Spectre Attacks: Exploiting Speculative
Execution

David Bimmler
May 2, 2019

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. “Spectre Attacks: Exploiting Speculative
Execution”. In: 40th IEEE Symposium on Security and Privacy
(S&P’19). 2019

Executive Summary

Background

Novelty

Key Approach and Ideas

Mechanisms (in some detail)

Key Results: Methodology and Evaluation
Summary

Strengths

Weaknesses

Thoughts and Ideas

Discussion

Executive Summary

Executive Summary

- Spectre is a security vulnerability violating memory
isolation

Executive Summary

- Spectre is a security vulnerability violating memory
isolation

- It abuses speculative execution to execute instructions
which should never be executed

Executive Summary

- Spectre is a security vulnerability violating memory
isolation

- It abuses speculative execution to execute instructions
which should never be executed

- It uses side-channels to leak microarchitectural state
changed by erroneously executed instructions

Background

Background: Architecture vs Microarchitecture

The instruction set architecture (ISA) is the contract between
hardware and software.

A microarchitecture (parch) is an implementation of an ISA in a
given processor.

Background: Direct and Indirect Branches

direct branch | indirect branch

JMP 0x89AB | CALL EAX
JNE 0x90AB | JMP EAX
... many more | RET

Background: Branch Prediction

- Superscalar processors predict branch outcomes

Background: Branch Prediction

- Superscalar processors predict branch outcomes
- Direction of direct branches (taken/not taken)

- cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)

Background: Branch Prediction

- Superscalar processors predict branch outcomes
- Direction of direct branches (taken/not taken)
- cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)
- Target address of indirect branches

- cached by the Branch Target Buffer (BTB)
- Return Stack Buffer (RSB) for CALL/RET pairs

Background: Speculative Execution

- Predicted path is executed speculatively
- Processor keeps track of what is being executed
speculatively
- Prediction incorrect: discard effects

Background: Speculative Execution

- Predicted path is executed speculatively
- Processor keeps track of what is being executed
speculatively
- Prediction incorrect: discard effects
- Instructions executed due to misprediction called
transient instructions

Background: Microarchitectural Side-Channels

- parch is stateful (e.g. PHT, BTB, RSB, caches, ...)

Background: Microarchitectural Side-Channels

- parch is stateful (e.g. PHT, BTB, RSB, caches, ...)

- State shared between processes

Background: Microarchitectural Side-Channels

- parch is stateful (e.g. PHT, BTB, RSB, caches, ...)
- State shared between processes

- Information leaks called side-channels

Background: Microarchitectural Side-Channels

- parch is stateful (e.g. PHT, BTB, RSB, caches, ...)
- State shared between processes
- Information leaks called side-channels

- Example: Flush+Reload' — a cache side-channel

"Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”

Flush+Reload: Attack

- Flush+Reload can monitor access of memory lines in
shared pages

10

Flush+Reload: Attack

- Flush+Reload can monitor access of memory lines in
shared pages

- Access to monitored memory is fast if victim has accessed

10

Flush+Reload: Example

victim process evil process

core 0 core 1

cache

physical memory

Flush+Reload: Example
victim process evil process

cache

iical memory

n

Flush+Reload: Example

victim process evil process

I iical memory

n

Flush+Reload: Example

victim process evil process

I iical memory

n

Flush+Reload: Example

victim process

evil process

clflush
cache M

I iical memory

n

Flush+Reload: Example

victim process evil process

I iical memory

n

Flush+Reload: Example
victim process evil process

cache I
I iical memory

n

Flush+Reload: Example

victim process evil process

I iical memory

n

Flush+Reload: Example

victim process evil process

I iical memory

n

Novelty

Spectre Attack

- Trick victim into speculatively performing operations
which would not occur during correct program execution

12

Spectre Attack

- Trick victim into speculatively performing operations
which would not occur during correct program execution

- Leak sensitive information through microarchitectural side
channel

12

Key Approach and Ideas

Vulnerable Conditional Branches

The following code constitutes a Spectre gadget, vulnerable
when unsigned int x Is attacker controlled

if (x < arrayl_size)

y = array2[arrayl[x] * 512];

13

Exploiting Conditional Branches

How is it vulnerable?

if (x <)
y = array2[arrayl[x] * 512];

Speculative execution if arrayl_size is not available

14

Exploiting Conditional Branches

How is it vulnerable?

if (x < arrayl_size)
y = array2[x 512];

Speculative out of bounds read for a malicious x

14

Exploiting Conditional Branches

How is it vulnerable?

if (x < arrayl_size)
y = arrayl [x] ;

Encode value in parch state using cache side-channel

14

Exploiting Conditional Branches

if x in bounds

tru/ \@se

prediction prediction
true/ \Calse true/ \calse
fast slow fast

15

Mechanisms (in some detail)

