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Abstract 
A shared data structure is lock-free if its operations do not 
require mutual exclusion. If one process is interrupted in 
the middle of an operation, other processes will not be 
prevented from operating on that object. In highly con- 
current systems, lock-free data structures avoid common 
problems associated with conventional locking techniques, 
including priority inversion, convoying, and difficulty of 
avoiding deadlock. This paper inttoduces transactional 
memory, a new multiprocessor architecture intended to 
make lock-free synchronization as efficient (and easy to 
use) as conventional techniques based on mutual exclu- 
sion. Transactional memory allows programmers to de- 
fine customized read-modify-write operations that apply 
to multiple, independently-chosen words of memory. It 
is implemented by straightforward extensions to any mul- 
tiprocessor cache-coherence protocol. Simulation results 
show that transactional memory matches or outperforms 
the best known locking techniques for simple benchmarks, 
even in the absence of priority inversion, convoying, and 
deadlock. 

1 Introduction 
A shared data structure is lock-free if its o p t i o n s  do not 
require mutual exclusion. If one process is interrupted in 
the middle of an operation, other processes will not be 
prevented from operating on that object. Lock-free data 
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structures avoid common problems associated with con- 
ventional locking techniques in highly concurrent systems: 

0 Priority inversion occurs when a lower-priority pro- 
cess is preempted while holding a lock needed by 
higher-priority processes. 

0 Convoying occurs when a process holding a lock is de- 
scheduled, perhaps by exhausting its scheduling quan- 
tum, by apage fault, or by some other kind of interrupt. 
When such an interruption occurs, other processes ca- 
pable of running may be unable to progress. 

0 Deadlock can occur if processes attempt to lock the 
same set of objects in different orders. Deadlock 
avoidance can be awkward if processes must lock mul- 
tiple data objects, particularly if the set of objects is 
not known in advance. 

A number of researchers have investigated techniques for 
implementing lock-free concurrent data structures using 
software techniques [2,4, 19,25, 26,321. Experimental 
evidence suggests that in the absence of inversion, con- 
voying, or deadlock, software implementations of lock- 
free data structures often do not perform as well as their 
locking-based counterparts. 

This paper introduces rransucfional memory, a new mul- 
tiprocessor architecture intended to make lock-free syn- 
chronization as efficient (and easy to use) as conventional 
techniques based on mutual exclusion. Transactional mem- 
ory allows programmers to define customized read-modify- 
write operations that apply to multiple, independently- 
chosen words of memory. It is implemented by straightfor- 
ward extensions to multiprocessor cache-coherence proto- 
cols. Simulation results show that transactional memory is 
competitive with the best known lock-based techniques for 
simple benchmarks, even in the absence of priority inver- 
sion, convoys, and deadlock. 

In Section 2, we describe transactional memory and how 
to use it. In Section 3 we describe one way to implement 
transactional memory, and in Section 4 we discuss some 
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alternatives. In Section 5 we present some simulation re- 
sults, and in Section 6, we give a brief survey of related 
work. 

2 Ransactional Memory 
A transaction is a finite sequence of machine instructions, 
executed by a single process, satisfying the followingprop- 
erties: 

Serializability: Transactions appear to execute seri- 
ally, meaning that the steps of one transaction never 
appear to be interleaved with the steps of another. 
Committed transactions are never observed by differ- 
ent processors to execute in different orders. 

Atomicity: Each transaction makes a sequence of 
tentative changes to shared memory. When the 
transaction completes, it either commits, making its 
changes visible to other processes (effectively) in- 
stantaneously, or it aborts, causing its changes to be 
diSGUded. 

We assume here that a process executes only one trans- 
action at a time. Although the model could be extended 
to permit overlapping or logically nested transactions, we 
have seen no examples where they are needed. 

2.1 Instructions 
Transactional memory provides the following primitive in- 
structions for accessing memory: 

0 Load-transactional (LT) reads the value of a shared 
memory location into a private register. 

Load-transactional-exclusive (LTX) reads the value of 
a shared memory location into a private register, “hint- 
ing” that the location is likely to be updated. 

Store-trunsuctional (sr) tentatively writes a value 
from a private register to a shared memory location. 
This new value does not become visible to other pro- 
cessors until the transaction successfully commits (see 
below). 

A transaction’s read set is the set of locations r ad  by LT, 
and its write set is the set of locations accessed by LTX or 
ST. Its data set is the union of the read and write sets. 

Transactional memory also provides the following in- 
structions for manipulating transaction state: 

other transaction has updated any location in the trans- 
action’s data set, and no other transaction has read any 
location in this transaction’s write set. If it succeeds, 
the transaction’s changes to its write set become vis- 
ible to other processes. If itfails, all changes to the 
write set are discarded. Either way, COMMIT returns 
an indication of success or failure. 

Abort (ABORT) discards all updates to the write set. 

Validate (VALIDATE) tests the current transaction sta- 
tus. A successfkl VALIDATE returns True, indicating 
that the current transaction has not aborted (although 
it may do so later). An unsuccessful VALIDATE re- 
turns False, indicating that the current transaction has 
aborted, and discards the transaction’s tentative up- 
dates. 

By combining these primitives, the programmer can de- 
fine customized read-modify-write operations that operate 
on arbitrary regions of memory, not just single words. We 
also support non-transactional instructions, such as LOAD 
and  RE, which do not affect a transaction’s read and 
write sets. 

