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Executive Summary

- Spectre is a security vulnerability violating memory
isolation

- It abuses speculative execution to execute instructions
which should never be executed

- It uses side-channels to leak microarchitectural state
changed by erroneously executed instructions
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Background: Architecture vs Microarchitecture

The instruction set architecture (ISA) is the contract between
hardware and software.

A microarchitecture (parch) is an implementation of an ISA in a
given processor.



Background: Direct and Indirect Branches

direct branch | indirect branch

JMP 0x89AB | CALL EAX
JNE 0x90AB | JMP EAX
... many more | RET
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Background: Branch Prediction

- Superscalar processors predict branch outcomes
- Direction of direct branches (taken/not taken)
- cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)
- Target address of indirect branches

- cached by the Branch Target Buffer (BTB)
- Return Stack Buffer (RSB) for CALL/RET pairs
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Background: Speculative Execution

- Predicted path is executed speculatively
- Processor keeps track of what is being executed
speculatively
- Prediction incorrect: discard effects
- Instructions executed due to misprediction called
transient instructions
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Background: Microarchitectural Side-Channels

- parch is stateful (e.g. PHT, BTB, RSB, caches, ...)
- State shared between processes
- Information leaks called side-channels

- Example: Flush+Reload' — a cache side-channel

"Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”



Flush+Reload: Attack

- Flush+Reload can monitor access of memory lines in
shared pages
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Flush+Reload: Attack

- Flush+Reload can monitor access of memory lines in
shared pages

- Access to monitored memory is fast if victim has accessed

10



Flush+Reload: Example

victim process evil process

core 0 core 1

cache

physical memory
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Flush+Reload: Example

victim process evil process

I iical memory

n
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Spectre Attack

- Trick victim into speculatively performing operations
which would not occur during correct program execution
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Spectre Attack

- Trick victim into speculatively performing operations
which would not occur during correct program execution

- Leak sensitive information through microarchitectural side
channel

12



Key Approach and Ideas



Vulnerable Conditional Branches

The following code constitutes a Spectre gadget, vulnerable
when unsigned int x Is attacker controlled

if (x < arrayl_size)

y = array2[arrayl[x] * 512];

13



Exploiting Conditional Branches

How is it vulnerable?

if (x < )
y = array2[arrayl[x] * 512];

Speculative execution if arrayl_size is not available

14



Exploiting Conditional Branches

How is it vulnerable?

if (x < arrayl_size)
y = array2[ x 512];

Speculative out of bounds read for a malicious x

14



Exploiting Conditional Branches

How is it vulnerable?

if (x < arrayl_size)
y = arrayl [x] ;

Encode value in parch state using cache side-channel

14



Exploiting Conditional Branches

if x in bounds

tru/ \@se

prediction prediction
true/ \Calse true/ \calse
fast slow fast

15



Mechanisms (in some detail)




Conditional Branch Example

10

unsigned int arrayl_size = 16;

uint8_t arrayl[16] = {1, 2, ..., 15, 163};
uint8_t array2[256 * 512];
char *secret = "Squeamish Ossifrage";

void victim_function(size_t x) {
if (x < arrayl_size) {
y = array2[arrayl[x] * 512];
}



Generic Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration



Spectre Attack: Setup Phase

Prepare exfiltration side-channel

1 /* Flush array2/[(0..255)*512] from cache */
2 for (i = 0; 1 < 256; i++)
3 _mm_clflush(&array2[i * 512]);



Spectre Attack: Setup Phase

Induce speculative execution by flushing arrayl_size

1 for (j =5; j >=0; j—=) {
2 H
3 victim_function(training_x);

4 %}

19



Spectre Attack: Setup Phase

Train branch prediction to take branch using valid values for x

1 for (j =5; j >=0; j—=) {

2 _mm_clflush(&arrayl_size);

19



Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration
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Spectre Attack: Transient Execution Phase

Execute gadget with malicious x results in a speculative out of
bounds read

1 _mm_clflush(&arrayl_size);

2 victim_function(malicious_x);

21



Spectre Attack: Encoding Information

Result of malicious read encoded in probe array

1 if (x < arrayl_size})
2 y = array1 [x] ;

22



Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
Data Exfiltration

_(,‘J
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Spectre Exfiltration: Flush+Reload

