
Spectre Attacks: Exploiting Speculative
Execution

David Bimmler
May 2, 2019

1



Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. “Spectre Attacks: Exploiting Speculative
Execution”. In: 40th IEEE Symposium on Security and Privacy
(S&P’19). 2019

2



Agenda

Executive Summary

Background

Novelty

Key Approach and Ideas

Mechanisms (in some detail)
Key Results: Methodology and Evaluation
Summary

Strengths

Weaknesses
Thoughts and Ideas

Discussion

3



Executive Summary



Executive Summary

• Spectre is a security vulnerability violating memory
isolation

• It abuses speculative execution to execute instructions
which should never be executed

• It uses side-channels to leak microarchitectural state
changed by erroneously executed instructions

4



Executive Summary

• Spectre is a security vulnerability violating memory
isolation

• It abuses speculative execution to execute instructions
which should never be executed

• It uses side-channels to leak microarchitectural state
changed by erroneously executed instructions

4



Executive Summary

• Spectre is a security vulnerability violating memory
isolation

• It abuses speculative execution to execute instructions
which should never be executed

• It uses side-channels to leak microarchitectural state
changed by erroneously executed instructions

4



Background



Background: Architecture vs Microarchitecture

The instruction set architecture (ISA) is the contract between
hardware and so tware.

A microarchitecture (µarch) is an implementation of an ISA in a
given processor.

5



Background: Direct and Indirect Branches

direct branch indirect branch
JMP 0x89AB CALL EAX
JNE 0x90AB JMP EAX
... many more RET

6



Background: Branch Prediction

• Superscalar processors predict branch outcomes

• Direction of direct branches (taken/not taken)

• cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)

• Target address of indirect branches

• cached by the Branch Target Buffer (BTB)
• Return Stack Buffer (RSB) for CALL/RET pairs

7



Background: Branch Prediction

• Superscalar processors predict branch outcomes
• Direction of direct branches (taken/not taken)

• cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)

• Target address of indirect branches

• cached by the Branch Target Buffer (BTB)
• Return Stack Buffer (RSB) for CALL/RET pairs

7



Background: Branch Prediction

• Superscalar processors predict branch outcomes
• Direction of direct branches (taken/not taken)

• cached by Pattern History Table (PHT)/Branch History
Buffer (BHB)

• Target address of indirect branches
• cached by the Branch Target Buffer (BTB)
• Return Stack Buffer (RSB) for CALL/RET pairs

7



Background: Speculative Execution

• Predicted path is executed speculatively
• Processor keeps track of what is being executed
speculatively

• Prediction incorrect: discard effects

• Instructions executed due to misprediction called
transient instructions

8



Background: Speculative Execution

• Predicted path is executed speculatively
• Processor keeps track of what is being executed
speculatively

• Prediction incorrect: discard effects

• Instructions executed due to misprediction called
transient instructions

8



Background: Microarchitectural Side-Channels

• µarch is stateful (e.g. PHT, BTB, RSB, caches, ...)

• State shared between processes
• Information leaks called side-channels
• Example: Flush+Reload1 — a cache side-channel

1Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”

9



Background: Microarchitectural Side-Channels

• µarch is stateful (e.g. PHT, BTB, RSB, caches, ...)
• State shared between processes

• Information leaks called side-channels
• Example: Flush+Reload1 — a cache side-channel

1Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”

9



Background: Microarchitectural Side-Channels

• µarch is stateful (e.g. PHT, BTB, RSB, caches, ...)
• State shared between processes
• Information leaks called side-channels

• Example: Flush+Reload1 — a cache side-channel

1Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”

9



Background: Microarchitectural Side-Channels

• µarch is stateful (e.g. PHT, BTB, RSB, caches, ...)
• State shared between processes
• Information leaks called side-channels
• Example: Flush+Reload1 — a cache side-channel

1Yarom and Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”

9



Flush+Reload: Attack

• Flush+Reload can monitor access of memory lines in
shared pages

• Access to monitored memory is fast if victim has accessed

10



Flush+Reload: Attack

• Flush+Reload can monitor access of memory lines in
shared pages

• Access to monitored memory is fast if victim has accessed

10



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

clflush

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Flush+Reload: Example

physical memory

cache

core 0 core 1

victim process evil process

libx.so

11



Novelty



Novelty

Spectre Attack

• Trick victim into speculatively performing operations
which would not occur during correct program execution