Conditional Branch Example

10

unsigned int arrayl_size = 16;

uint8_t arrayl[16] = {1, 2, ..., 15, 163};
uint8_t array2[256 * 512];
char *secret = "Squeamish Ossifrage";

void victim_function(size_t x) {
if (x < arrayl_size) {
y = array2[arrayl[x] * 512];
}

Generic Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration

Spectre Attack: Setup Phase

Prepare exfiltration side-channel

1 /* Flush array2/[(0..255)*512] from cache */
2 for (i = 0; 1 < 256; i++)
3 _mm_clflush(&array2[i * 512]);

Spectre Attack: Setup Phase

Induce speculative execution by flushing arrayl_size

1 for (j =5; j >=0; j—=) {
2 H
3 victim_function(training_x);

4 %}

19

Spectre Attack: Setup Phase

Train branch prediction to take branch using valid values for x

1 for (j =5; j >=0; j—=) {

2 _mm_clflush(&arrayl_size);

19

Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration

20

Spectre Attack: Transient Execution Phase

Execute gadget with malicious x results in a speculative out of
bounds read

1 _mm_clflush(&arrayl_size);

2 victim_function(malicious_x);

21

Spectre Attack: Encoding Information

Result of malicious read encoded in probe array

1 if (x < arrayl_size})
2 y = array1 [x] ;

22

Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
Data Exfiltration

_(,‘J

23

Spectre Exfiltration: Flush+Reload

Exfiltrate using Flush+Reload

1 for (i = 0; i < 256; i++) {

2 addr = &array2[i * 512];

3 timel = __rdtscp(&junk);

4 junk = *addr;

5 time2 = __rdtscp(&junk) - timel; // compute access time
6 if (time2 <= CACHE_HIT_THRESHOLD)

7 printf ("found: %#x\n", 1i);

2%

Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown

25

Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown

- Speculative execution at predicted target address

25

Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown
- Speculative execution at predicted target address
- Attack: mistrain branch target buffer in attacker controlled

context

25

Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown

- Speculative execution at predicted target address

- Attack: mistrain branch target buffer in attacker controlled
context

- Speculatively execute Spectre gadget for observable side
effects

25

Mistraining Branch Predictors

- Attacker mimics pattern of branches in its own context

26

Mistraining Branch Predictors

- Attacker mimics pattern of branches in its own context

- Attacker-chosen target predicted in victim

26

Mistraining Branch Predictors

- Attacker mimics pattern of branches in its own context
- Attacker-chosen target predicted in victim

- Highly parch-specific — reverse-engineering necessary

26

Key Results: Methodology and
Evaluation

Methodology

The paper presents multiple exploits:

1. Variant 1 proof of concept in native code

2. Variant 1 attacks in JavaScript and eBPF

3. Variant 2 proof of concept in native code

4. Variant 2 attack to leak host memory from within a KVM VM

27

- Spectre works

28

- Spectre works
- Quite a few parchs tested

28

- Spectre works
- Quite a few parchs tested

- Intel lvy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

28

- Spectre works
- Quite a few parchs tested

- Intel lvy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

- Bandwidth

28

- Spectre works
- Quite a few parchs tested

- Intel lvy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

- Bandwidth

- Error rate

28

Bandwidth Error rate
native PoC var. 1 ~10kB/s < 0.01%
JavaScript var. 1 — —
eBPFvar. 1 2kB/sto 5kB/s —
native PoC var. 2 0.041kB/s -
KVM var. 2 ~1.8kB/s 1.7%

29

Summary

- Transient instructions can violate security

30

- Transient instructions can violate security
- in correct programs

30

- Transient instructions can violate security
- in correct programs

- Through microarchitectural side-channels we can observe
the effects

30

- Transient instructions can violate security
- in correct programs

- Through microarchitectural side-channels we can observe
the effects

- Multiple variants to cause misprediction

30

Strengths

- Gigantic impact

31

- Gigantic impact
- Complete mitigation in software seemingly impossible?

ZMcllroy, Sevcik, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31

- Gigantic impact
- Complete mitigation in software seemingly impossible?

- Generality of attack

ZMcllroy, Sevcik, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31

- Gigantic impact
- Complete mitigation in software seemingly impossible?
- Generality of attack

- Many papers discussing the attack

ZMcllroy, Sevcik, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31

Weaknesses

Weaknesses

- parch attack: finnicky, brittle

32

Weaknesses

- parch attack: finnicky, brittle
- Local execution required

32

Weaknesses

- parch attack: finnicky, brittle
- Local execution required
- But: NetSpectre?

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32

Weaknesses

- parch attack: finnicky, brittle
- Local execution required
- But: NetSpectre?

- Spotty evaluation

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32

Weaknesses

- parch attack: finnicky, brittle
- Local execution required
- But: NetSpectre?

