
Spectre Attacks: Exploiting

Speculative Execution

Paul Kocher [1] , Daniel Genkin [2] , Daniel Gruss [3] , Werner Haas
[4] , Mike Hamburg [5] ,

Moritz Lipp [3] , Stefan Mangard [3] , Thomas Prescher [4] , Michael
Schwarz [3] , Yuval Yarom [6]

1 Independent

2 University of Pennsylvania and University of Maryland

3 Graz University of Technology

4 Cyberus Technology

5 Rambus, Cryptography Research Division

6 University of Adelaide and Data61

1

Outline
■ Attack description

■ Background

■ Spectre attack

■ Spectre variations

■ Mitigation options

■ Strengths

■ Weaknesses

■ Discussion

2

Attack description

3

Attack description

4

Attack description

■ Spectre exploit gives the attacker the ability to read out the
memory of a bug-free victim process

5

Attack description

■ Spectre exploit gives the attacker the ability to read out the
memory of a bug-free victim process

■ Works on Intel, AMD and ARM

6

Attack description

■ Spectre exploit gives the attacker the ability to read out the
memory of a bug-free victim process

■ Works on Intel, AMD and ARM

■ How?

7

Background

8

Background: Virtual Memory

https://svn.inf.ethz.ch/svn/systems/SPCA2017/trunk/lectures/18-VirtualMemory-upload.pdf

9

Background: Virtual Memory

https://svn.inf.ethz.ch/svn/systems/SPCA2017/trunk/lectures/18-VirtualMemory-upload.pdf

10

Background: Virtual Memory

https://svn.inf.ethz.ch/svn/systems/SPCA2017/trunk/lectures/18-VirtualMemory-upload.pdf

11

Background: Covert channel

12

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

13

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

■ Example of state that can be used:

14

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

■ Example of state that can be used:

■ Cache timing

15

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

■ Example of state that can be used:

■ Cache timing

■ Instruction timing

16

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

■ Example of state that can be used:

■ Cache timing

■ Instruction timing

■ ALU contention

17

Background: Covert channel

■ When two processes cooperate to
communicate, not by architecturally defined
means but by changing the
microarchitectural state in a suitable way

■ Example of state that can be used:

■ Cache timing

■ Instruction timing

■ ALU contention

■ Memory contention

18

Background: Cache

19

Cache MemoryCPU

Background: Cache

20

Cache MemoryCPU

Background: Cache

21

Cache MemoryCPU

Cache

miss

(slow)

Background: Cache

22

Cache MemoryCPU

Cache

miss

(slow)

Background: Cache

23

Cache MemoryCPU

Cache

miss

(slow)
Request

Background: Cache

24

Cache MemoryCPU

Cache

miss

(slow)
Request

Background: Cache

25

Cache MemoryCPU

Cache

miss

(slow)
Request

Response

Background: Cache

26

Cache MemoryCPU

Cache

miss

(slow)
Request

Response

Background: Cache

27

Cache MemoryCPU

Cache

miss

(slow)
Request

Response
Cache

hit (fast)

Background: Covert channel

28

Background: Covert channel

■ Example: cache timing as covert channel

29

Background: Covert channel

■ Example: cache timing as covert channel

■ Sender process has a value it wants to
transmit to the receiver process

30

Background: Covert channel

■ Example: cache timing as covert channel

■ Sender process has a value it wants to
transmit to the receiver process

■ Sender changes the cache (loading,
evicting) in a value-dependent way

31

Background: Covert channel

■ Example: cache timing as covert channel

■ Sender process has a value it wants to
transmit to the receiver process

■ Sender changes the cache (loading,
evicting) in a value-dependent way

■ Receiver can’t see the value in the cache
directly but can time the cache and thus
infer the value

32

Background: Speculative Execution

33

Background: Speculative Execution

■ Predicting/Speculating for example:

34

Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the

future)

35

Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the

future)
■ Branch Predictor (Speculate if direct

branch taken or not)

36

Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the

future)
■ Branch Predictor (Speculate if direct

branch taken or not)
■ Branch Target Buffer/BTB (Speculate what

a value will be)

37

Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the

future)
■ Branch Predictor (Speculate if direct

branch taken or not)
■ Branch Target Buffer/BTB (Speculate what

a value will be)
■ Leads to improved Instruction Level

Parallelism

38

Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the

future)
■ Branch Predictor (Speculate if direct

branch taken or not)
■ Branch Target Buffer/BTB (Speculate what

a value will be)
■ Leads to improved Instruction Level

Parallelism
■ Otherwise CPU would have to sit idle while

waiting for results
39

Background: Speculative Execution

■ Branch predictor

40

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Background: Speculative Execution