• Leak sensitive information through microarchitectural side
channel

12



Novelty

Spectre Attack

• Trick victim into speculatively performing operations
which would not occur during correct program execution

• Leak sensitive information through microarchitectural side
channel

12



Key Approach and Ideas



Vulnerable Conditional Branches

The following code constitutes a Spectre gadget, vulnerable
when unsigned int x is attacker controlled

if (x < array1_size)
y = array2[array1[x] * 512];

13



Exploiting Conditional Branches

How is it vulnerable?

if (x < array1_size)
y = array2[array1[x] * 512];

Speculative execution if array1_size is not available

14



Exploiting Conditional Branches

How is it vulnerable?

if (x < array1_size)
y = array2[array1[x] * 512];

Speculative out of bounds read for a malicious x

14



Exploiting Conditional Branches

How is it vulnerable?

if (x < array1_size)
y = array2[array1[x] * 512];

Encode value in µarch state using cache side-channel

14



Exploiting Conditional Branches

if x in bounds

prediction

fast

true

slow

false

true

prediction

Spectre

true

fast

false

false

15



Mechanisms (in some detail)



Conditional Branch Example

1 unsigned int array1_size = 16;
2 uint8_t array1[16] = {1, 2, ..., 15, 16};
3 uint8_t array2[256 * 512];
4 char *secret = "Squeamish Ossifrage";
5

6 void victim_function(size_t x) {
7 if (x < array1_size) {
8 y = array2[array1[x] * 512];
9 }

10 }

16



Generic Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration

17



Spectre Attack: Setup Phase

Prepare exfiltration side-channel

1 /* Flush array2[(0..255)*512] from cache */
2 for (i = 0; i < 256; i++)
3 _mm_clflush(&array2[i * 512]);

18



Spectre Attack: Setup Phase

Induce speculative execution by flushing array1_size

1 for (j = 5; j >= 0; j--) {
2 _mm_clflush(&array1_size);
3 victim_function(training_x);
4 }

19



Spectre Attack: Setup Phase

Train branch prediction to take branch using valid values for x

1 for (j = 5; j >= 0; j--) {
2 _mm_clflush(&array1_size);
3 victim_function(training_x);
4 }

19



Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration

20



Spectre Attack: Transient Execution Phase

Execute gadget with malicious x results in a speculative out of
bounds read

1 _mm_clflush(&array1_size);
2 victim_function(malicious_x);

21



Spectre Attack: Encoding Information

Result of malicious read encoded in probe array

1 if (x < array1_size})
2 y = array2[array1[x] * 512];

22



Spectre Attack

A generic Spectre attack consists of three phases

1. Setup
2. Transient Execution
3. Data Exfiltration

23



Spectre Exfiltration: Flush+Reload

Exfiltrate using Flush+Reload

1 for (i = 0; i < 256; i++) {
2 addr = &array2[i * 512];
3 time1 = __rdtscp(&junk);
4 junk = *addr;
5 time2 = __rdtscp(&junk) - time1; // compute access time
6 if (time2 <= CACHE_HIT_THRESHOLD)
7 printf("found: %#x\n", i);
8 }

24



Variant 2: Poisoning Indirect Branches

• Destination address of indirect branch may be unknown

• Speculative execution at predicted target address
• Attack: mistrain branch target buffer in attacker controlled
context

• Speculatively execute Spectre gadget for observable side
effects

25



Variant 2: Poisoning Indirect Branches

• Destination address of indirect branch may be unknown
• Speculative execution at predicted target address

• Attack: mistrain branch target buffer in attacker controlled
context

• Speculatively execute Spectre gadget for observable side
effects

25



Variant 2: Poisoning Indirect Branches

• Destination address of indirect branch may be unknown
• Speculative execution at predicted target address
• Attack: mistrain branch target buffer in attacker controlled
context

• Speculatively execute Spectre gadget for observable side
effects

25



Variant 2: Poisoning Indirect Branches

• Destination address of indirect branch may be unknown
• Speculative execution at predicted target address
• Attack: mistrain branch target buffer in attacker controlled
context

• Speculatively execute Spectre gadget for observable side
effects

25



Mistraining Branch Predictors

• Attacker mimics pattern of branches in its own context

• Attacker-chosen target predicted in victim
• Highly µarch-specific — reverse-engineering necessary

26



Mistraining Branch Predictors

• Attacker mimics pattern of branches in its own context
• Attacker-chosen target predicted in victim