- Spotty evaluation
- Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32

Thoughts and ldeas

Performance versus Security

- Fundamental tradeoff: performance versus security

33

Performance versus Security

- Fundamental tradeoff: performance versus security
- Mitigations are stop gaps: ISA might have to change

33

Discussion

Discussion: Spectre Variations

1 if (x < arrayl_size) {

2 y = arrayl[x];

3 // do something using y that is observable
4 // when speculatively ezecuted
5}

Can you think of more observable effects?

34

Thank You

35

Bibliography i

References

[§ Bulck, Jo Van et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: 27th
USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, 991-1008. ISBN:
978-1-931971-46-1. URL: https://www.usenix.org/
conference/usenixsecurityl18/presentation/bulck.

[Chen, Guoxing et al. “SgxPectre Attacks: Leaking Enclave Secrets
via Speculative Execution”. In: CORR abs/1802.09085 (2018).
arxiv: 1802.09085. URL: http://arxiv.org/abs/1802.09085.

36

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085

Bibliography ii

[§ Ge, Qian et al. “Time Protection: The Missing OS Abstraction”. In:
Proceedings of the Fourteenth EuroSys Conference 2019.
EuroSys "19. Dresden, Germany: ACM, 2019, 1:1-1:17. ISBN:
978-1-4503-6281-8. DOI: 10.1145/3302424.3303976. URL:
http://doi.acm.org/10.1145/3302424 .3303976.

@ Kiriansky, V. et al. “DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors”. In: 2018 57st
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). Oct. 2018, pp. 974-987. DOI:
10.1109/MICR0.2018.00083.

37

https://doi.org/10.1145/3302424.3303976
http://doi.acm.org/10.1145/3302424.3303976
https://doi.org/10.1109/MICRO.2018.00083

Bibliography iii

[§ Kocher, Paul et al. “Spectre Attacks: Exploiting Speculative
Execution”. In: 40th [EEE Symposium on Security and Privacy
(S&P’19). 2019.

[@ Lipp, Moritz et al. “Meltdown: Reading Kernel Memory from
User Space”. In: 27th USENIX Security Symposium (USENIX
Security 18). 2018.

[@ Mcllroy, Ross et al. “Spectre is here to stay: An analysis of
side-channels and speculative execution”. In: CORR
abs/1902.05178 (2019). arXiv: 1902.05178. URL:
http://arxiv.org/abs/1902.05178.

38

https://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178

Bibliography iv

[§ Schwarz, Michael et al. “NetSpectre: Read Arbitrary Memory
over Network”. In: CoRR abs/180710535 (2018). arXiv:
1807.10535. URL: http://arxiv.org/abs/1807.10535.

@ Yarom, Yuval and Katrina Falkner. “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack”. In:
23rd USENIX Security Symposium (USENIX Security 14). San
Diego, CA: USENIX Association, 2014, pp. 719-732. ISBN:
978-1-931971-15-7. URL:
https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/yarom.

39

https://arxiv.org/abs/1807.10535
http://arxiv.org/abs/1807.10535
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

Backup

Background: Virtual Memory

- memory isolation between different processes
- typically provided by hardware via MMU

- page tables translate virtual to physical addresses

40

Disambiguation: Meltdown

Meltdown* is not Spectre

- also violates memory isolation
- exploits out of order execution

- privilege escalation - reads kernel
memory

- race condition specific to Intel
processors

- mitigated by the KAISER patches

“Lipp, Schwarz, Gruss, Prescher, Haas, Fogh, Horn, Mangard, Kocher, Genkin,
Yarom, and Hamburg, “Meltdown: Reading Kernel Memory from User Space”.

41

Front End

Memory Subsystem

- performance optimisation for

pipelined processors

- instructions executed out of order

- but retired (i.e. become visible) in

order

- complex data dependency logic in

hardware

42

Flush+Reload: Background

- ldentical memory pages are shared between processes
- e.g. for shared libraries

43

Flush+Reload: Background

- ldentical memory pages are shared between processes
- e.g. for shared libraries

- Shared pages imply identical physical addresses

43

Flush+Reload: Background

- ldentical memory pages are shared between processes
- e.g. for shared libraries

- Shared pages imply identical physical addresses

- L3 cache is physically tagged

43

Variant 2: Spectre Gadget

Attacker-controlled ebx and edi allows reading memory

1 adc edi,dword ptr [ebx+edx+|13BE13BDh]
2> adc dl,byte ptr [edi]

Set edi to address of probe array (e.g. in shared library)

Set ebxtom - 0x13BE13BD - edx

44

	Executive Summary
	Background
	Novelty
	Key Approach and Ideas
	Mechanisms (in some detail)
	Key Results: Methodology and Evaluation
	Summary
	Strengths
	Weaknesses
	Thoughts and Ideas
	Discussion
	References
	Backup