■ Branch predictor

41

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Background: Speculative Execution

■ Branch predictor

42

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Background: Speculative Execution

■ Branch predictor

43

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Background: Speculative Execution

■ Branch predictor

44

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Taken

Background: Speculative Execution

■ Branch predictor

45

if (slow condition){

//do something

} else {

//do something

}
Branch predictor

Background: Speculative Execution

46

Background: Speculative Execution

■ Up to 200 instruction ahead

47

Background: Speculative Execution

■ Up to 200 instruction ahead

■ Revert the result of incorrect execution

48

Background: Speculative Execution

■ Up to 200 instruction ahead

■ Revert the result of incorrect execution

■ => No correctness issues?

49

Background: Speculative Execution

■ Up to 200 instruction ahead

■ Revert the result of incorrect execution

■ => No correctness issues?

■ But speculative execution has measurable
side effects

50

Spectre Attacks

51

Spectre Attacks

52

Spectre Attacks

■ Locate sequence of instructions which act as
covert channel transmitter

53

Spectre Attacks

■ Locate sequence of instructions which act as
covert channel transmitter

■ Setup phase: Mistrain CPU into speculatively
executing these instructions

54

Spectre Attacks

55

Spectre Attacks

■ Second phase: speculatively execute
instruction that leak information

56

Spectre Attacks

■ Second phase: speculatively execute
instruction that leak information

■ Via syscall/socket/file

57

Spectre Attacks

■ Second phase: speculatively execute
instruction that leak information

■ Via syscall/socket/file

■ Misexecute own code (e.g. sandbox,
interpreter, JIT)

58

Spectre Attacks

59

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

60

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

■ Cache

61

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

■ Cache

■ Execution time

62

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

■ Cache

■ Execution time

■ ALU contention

63

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

■ Cache

■ Execution time

■ ALU contention

■ Memory contention

64

Spectre Attacks

■ Final phase: Recover data by retrieving over
covert channel

■ Cache

■ Execution time

■ ALU contention

■ Memory contention

■ Other microarchitectural state

65

Spectre Variants

66

Variant 1: Exploiting Conditional Branch

Misprediction

67

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

k

Variant 1: Exploiting Conditional Branch

Misprediction

■ We want to find out what a certain byte in
the virtual address of the victim is

68

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

k

Variant 1: Exploiting Conditional Branch

Misprediction

■ We want to find out what a certain byte in
the virtual address of the victim is

■ Let’s call this secret byte k

69

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

k

Variant 1: Exploiting Conditional Branch

Misprediction

70

Variant 1: Exploiting Conditional Branch

Misprediction

■ Locate a conditional which matches this
pattern in the software you want to attack

71

Variant 1: Exploiting Conditional Branch

Misprediction

■ Locate a conditional which matches this
pattern in the software you want to attack

■ Setup phase:

72

Variant 1: Exploiting Conditional Branch

Misprediction

■ Locate a conditional which matches this
pattern in the software you want to attack

■ Setup phase:
■ call many times with some x < array1_size

to mistrain branch predictor

73

Variant 1: Exploiting Conditional Branch

Misprediction

■ Locate a conditional which matches this
pattern in the software you want to attack

■ Setup phase:
■ call many times with some x < array1_size

to mistrain branch predictor
■ Evict array1_size and array2, but leave

secret byte k in cache

74

Variant 1: Exploiting Conditional Branch

Misprediction

75

Variant 1: Exploiting Conditional Branch

Misprediction

■ Second phase: Choose x out-of-bounds such
that array1[x] resolves to secret byte

76

Variant 1: Exploiting Conditional Branch

Misprediction

77

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

Variant 1: Exploiting Conditional Branch

Misprediction

78

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

Variant 1: Exploiting Conditional Branch

Misprediction

79

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Variant 1: Exploiting Conditional Branch

Misprediction

80

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Variant 1: Exploiting Conditional Branch

Misprediction

81

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Cache miss

Variant 1: Exploiting Conditional Branch

Misprediction

82

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Cache miss

Variant 1: Exploiting Conditional Branch

Misprediction

83

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Cache miss

Variant 1: Exploiting Conditional Branch

Misprediction

84

Attacker Victim

Address Value

000 4

001 13

010 9

011 2

100 12

101 75

110 24

111 87

array1

k

array2

Tag Value Tag Value

Set 0

Set 1 01 2

x = 4

Cache miss

Variant 1: Exploiting Conditional Branch

Misprediction

85
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Exploiting Conditional Branch