• Highly µarch-specific — reverse-engineering necessary

26



Mistraining Branch Predictors

• Attacker mimics pattern of branches in its own context
• Attacker-chosen target predicted in victim
• Highly µarch-specific — reverse-engineering necessary

26



Key Results: Methodology and
Evaluation



Methodology

The paper presents multiple exploits:

1. Variant 1 proof of concept in native code
2. Variant 1 attacks in JavaScript and eBPF
3. Variant 2 proof of concept in native code
4. Variant 2 attack to leak host memory from within a KVM VM

27



Evaluation

• Spectre works

• Quite a few µarchs tested

• Intel Ivy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

• Bandwidth
• Error rate

28



Evaluation

• Spectre works
• Quite a few µarchs tested

• Intel Ivy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

• Bandwidth
• Error rate

28



Evaluation

• Spectre works
• Quite a few µarchs tested

• Intel Ivy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

• Bandwidth
• Error rate

28



Evaluation

• Spectre works
• Quite a few µarchs tested

• Intel Ivy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

• Bandwidth

• Error rate

28



Evaluation

• Spectre works
• Quite a few µarchs tested

• Intel Ivy Bridge, Broadwell, Haswell, Sky Lake, Kaby Lake,
AMD Ryzen, ...

• Bandwidth
• Error rate

28



Evaluation

Bandwidth Error rate
native PoC var. 1 ~10 kB/s < 0.01%
JavaScript var. 1 − −
eBPF var. 1 2 kB/s to 5 kB/s −
native PoC var. 2 0.041 kB/s −
KVM var. 2 ~1.8 kB/s 1.7%

29



Summary



Summary

• Transient instructions can violate security

• in correct programs

• Through microarchitectural side-channels we can observe
the effects

• Multiple variants to cause misprediction

30



Summary

• Transient instructions can violate security
• in correct programs

• Through microarchitectural side-channels we can observe
the effects

• Multiple variants to cause misprediction

30



Summary

• Transient instructions can violate security
• in correct programs

• Through microarchitectural side-channels we can observe
the effects

• Multiple variants to cause misprediction

30



Summary

• Transient instructions can violate security
• in correct programs

• Through microarchitectural side-channels we can observe
the effects

• Multiple variants to cause misprediction

30



Strengths



Strengths

• Gigantic impact

• Complete mitigation in so tware seemingly impossible2

• Generality of attack
• Many papers discussing the attack

2McIlroy, Sevcı́k, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31



Strengths

• Gigantic impact
• Complete mitigation in so tware seemingly impossible2

• Generality of attack
• Many papers discussing the attack

2McIlroy, Sevcı́k, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31



Strengths

• Gigantic impact
• Complete mitigation in so tware seemingly impossible2

• Generality of attack

• Many papers discussing the attack

2McIlroy, Sevcı́k, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31



Strengths

• Gigantic impact
• Complete mitigation in so tware seemingly impossible2

• Generality of attack
• Many papers discussing the attack

2McIlroy, Sevcı́k, Tebbi, Titzer, and Verwaest, “Spectre is here to stay: An
analysis of side-channels and speculative execution”

31



Weaknesses



Weaknesses

• µarch attack: finnicky, brittle

• Local execution required

• But: NetSpectre3

• Spotty evaluation
• Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Weaknesses

• µarch attack: finnicky, brittle
• Local execution required

• But: NetSpectre3

• Spotty evaluation
• Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Weaknesses

• µarch attack: finnicky, brittle
• Local execution required

• But: NetSpectre3

• Spotty evaluation
• Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Weaknesses

• µarch attack: finnicky, brittle
• Local execution required

• But: NetSpectre3

• Spotty evaluation

• Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Weaknesses

• µarch attack: finnicky, brittle
• Local execution required

• But: NetSpectre3

• Spotty evaluation
• Generality of attack not explained well enough

3Schwarz, Schwarzl, Lipp, and Gruss, “NetSpectre: Read Arbitrary Memory
over Network”

32



Thoughts and Ideas



Performance versus Security

• Fundamental tradeoff: performance versus security

• Mitigations are stop gaps: ISA might have to change

33



Performance versus Security

• Fundamental tradeoff: performance versus security
• Mitigations are stop gaps: ISA might have to change

33



Discussion



Discussion: Spectre Variations

1 if (x < array1_size) {
2 y = array1[x];
3 // do something using y that is observable
4 // when speculatively executed
5 }

Can you think of more observable effects?

