
35th International Symposium on Computer Architecture (ISCA 2008), June 21-25, 2008, Beijing, China.

Ege Karaismailoglu 2019-04-11 1

Executive Summary

Ege Karaismailoglu 2019-04-11 2

Executive Summary

Problem: Scheduling policies

• Can not anticipate the long term effects of their scheduling decisions

Ege Karaismailoglu 2019-04-11 3

Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of their scheduling decisions

• Cannot take lessons from the consequences of their past actions

Ege Karaismailoglu 2019-04-11 4

Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of its scheduling decisions

• Cannot take lessons from the consequences of its past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Ege Karaismailoglu 2019-04-11 5

Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of its scheduling decisions

• Cannot take lessons from the consequences of its past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Results:

• 19% speedup, 21% more bandwidth utilization over best static policy

Ege Karaismailoglu 2019-04-11 6

Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of its scheduling decisions

• Cannot take lessons from the consequences of its past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Results:

• 19% speedup, 21% more bandwidth utilization over best static policy

• Scales as well as the best static policy

Ege Karaismailoglu 2019-04-11 7

Problem, Background and Goal

Ege Karaismailoglu 2019-04-11 8

DRAM bandwidth is the bottleneck

Ege Karaismailoglu 2019-04-11 9

Goal: Efficiently utilize DRAM bandwidth

Ege Karaismailoglu 2019-04-11 10

The Memory Controller

Ege Karaismailoglu 2019-04-11 11

The Memory Controller

Ege Karaismailoglu 2019-04-11 12

The Memory Controller

Ege Karaismailoglu 2019-04-11 13

The Memory Controller

• Accepts cache misses and write-back requests,
puts them in the memory transaction queue

Ege Karaismailoglu 2019-04-11 14

The Memory Controller

• Accepts cache misses and write-back requests,
puts them in the memory transaction queue

• Issues activate, read, write and precharge
commands to satisfy these requests

Ege Karaismailoglu 2019-04-11 15

The Memory Controller

• Accepts cache misses and write-back requests,
puts them in the memory transaction queue

• Issues activate, read, write and precharge
commands to satisfy these requests

• Must obey many local and global DRAM timing
constraints

0Onur Mutlu and Thomas Moscibroda, "Parallelism-Aware Batch Scheduling: Enabling
High-Performance and Fair Memory Controllers" IEEE Micro, 2009

Ege Karaismailoglu 2019-04-11 16

FR-FCFS Scheduling Policy

Ege Karaismailoglu 2019-04-11 17

FR-FCFS Scheduling Policy

• Provides the best average performance

Ege Karaismailoglu 2019-04-11 18

FR-FCFS Scheduling Policy

• Provides the best average performance

• (1) Prioritizes read/write over activate/precharge.

Ege Karaismailoglu 2019-04-11 19

FR-FCFS Scheduling Policy

• Provides the best average performance

• (1) Prioritizes read/write over activate/precharge.

• (2) Prioritizes older commands over younger commands

Ege Karaismailoglu 2019-04-11 20

FR-FCFS Scheduling Policy

• Provides the best average performance

• (1) Prioritizes read/write over activate/precharge.

• (2) Prioritizes older commands over younger commands

• Can’t anticipate the long term effects of its scheduling decisions

Ege Karaismailoglu 2019-04-11 21

FR-FCFS Scheduling Policy

• Provides the best average performance

• (1) Prioritizes read/write over activate/precharge.

• (2) Prioritizes older commands over younger commands

• Can’t anticipate the long term effects of its scheduling decisions

• Can’t take lessons from the consequences of its past actions to decide
better in the future

Ege Karaismailoglu 2019-04-11 22

Ege Karaismailoglu 2019-04-11 23

Ege Karaismailoglu 2019-04-11 24

Ege Karaismailoglu 2019-04-11 25

Ege Karaismailoglu 2019-04-11 26

Ege Karaismailoglu 2019-04-11 27

Ege Karaismailoglu 2019-04-11 28

Ege Karaismailoglu 2019-04-11 29

Ege Karaismailoglu 2019-04-11 30

Ege Karaismailoglu 2019-04-11 31

Novelty, Key Approach & Ideas

Ege Karaismailoglu 2019-04-11 32

Key Idea: Enable the Memory Controller to Learn From Its
Actions

Ege Karaismailoglu 2019-04-11 33

Benefits

Ege Karaismailoglu 2019-04-11 34

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

Ege Karaismailoglu 2019-04-11 35

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

Ege Karaismailoglu 2019-04-11 36

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

Ege Karaismailoglu 2019-04-11 37

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

Ege Karaismailoglu 2019-04-11 38

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

• More efficiently utilize DRAM bandwidth (21% more utilization over
FR-FCFS)