Misprediction

■ Final phase:

86
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Exploiting Conditional Branch

Misprediction

■ Final phase:
■ If array2 is readable by attacker, load

array2[n] for all n, will be fast for n==k

87
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Exploiting Conditional Branch

Misprediction

■ Final phase:
■ If array2 is readable by attacker, load

array2[n] for all n, will be fast for n==k

■ Otherwise detect eviction

88
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Exploiting Conditional Branch

Misprediction

■ Final phase:
■ If array2 is readable by attacker, load

array2[n] for all n, will be fast for n==k

■ Otherwise detect eviction

■ Prime & Probe [1]

89
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Exploiting Conditional Branch

Misprediction

■ Final phase:
■ If array2 is readable by attacker, load

array2[n] for all n, will be fast for n==k

■ Otherwise detect eviction

■ Prime & Probe [1]

■ Call method again with in bounds value of
x, if array1[x’] == k, will be fast

90
[1] OSVIK, D. A., SHAMIR, A.,ANDTROMER, E. Cache attacks and countermeasures: The case of AES

Variant 1: Implementations

91

Variant 1: Implementations

■ In C:

92

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern

93

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function

94

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function
■ Were able to read out address space at 10

kB/second

95

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function
■ Were able to read out address space at 10

kB/second
■ In JS:

96

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function
■ Were able to read out address space at 10

kB/second
■ In JS:

■ JS gets JITed and bounds checks inserted

97

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function
■ Were able to read out address space at 10

kB/second
■ In JS:

■ JS gets JITed and bounds checks inserted
■ Works even though no high res. timer

available

98

Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the

pattern
■ Attacker function
■ Were able to read out address space at 10

kB/second
■ In JS:

■ JS gets JITed and bounds checks inserted
■ Works even though no high res. timer

available
■ Able to read out browser’s address space

99

Variant 2: Poisoning Indirect Branches

100

Variant 2: Poisoning Indirect Branches

■ Locate gadgets whose execution will leak the
chosen memory in the process you want to
attack (either source code or in shared
library)

101

Variant 2: Poisoning Indirect Branches

■ Locate gadgets whose execution will leak the
chosen memory in the process you want to
attack (either source code or in shared
library)

■ Example gadget:

102

Variant 2: Poisoning Indirect Branches

■ Locate gadgets whose execution will leak the
chosen memory in the process you want to
attack (either source code or in shared
library)

■ Example gadget:

■ add R2, [R1]

103

Variant 2: Poisoning Indirect Branches

■ Locate gadgets whose execution will leak the
chosen memory in the process you want to
attack (either source code or in shared
library)

■ Example gadget:

■ add R2, [R1]

■ mov R3, [R2]

104

Background: Speculative Execution

■ Branch Target Buffer

105

jmp //slow computation

Branch Target Buffer

Background: Speculative Execution

■ Branch Target Buffer

106

jmp //slow computation

Branch Target Buffer

Background: Speculative Execution

■ Branch Target Buffer

107

jmp //slow computation

Branch Target Buffer

Background: Speculative Execution

■ Branch Target Buffer

108

jmp //slow computation

Branch Target Buffer

Background: Speculative Execution

■ Branch Target Buffer

109

jmp //slow computation

Branch Target Buffer

Background: Speculative Execution

■ Branch Target Buffer

110

jmp //slow computation

Branch Target Buffer

Variant 2: Poisoning Indirect Branches

111

Variant 2: Poisoning Indirect Branches

■ Setup phase:

112

Variant 2: Poisoning Indirect Branches

■ Setup phase:

■ Train branch target buffer in attacker
thread to jump to the chosen gadget’s
virtual address

113

Variant 2: Poisoning Indirect Branches

■ Setup phase:

■ Train branch target buffer in attacker
thread to jump to the chosen gadget’s
virtual address

■ This works because the BTB is
unaware/doesn’t care about process ids

114

Variant 2: Poisoning Indirect Branches

■ Setup phase:

■ Train branch target buffer in attacker
thread to jump to the chosen gadget’s
virtual address

■ This works because the BTB is
unaware/doesn’t care about process ids

■ Example of indirect branch:

115

Variant 2: Poisoning Indirect Branches

■ Setup phase:

■ Train branch target buffer in attacker
thread to jump to the chosen gadget’s
virtual address

■ This works because the BTB is
unaware/doesn’t care about process ids

■ Example of indirect branch:

■ jmp eax

116

Variant 2: Poisoning Indirect Branches

117

Variant 2: Poisoning Indirect Branches

■ Second phase:

118

Variant 2: Poisoning Indirect Branches

■ Second phase:

■ Victim speculatively jumps to gadget,
which then leaks information

119

Variant 2: Poisoning Indirect Branches

■ Second phase:

■ Victim speculatively jumps to gadget,
which then leaks information

■ Final phase: Recover over covert channel

120

Variant 2: Implementation in Windows

121

Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads

from file, calls crypto

122

Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads

from file, calls crypto

■ When compiled with optimization,Sleep()

gets made with file data in registers ebx

and edi

123

Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads

from file, calls crypto

■ When compiled with optimization,Sleep()

gets made with file data in registers ebx

and edi

■ Found in ntdll.dll

124

Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads

from file, calls crypto

■ When compiled with optimization,Sleep()

gets made with file data in registers ebx

and edi

■ Found in ntdll.dll

■ adc edi,dword ptr

[ebx+edx+13BE13BDh]

125

Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads

from file, calls crypto

■ When compiled with optimization,Sleep()

gets made with file data in registers ebx

and edi

■ Found in ntdll.dll

■ adc edi,dword ptr

[ebx+edx+13BE13BDh]

■ adc dl,byte ptr [edi]

126

Variant 2: Implementation in Windows

127

Variant 2: Implementation in Windows
■ Branch to mistrain found in Sleep()

128

Variant 2: Implementation in Windows

■ Branch to mistrain found in Sleep()

■ “jmp dword ptr ds:[76AE0078h]”

129

Variant 2: Implementation in Windows

■ Branch to mistrain found in Sleep()

■ “jmp dword ptr ds:[76AE0078h]”

■ Speed: 41 B/s

130

Other Methods of achieving speculative

execution

131
[1] Spectre Returns! Speculation Attacks using the Return Stack Buffer

By Esmaiel Mohammadian Koruyeh, Khaled Khasawneh,

Chengyu Song and Nael Abu-Ghazaleh

Other Methods of achieving speculative

execution

■ Mistraining return instructions [1]

132
[1] Spectre Returns! Speculation Attacks using the Return Stack Buffer

By Esmaiel Mohammadian Koruyeh, Khaled Khasawneh,

Chengyu Song and Nael Abu-Ghazaleh

Other Methods of achieving speculative

execution

■ Mistraining return instructions [1]

■ Return from interrupts

133
[1] Spectre Returns! Speculation Attacks using the Return Stack Buffer

By Esmaiel Mohammadian Koruyeh, Khaled Khasawneh,

Chengyu Song and Nael Abu-Ghazaleh

Method of leaking information

134

Method of leaking information

■ Evict+Time

135

Method of leaking information

■ Evict+Time

136

Method of leaking information

■ Evict+Time

■ Instruction Timing

137

Method of leaking information

■ Evict+Time

■ Instruction Timing

138

Method of leaking information

■ Evict+Time

■ Instruction Timing

■ Contention on the Register File

139

Mitigation Options

140

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation

141

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact

142

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

143

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

■ Retpoline [1]

144

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

■ Retpoline [1]

■ swaps indirect branches for returns, to

avoid using predictions which come from

the BTB

145

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

■ Retpoline [1]

■ swaps indirect branches for returns, to

avoid using predictions which come from

the BTB

■ Masking, etc.

146

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

■ Retpoline [1]

■ swaps indirect branches for returns, to

avoid using predictions which come from

the BTB

■ Masking, etc.

■ Addressing Spectre Variant 1 (CVE-2017-

5753) in Software [2]

147

[1] https://support.google.com/faqs/answer/7625886

[2] https://developer.arm.com/support/arm-security-

updates/speculative-processor-vulnerability/compiler-support-

for-mitigations

Mitigation Options

148[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

■ Halt speculative execution on potentially
sensitive execution paths

149[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

■ Halt speculative execution on potentially
sensitive execution paths

■ Not enough only on security-critical code
because non-security-critical code in same
process.

150[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

■ Halt speculative execution on potentially
sensitive execution paths

■ Not enough only on security-critical code
because non-security-critical code in same
process.

■ Compiler can’t find automatically [1]

151[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

■ Halt speculative execution on potentially
sensitive execution paths

■ Not enough only on security-critical code
because non-security-critical code in same
process.

■ Compiler can’t find automatically [1]

■ Need to recompile (what about legacy
software?)

152[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

■ Halt speculative execution on potentially
sensitive execution paths

■ Not enough only on security-critical code
because non-security-critical code in same
process.