Exfiltrate using Flush+Reload

1 for (i = 0; i < 256; i++) {

2 addr = &array2[i * 512];

3 timel = __rdtscp(&junk);

4 junk = *addr;

5 time2 = __rdtscp(&junk) - timel; // compute access time
6 if (time2 <= CACHE_HIT_THRESHOLD)

7 printf ("found: %#x\n", 1i);

2%



Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown
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Variant 2: Poisoning Indirect Branches

- Destination address of indirect branch may be unknown

- Speculative execution at predicted target address

- Attack: mistrain branch target buffer in attacker controlled
context

- Speculatively execute Spectre gadget for observable side
effects

25



Mistraining Branch Predictors

- Attacker mimics pattern of branches in its own context
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- Attacker-chosen target predicted in victim
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Mistraining Branch Predictors

- Attacker mimics pattern of branches in its own context
- Attacker-chosen target predicted in victim

- Highly parch-specific — reverse-engineering necessary

26



Key Results: Methodology and
Evaluation




Methodology

The paper presents multiple exploits:

1. Variant 1 proof of concept in native code

2. Variant 1 attacks in JavaScript and eBPF

3. Variant 2 proof of concept in native code

4. Variant 2 attack to leak host memory from within a KVM VM

27



- Spectre works
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- Spectre works
- Quite a few parchs tested

- Intel lvy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

- Bandwidth

- Error rate

28



Bandwidth Error rate
native PoC var. 1 ~10kB/s < 0.01%
JavaScript var. 1 — —
eBPFvar. 1 2kB/sto 5kB/s —
native PoC var. 2 0.041kB/s -
KVM var. 2 ~1.8kB/s 1.7%

29



Summary




- Transient instructions can violate security
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- Transient instructions can violate security
- in correct programs

- Through microarchitectural side-channels we can observe
the effects

30



- Transient instructions can violate security
- in correct programs

- Through microarchitectural side-channels we can observe
the effects

- Multiple variants to cause misprediction

30



Strengths




- Gigantic impact

31



- Gigantic impact
- Complete mitigation in software seemingly impossible?

ZMcllroy, Sevcik, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”
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- Gigantic impact
- Complete mitigation in software seemingly impossible?
- Generality of attack

- Many papers discussing the attack

ZMcllroy, Sevcik, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31



Weaknesses




Weaknesses

- parch attack: finnicky, brittle
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Weaknesses

- parch attack: finnicky, brittle
- Local execution required
- But: NetSpectre?

- Spotty evaluation
- Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Thoughts and ldeas




Performance versus Security

- Fundamental tradeoff: performance versus security

33



Performance versus Security

- Fundamental tradeoff: performance versus security
- Mitigations are stop gaps: ISA might have to change

33



Discussion




Discussion: Spectre Variations

1 if (x < arrayl_size) {

2 y = arrayl[x];

3 // do something using y that is observable
4 // when speculatively ezecuted
5}

Can you think of more observable effects?

34



Thank You
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Backup




Background: Virtual Memory

- memory isolation between different processes
- typically provided by hardware via MMU

- page tables translate virtual to physical addresses

40



Disambiguation: Meltdown

Meltdown* is not Spectre

- also violates memory isolation
- exploits out of order execution

- privilege escalation - reads kernel
memory

- race condition specific to Intel
processors

- mitigated by the KAISER patches

“Lipp, Schwarz, Gruss, Prescher, Haas, Fogh, Horn, Mangard, Kocher, Genkin,
Yarom, and Hamburg, “Meltdown: Reading Kernel Memory from User Space”.
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Front End

Memory Subsystem

- performance optimisation for

pipelined processors

- instructions executed out of order

- but retired (i.e. become visible) in

order

- complex data dependency logic in

hardware

42



Flush+Reload: Background

- ldentical memory pages are shared between processes
- e.g. for shared libraries
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Flush+Reload: Background

- ldentical memory pages are shared between processes
- e.g. for shared libraries

- Shared pages imply identical physical addresses

- L3 cache is physically tagged

43



Variant 2: Spectre Gadget

Attacker-controlled ebx and edi allows reading memory

1 adc edi,dword ptr [ebx+edx+|13BE13BDh]
2> adc dl,byte ptr [edi]

Set edi to address of probe array (e.g. in shared library)

Set ebxtom - 0x13BE13BD - edx

44
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