Ege Karaismailoglu 2019-04-11 39

Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

• More efficiently utilize DRAM bandwidth (21% more utilization over
FR-FCFS)

• Improved system performance (19% performance improvement over
FR-FCFS)

Ege Karaismailoglu 2019-04-11 40

Mechanisms

Ege Karaismailoglu 2019-04-11 41

Reinforcement Learning

Ege Karaismailoglu 2019-04-11 42

Reinforcement Learning

Infinite-horizon task: An endless task where we observe the state, take an action, and
get a reward in each turn.

Ege Karaismailoglu 2019-04-11 43

Reinforcement Learning

Infinite-horizon task: An endless task where we observe the state, take an action, and
get a reward in each turn.

Ege Karaismailoglu 2019-04-11 44

Reinforcement Learning

Infinite-horizon task: An endless task where we observe the state, take an action, and
get a reward in each turn.

Ege Karaismailoglu 2019-04-11 45

Overview

Ege Karaismailoglu 2019-04-11 46

Overview

Formulate memory access scheduling as an infinite horizon (continuous) task
Scheduler always has 1 DRAM clock cycle to decide what it wants to do

Ege Karaismailoglu 2019-04-11 47

Overview
Formulate memory access scheduling as an infinite horizon (continuous) task
Scheduler always has 1 DRAM clock cycle to decide what it wants to do

Ege Karaismailoglu 2019-04-11 48

Overview
Formulate memory access scheduling as an infinite horizon (continuous) task Scheduler
always has 1 DRAM clock cycle to decide what it wants to do

Reward = 1 if a read/write command was issued. Otherwise, Reward = 0
Ege Karaismailoglu 2019-04-11 49

Reward function

Ege Karaismailoglu 2019-04-11 50

Reward function

At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as1

1R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
Ege Karaismailoglu 2019-04-11 51

Reward function

At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as2

γ ∈ [0, 1]
γ ≈ 1→ farsighted

γ ≈ 0→ greedy

2R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
Ege Karaismailoglu 2019-04-11 52

Reward function
At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as3

Note that we also have

γ ∈ [0, 1]
γ ≈ 1→ farsighted

γ ≈ 0→ greedy

3R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
Ege Karaismailoglu 2019-04-11 53

Q-values

Ege Karaismailoglu 2019-04-11 54

Q-values

• Q-values enable us to assign credit & blame to past actions

Ege Karaismailoglu 2019-04-11 55

Q-values

• Q-values enable us to assign credit & blame to past actions

• We define the Q-value of a state-action pair for a specific policy as the expected
value of the reward function if we take action a in state s and follow policy π

afterwards:

Ege Karaismailoglu 2019-04-11 56

Q-values

• Q-values enable us to assign credit & blame to past actions

• We define the Q-value of a state-action pair for a specific policy as the expected
value of the reward function if we take action a in state s and follow policy π

afterwards:4

4R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
Ege Karaismailoglu 2019-04-11 57

States

For each candidate command, the associated state has 6 attributes:

Ege Karaismailoglu 2019-04-11 58

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

Ege Karaismailoglu 2019-04-11 59

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

Ege Karaismailoglu 2019-04-11 60

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

Ege Karaismailoglu 2019-04-11 61

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

4. # Writes in the queue waiting for the row referenced by this command

Ege Karaismailoglu 2019-04-11 62

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

4. # Writes in the queue waiting for the row referenced by this command

5. # Load misses (which are the oldest load misses from their cores) in the queue
waiting for the row referenced by this command

Ege Karaismailoglu 2019-04-11 63

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

4. # Writes in the queue waiting for the row referenced by this command

5. # Load misses (which are the oldest load misses from their cores) in the queue
waiting for the row referenced by this command