■ Compiler can’t find automatically [1]

■ Need to recompile (what about legacy
software?)

■ Flush branch prediction state on context
switch

153[1] oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, Abhik Roychoudhury

Mitigation Options

154

Mitigation Options

■ Countermeasures limited to cache likely
insufficient

155

Mitigation Options

■ Countermeasures limited to cache likely
insufficient
■ => different microarchitectural state can

be used to leak information

156

Novelty

157

Novelty

158

Novelty

■ First to exploit speculative execution

159

Novelty

■ First to exploit speculative execution
■ Developers now need to know about

microarchitecture to code non-vulnerable
software!

160

Strengths

161

Strengths of the Paper

162

Strengths of the Paper

■ Hits at fundamentals of modern CPU

163

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

164

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

165

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

166

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

■ And even remotely:

167

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

■ And even remotely:

■ NetSpectre: Read Arbitrary Memory over Network by
Michael Schwarz, Martin Schwarzl, Moritz Lipp,
Daniel Gruss

168

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

■ And even remotely:

■ NetSpectre: Read Arbitrary Memory over Network by
Michael Schwarz, Martin Schwarzl, Moritz Lipp,
Daniel Gruss

■ Very well written paper

169

Strengths of the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

■ And even remotely:

■ NetSpectre: Read Arbitrary Memory over Network by
Michael Schwarz, Martin Schwarzl, Moritz Lipp,
Daniel Gruss

■ Very well written paper

■ Gives a refresher on virtual memory, caches, CPU
architecture

170

Weaknesses

171

Weaknesses/Limitations of the Paper

172

Weaknesses/Limitations of the Paper

■ Have to target specific application and find gadgets in those

173

Weaknesses/Limitations of the Paper

■ Have to target specific application and find gadgets in those
■ => But one can search in shared libraries

174

Weaknesses/Limitations of the Paper

■ Have to target specific application and find gadgets in those
■ => But one can search in shared libraries

■ Doesn’t tell us the speed of the Javascript implementation

175

Related papers

176

Related papers

■ MeltdownPrime and SpectrePrime: Automatically-

Synthesized Attacks Exploiting Invalidation-Based

Coherence Protocols by Caroline Trippel, Daniel Lustig,

Margaret Martonosi

177

Related papers

■ MeltdownPrime and SpectrePrime: Automatically-

Synthesized Attacks Exploiting Invalidation-Based

Coherence Protocols by Caroline Trippel, Daniel Lustig,

Margaret Martonosi

■ Trusted Browsers for Uncertain Times by David

Kohlbrenner and Hovav Shacham

178

Related papers

■ MeltdownPrime and SpectrePrime: Automatically-

Synthesized Attacks Exploiting Invalidation-Based

Coherence Protocols by Caroline Trippel, Daniel Lustig,

Margaret Martonosi

■ Trusted Browsers for Uncertain Times by David

Kohlbrenner and Hovav Shacham

■ Foreshadow: Extracting the Keys to the {Intel SGX}

Kingdom with Transient Out-of-Order Execution by Van

Bulck, Jo and Minkin, Marina and Weisse, Ofir and Genkin,

Daniel and Kasikci, Baris and Piessens, Frank and

Silberstein, Mark and Wenisch, Thomas F. and Yarom,

Yuval and Strackx, Raoul

179

Related papers

■ MeltdownPrime and SpectrePrime: Automatically-

Synthesized Attacks Exploiting Invalidation-Based

Coherence Protocols by Caroline Trippel, Daniel Lustig,

Margaret Martonosi

■ Trusted Browsers for Uncertain Times by David

Kohlbrenner and Hovav Shacham

■ Foreshadow: Extracting the Keys to the {Intel SGX}

Kingdom with Transient Out-of-Order Execution by Van

Bulck, Jo and Minkin, Marina and Weisse, Ofir and Genkin,

Daniel and Kasikci, Baris and Piessens, Frank and

Silberstein, Mark and Wenisch, Thomas F. and Yarom,

Yuval and Strackx, Raoul

■ A Systematic Evaluation of Transient Execution Attacks and

Defenses by Claudio Canella, Jo Van Bulck, Michael

Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner,

Frank Piessens, Dmitry Evtyushkin, Daniel Gruss
180

Discussion Starters

181

Discussion Starters

■ Is there a fundamental tradeoff between security and
speed?

182

Discussion Starters

■ Is there a fundamental tradeoff between security and
speed?

■ Can Spectre be fixed in hardware?

183