34



Thank You

35



Bibliography i

References

Bulck, Jo Van et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: 27th
USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, 991–1008. isbn:
978-1-931971-46-1. url: https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck.

Chen, Guoxing et al. “SgxPectre Attacks: Leaking Enclave Secrets
via Speculative Execution”. In: CoRR abs/1802.09085 (2018).
arXiv: 1802.09085. url: http://arxiv.org/abs/1802.09085.

36

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085


Bibliography ii

Ge, Qian et al. “Time Protection: The Missing OS Abstraction”. In:
Proceedings of the Fourteenth EuroSys Conference 2019.
EuroSys ’19. Dresden, Germany: ACM, 2019, 1:1–1:17. isbn:
978-1-4503-6281-8. doi: 10.1145/3302424.3303976. url:
http://doi.acm.org/10.1145/3302424.3303976.

Kiriansky, V. et al. “DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors”. In: 2018 51st
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). Oct. 2018, pp. 974–987. doi:
10.1109/MICRO.2018.00083.

37

https://doi.org/10.1145/3302424.3303976
http://doi.acm.org/10.1145/3302424.3303976
https://doi.org/10.1109/MICRO.2018.00083


Bibliography iii

Kocher, Paul et al. “Spectre Attacks: Exploiting Speculative
Execution”. In: 40th IEEE Symposium on Security and Privacy
(S&P’19). 2019.

Lipp, Moritz et al. “Meltdown: Reading Kernel Memory from
User Space”. In: 27th USENIX Security Symposium (USENIX
Security 18). 2018.

McIlroy, Ross et al. “Spectre is here to stay: An analysis of
side-channels and speculative execution”. In: CoRR
abs/1902.05178 (2019). arXiv: 1902.05178. url:
http://arxiv.org/abs/1902.05178.

38

https://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178


Bibliography iv

Schwarz, Michael et al. “NetSpectre: Read Arbitrary Memory
over Network”. In: CoRR abs/1807.10535 (2018). arXiv:
1807.10535. url: http://arxiv.org/abs/1807.10535.

Yarom, Yuval and Katrina Falkner. “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack”. In:
23rd USENIX Security Symposium (USENIX Security 14). San
Diego, CA: USENIX Association, 2014, pp. 719–732. isbn:
978-1-931971-15-7. url:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom.

39

https://arxiv.org/abs/1807.10535
http://arxiv.org/abs/1807.10535
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom


Backup



Background: Virtual Memory

• memory isolation between different processes
• typically provided by hardware via MMU
• page tables translate virtual to physical addresses

40



Disambiguation: Meltdown

Meltdown4 is not Spectre

• also violates memory isolation
• exploits out of order execution
• privilege escalation - reads kernel
memory

• race condition specific to Intel
processors

• mitigated by the KAISER patches

4Lipp, Schwarz, Gruss, Prescher, Haas, Fogh, Horn, Mangard, Kocher, Genkin,
Yarom, and Hamburg, “Meltdown: Reading Kernel Memory from User Space”.

41



Background: Out-of-Order Execution

• performance optimisation for
pipelined processors

• instructions executed out of order

• but retired (i.e. become visible) in
order

• complex data dependency logic in
hardware

42



Flush+Reload: Background

• Identical memory pages are shared between processes
• e.g. for shared libraries

• Shared pages imply identical physical addresses
• L3 cache is physically tagged

43



Flush+Reload: Background

• Identical memory pages are shared between processes
• e.g. for shared libraries

• Shared pages imply identical physical addresses

• L3 cache is physically tagged

43



Flush+Reload: Background

• Identical memory pages are shared between processes
• e.g. for shared libraries

• Shared pages imply identical physical addresses
• L3 cache is physically tagged

43



Variant 2: Spectre Gadget

Attacker-controlled ebx and edi allows reading memory

1 adc edi,dword ptr [ebx+edx+13BE13BDh]
2 adc dl,byte ptr [edi]

Set edi to address of probe array (e.g. in shared library)

Set ebx to m - 0x13BE13BD - edx

44


	Executive Summary
	Background
	Novelty
	Key Approach and Ideas
	Mechanisms (in some detail)
	Key Results: Methodology and Evaluation
	Summary
	Strengths
	Weaknesses
	Thoughts and Ideas
	Discussion
	References
	Backup