6. The order of the load relative to other loads from C (if this command is related to a
load miss by core C)

Ege Karaismailoglu 2019-04-11 64

States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

4. # Writes in the queue waiting for the row referenced by this command

5. # Load misses (which are the oldest load misses from their cores) in the queue
waiting for the row referenced by this command

6. The order of the load relative to other loads from C (if this command is related to a
load miss by core C)

All attributes available in the controller’s transaction queue→ fast access

Ege Karaismailoglu 2019-04-11 65

RL-Based DRAM Scheduling Algorithm

Ege Karaismailoglu 2019-04-11 66

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:

Ege Karaismailoglu 2019-04-11 67

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle

Ege Karaismailoglu 2019-04-11 68

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward

Ege Karaismailoglu 2019-04-11 69

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states

Ege Karaismailoglu 2019-04-11 70

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states
With probability 1 - ε:

Select the command with the highest Q-value among all legal commmands

Ege Karaismailoglu 2019-04-11 71

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states
With probability 1 - ε:

Select the command with the highest Q-value among all legal commmands
Update the Q-value of the previous command

Ege Karaismailoglu 2019-04-11 72

RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states
With probability 1 - ε:

Select the command with the highest Q-value among all legal commmands
Qprev ← (1− α)Qprev + α(r + γQselected)

Note: Correct operation is ensured by adding a set of extra constraints

Ege Karaismailoglu 2019-04-11 73

How to store all the Q-values efficiently

Figure: Fine-grain

Ege Karaismailoglu 2019-04-11 74

How to store all the Q-values efficiently

Figure: Fine-grain Figure: Coarse-grain

Ege Karaismailoglu 2019-04-11 75

How to store all the Q-values efficiently

Figure: Fine-grain Figure: Coarse-grain Figure: CMAC

Ege Karaismailoglu 2019-04-11 76

Implementation

Ege Karaismailoglu 2019-04-11 77

Implementation

Ege Karaismailoglu 2019-04-11 78

Implementation

• Assumption: Scheduler’s pipe can be
clocked 10 times each DRAM cycle

Ege Karaismailoglu 2019-04-11 79

Implementation

• Assumption: Scheduler’s pipe can be
clocked 10 times each DRAM cycle

Ege Karaismailoglu 2019-04-11 80

Implementation

• Assumption: Scheduler’s pipe can be
clocked 10 times each DRAM cycle

• Scheduler can consider 12 commands
every cycle

Ege Karaismailoglu 2019-04-11 81

Implementation

Ege Karaismailoglu 2019-04-11 82

Implementation

Ege Karaismailoglu 2019-04-11 83

Implementation

• A constant number per action type→
prevent generalization across different
commands

Ege Karaismailoglu 2019-04-11 84

Implementation

• A constant number per action type→
prevent generalization across different
commands

Ege Karaismailoglu 2019-04-11 85

Implementation

• A constant number per action type→
prevent generalization across different
commands

• random shifts of attributes implement
the shiftedness of CMAC arrays

Ege Karaismailoglu 2019-04-11 86

(Additional) Hardware Overhead

Ege Karaismailoglu 2019-04-11 87

(Additional) Hardware Overhead

1. logic to compute state attributes→ counters that are updated every DRAM cycle

Ege Karaismailoglu 2019-04-11 88

(Additional) Hardware Overhead

1. logic to compute state attributes→ counters that are updated every DRAM cycle

2. logic to update Q-values→ single pipelined 16-bit fixed-point multiplier

Ege Karaismailoglu 2019-04-11 89

(Additional) Hardware Overhead

1. logic to compute state attributes→ counters that are updated every DRAM cycle

2. logic to update Q-values→ single pipelined 16-bit fixed-point multiplier

3. storing the Q-values→ 32 kB on-chip storage

Ege Karaismailoglu 2019-04-11 90

Key Results: Methodology & Evaluation

Ege Karaismailoglu 2019-04-11 91

Methodology

Some important parameters of the
simulated CMP:

• Frequency: 4 GHz

• #Cores: 4 (each 2-way simultaneously
multithreaded)

• iL1/dL1 size: 32 kB

• Shared L2 cache: 4MB, 8-way

Ege Karaismailoglu 2019-04-11 92

Methodology

Some important parameters of the
simulated CMP:

• Frequency: 4 GHz

• #Cores: 4 (each 2-way simultaneously
multithreaded)

• iL1/dL1 size: 32 kB

• Shared L2 cache: 4MB, 8-way

Some important parameters of the
simulated DRAM:

• DDR2-800 SDRAM

• Transaction Queue: 64 entries

• Peak Data Rate: 6.4 GB/s

• DRAM Bus Frequency: 400 MHz

• Single rank with 4 DRAM chips

• #Banks: 4 per DRAM chip

• Row Buffer Size: 2 KB

Ege Karaismailoglu 2019-04-11 93

Applications & Benchmarks

Ege Karaismailoglu 2019-04-11 94

Compared Memory Controllers

Ege Karaismailoglu 2019-04-11 95

Compared Memory Controllers

• A conventional in-order MC

Ege Karaismailoglu 2019-04-11 96

Compared Memory Controllers

• A conventional in-order MC

• MC implementing FR-FCFS

Ege Karaismailoglu 2019-04-11 97

Compared Memory Controllers

• A conventional in-order MC

• MC implementing FR-FCFS

• RL-based controller proposed by this paper

Ege Karaismailoglu 2019-04-11 98

Compared Memory Controllers

• A conventional in-order MC

• MC implementing FR-FCFS

• RL-based controller proposed by this paper

• An ideal scheduler with an ideal memory that can sustain 100% peak bandwidth

Ege Karaismailoglu 2019-04-11 99

Results: Data Bus Utilization

Ege Karaismailoglu 2019-04-11 100

Results: Performance Improvement

Ege Karaismailoglu 2019-04-11 101

Results: Scaled to More Cores

Ege Karaismailoglu 2019-04-11 102

Executive Summary

Ege Karaismailoglu 2019-04-11 103

Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of their scheduling decisions

• Cannot take lessons from the consequences of their past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Results:

• 19% speedup, 21% more bandwidth utilization over best static policy

• Scales as well as the best static policy

Ege Karaismailoglu 2019-04-11 104

Strengths & Weaknesses

Ege Karaismailoglu 2019-04-11 105

Strengths

Ege Karaismailoglu 2019-04-11 106

Strengths

• A fundamentally more powerful approach than its predecessors

Ege Karaismailoglu 2019-04-11 107

Strengths

• A fundamentally more powerful approach than its predecessors

• Tries to solve an important problem that will always be relevant

Ege Karaismailoglu 2019-04-11 108

Strengths

• A fundamentally more powerful approach than its predecessors

• Tries to solve an important problem that will always be relevant

• Significantly improves overall performance and data bus utilization

Ege Karaismailoglu 2019-04-11 109

Strengths

• A fundamentally more powerful approach than its predecessors

• Tries to solve an important problem that will always be relevant

• Significantly improves overall performance and data bus utilization

• The paper accurately predicts that the DRAM bandwidth is going to be the main
problem, 11 years ago!

Ege Karaismailoglu 2019-04-11 110

Strengths

• A fundamentally more powerful approach than its predecessors

• Tries to solve an important problem that will always be relevant

• Significantly improves overall performance and data bus utilization

• The paper accurately predicts that the DRAM bandwidth is going to be the main
problem, 11 years ago!

• Well-written paper

Ege Karaismailoglu 2019-04-11 111

Weaknesses

Ege Karaismailoglu 2019-04-11 112

Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.

Ege Karaismailoglu 2019-04-11 113

Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.

• More complicated hardware than FR-FCFS

Ege Karaismailoglu 2019-04-11 114

Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.

• More complicated hardware than FR-FCFS

• Extending it is hard since hardware will get even more complicated

Ege Karaismailoglu 2019-04-11 115

Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.

• More complicated hardware than FR-FCFS

• Extending it is hard since hardware will get even more complicated

• Heterogeneous workloads are not tested

Ege Karaismailoglu 2019-04-11 116

Can we do better?

Ege Karaismailoglu 2019-04-11 117

Can we do better?

• Can we solve the fairness problem?

Ege Karaismailoglu 2019-04-11 118

Can we do better?

