▪ Implement ML in hardware

▪ More complex than existing methods

▪ More accurate

▪ Can be combined (hybrid)

▪ Efficient/low latency hardware implementation

▪ Relatively simple function

▪ Provides insights into program behavior and correlation

▪ Good potential for further research
16 May 2019Simone Guggiari 41

Key Takeaways

||Seminar in Computer Architecture

▪ Advantages
▪ Consider long history lengths

▪ 62, previously (18, 23)
▪ Best performance overall
▪ Interesting characteristics

▪ Provide insights into program behavior
▪ Correlation

▪ Hybrid schemes for robustness
▪ Disadvantages

▪ Increased complexity
▪ Hardware budget

▪ Linear inseparability (not learnable)
▪ Only global history

▪ Room for future work
16 May 2019Simone Guggiari 42

Personal Thoughts

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 43

Thank you!
Questions?

||Seminar in Computer Architecture 16 May 2019Simone Guggiari 44

Discussion Starters

||Seminar in Computer Architecture

▪ Thoughts on the previous ideas?

▪ How practical is this?
▪ It was only simulated, not implemented

▪ Will the accuracy become bigger and more important over time?
▪ Pipeline size

▪ Will the solution become more important over time?

▪ Are other solutions better?

▪ Is this solution clearly advantageous in some cases?

16 May 2019Simone Guggiari 45

Discussion Starters