• Can we solve the fairness problem?
– "ATLAS" [Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, HPCA 2010]

Ege Karaismailoglu 2019-04-11 119

Ege Karaismailoglu 2019-04-11 120

• Periodically order threads based on the service they have attained from the
memory controllers so far

Ege Karaismailoglu 2019-04-11 121

• Periodically order threads based on the service they have attained from the
memory controllers so far

• Prioritize the threads that have attained the least service over others in each period

Ege Karaismailoglu 2019-04-11 122

Can we do better?

• Can we solve the fairness problem?
– "ATLAS" [Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, HPCA 2010]
– TCM scheduling [Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, MICRO 2010]

Ege Karaismailoglu 2019-04-11 123

• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster

Ege Karaismailoglu 2019-04-11 124

• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster

• Prioritize 1st cluster over 2nd cluster

Ege Karaismailoglu 2019-04-11 125

• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster

• Prioritize 1st cluster over 2nd cluster

• Employ different policies within each cluster

Ege Karaismailoglu 2019-04-11 126

Can we do better?

• Can we solve the fairness problem?
– "ATLAS" [Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, HPCA 2010]
– TCM scheduling [Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, MICRO 2010]
– "BLISS" [L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, O. Mutlu, IEEE

Transactions on Parallel and Distributed Systems 2016]

Ege Karaismailoglu 2019-04-11 127

Ege Karaismailoglu 2019-04-11 128

• Mark each application either as vulnerable-to-interference or as
interference-causing.

Ege Karaismailoglu 2019-04-11 129

• Mark each application either as vulnerable-to-interference or as
interference-causing.

• Prioritize requests from 1st group over requests from 2nd group

Ege Karaismailoglu 2019-04-11 130

Key Takeaways

Ege Karaismailoglu 2019-04-11 131

Key Takeaways

• A novel approach to utilize the data bus

Ege Karaismailoglu 2019-04-11 132

Key Takeaways

• A novel approach to utilize the data bus

• Effective in terms of performance gain

Ege Karaismailoglu 2019-04-11 133

Key Takeaways

• A novel approach to utilize the data bus

• Effective in terms of performance gain

• Comes with some hardware cost

Ege Karaismailoglu 2019-04-11 134

Key Takeaways

• A novel approach to utilize the data bus

• Effective in terms of performance gain

• Comes with some hardware cost

• QoS-unaware→ no fairness

Ege Karaismailoglu 2019-04-11 135

Key Takeaways

• A novel approach to utilize the data bus

• Effective in terms of performance gain

• Comes with some hardware cost

• QoS-unaware→ no fairness

• Seemingly hard to improve

Ege Karaismailoglu 2019-04-11 136

Open Discussion

Ege Karaismailoglu 2019-04-11 137

Discussion

How can we solve the fairness problem while keeping our
RL-based approach?

Ege Karaismailoglu 2019-04-11 138

Discussion

Are there other flaws in this approach?

Ege Karaismailoglu 2019-04-11 139

Discussion

Can this approach be used to solve other scheduling problems?

Ege Karaismailoglu 2019-04-11 140

Discussion

When are machine-learning based approaches applicable in
computer architecture?

Ege Karaismailoglu 2019-04-11 141

Backup slides

Ege Karaismailoglu 2019-04-11 142

Ensuring correct operation

• the scheduler is not permitted to select NOPs when other legal commands are
available

• the scheduler is only allowed to activate rows due to pending requests in the
transaction queue (i.e., the scheduler cannot choose to activate an arbitrary row
with no pending requests)

• the scheduler is not allowed to precharge a newly activated row until it issues a
reador write command to it.

Ege Karaismailoglu 2019-04-11 143

Results: RL versus Family-BEST

Ege Karaismailoglu 2019-04-11 144

Results: RL versus Family-BEST

Preference relations used in Family-BEST:

• Row commands over column commands

• Older commands over younger commands

• Reads over writes

• Load misses over store misses

• More critical load misses over less critical ones, based on sequence numbers

Ege Karaismailoglu 2019-04-11 145

Results: Online versus Offline

Ege Karaismailoglu 2019-04-11 146

	Introduction
	Background, Problem and Goal
	Key Idea
	Mechanisms
	Key Results: Methodology & Evaluation
	Executive Summary
	Strengths Weaknesses
	Open discussion
	Backup slides