For brevity, we leave undefined how transactional and 
non-transactional operations interact when applied to the 
same location.’ we also leave unspecified the precise cir- 
cumstances that will cause a transaction to abort. In par- 
ticular, implementations are free to abort transactions in 
response to certain interrupts (such as page faults, quantum 
expiration, etc.), context switches, or to avoid or resolve 
serialization conflicts. 

2.2 Intendeduse 
Our transactions are intended to replace short critical sec- 
tions. For example, a lock-free data structure would typ- 
ically be implemented in the following stylized way (see 
Section 5 for specific examples). Instead of acquiring a 
lock, executing the critical section, and releasing the lock, 
a process would: 

1. use LT or LTX to read from a set of locations, 

2. use VALIDATE to check that the values read are consis- 
tent, 

3. use ST to modify a set of locations, and 

4. use COMMIT to make the changes permanent. If either 
the VALIDATE or the COMMIT fails, the process returns 
to step (1). 

0 Commit (COMMIT) attempts to make the transaction’s 
tentative changes permanent. It succeeds only if no 

‘One sensible way to deline such interactions is to consider a LOAD 
or STORE as a transaction that always commits. forcing any conflicting 
transactions to abort. 
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A more complex transaction, such as one that chains down a 
linked list (see Figure 3), would altemate LT and VALIDATE 
instructions. When contention is high, programmers are 
advised to apply adaptive backoff [3,28] before retrying. 

The VALIDATE instruction is motivated by considerations 
of software engineering. A set of values in memory is in- 
consistent if it could not have been produced by any serial 
execution of transactions. An orphan is a transaction that 
continues to execute after it has been aborted (i.e., after 
another committed transaction has updated its read set). It 
is impractical to guarantee that every orphan will observe 
a consistent read set. Although an orphan transaction will 
never commit, it may be difficult to ensure that an orphan, 
when confronted with unexpected input, does not store into 
out-of-range locations, divide by zero, or perform some 
other illegal action. All values read before a successful 
VALIDATE are guaranteed to be consistent. Of course, VAL- 
IDATE is not always needed, but it simplifies the writing of 
correct transactions and improves performance by elimi- 
nating the need for ad-hoc checks. 

Our transactions satisfy the same formal serializability 
and atomicity properties as database-style transactions (viz. 
[MI), but they are intended to be used very differently. Un- 
like database transactions, our transactions are short-lived 
activities that access a relatively small number of memory 
locations in primary memory. The ideal size and duration 
of transactions are implementation-dependent, but, roughly 
speaking, a transaction should be able to run to completion 
within a single scheduling quantum, and the number of 
locations accessed should not exceed an architecturally- 
specified limit. 

3 Implementation 
In this section, we give an overview of an architecture 
that supports transactional memory. An associated tech- 
nical report [20] gives detailed protocols for both bus- 
based (snoopy cache) and network-based (directory) ar- 
chitectures. 

Our design satisfies the following criteria: 

Non-transactional operations use the same caches, 
cache controller logic, and coherence protocols they 
would have used in the absence of transactional mem- 
ory. 

Custom hardware support is restricted to primary 
caches and the instructions needed to communicate 
with them. 

Committing or aborting a transaction is an operation 
local to the cache. It does not require communicating 
with other processes or writing data back to memory. 

Transactional memory is implemented by modifying 
standard multiprocessor cache coherence protocols. We 
exploit access rights, which are usually connected with 
cache residence. In general, access may be non-exclusive 
(shared) permitting reads, or exclusive, permitting writes. 
At any time a memory location is either (1) not immedi- 
ately accessible by any processor (i.e., in memory only), (2) 
accessible non-exclusively by one or more processors, or 
(3) accessible exclusively by exactly one processor. Most 
cache coherence protocols incorporate some form of these 
access rights. 

The basic idea behind our design is simple: any protocol 
capable of detecting accessibility conflicts can also detect 
transaction conflict at no extra cost. Before a processor P 
can load the contents of a location, it must acquire non- 
exclusive access to that location. Before another processor 
Q can store to that location, it must acquire exclusive ac- 
cess, and must therefore detect and revoke P’s access. If 
we replace these operations with their transactional coun- 
terparts, then it is easy to see that any protocol that detects 
potential access conflicts also detects the potential transac- 
tion conflict between P and Q. 

Once a transaction conflict is detected, it can be re- 
solved in a variety of ways. The implementation described 
here aborts any transaction that tries to revoke access of a 
transactional entry from another active transaction. This 
strategy is attractive if one assumes (as we do) that timer 
(or other) interrupts will abort a stalled transaction after a 
fixed duration, so there is no danger of a transaction holding 
resources for too long. Alternative strategies are discussed 
in [20]. 

3.1 Example implementation 
We describe here how to extend Goodman’s ‘‘snoopy’’ pro- 
tocol for a shared bus [ 151 to support transactional memory. 
(See [20] for similar extensions to a directory-based proto- 
col.) We first describe the general implementation strategy, 
the various cache line states, and possible bus cycles. We 
then describe the various possible actions of the processor 
and the bus snooping cache logic. 

3.1.1 General approach 

To minimize impact on processing non-transactional loads 
and stores, each processor maintains two caches: a regular 
cache for non-transactional operations, and a transacfional 
cache for transactional operations. These caches are ex- 
clusive: an entry may reside in one or the other, but not 
both. Both caches are primary caches (accessed directly 
by the processor), and secondary caches may exist between 
them and the memory. In our simulations, the regular cache 
is a conventional direct-mapped cache. The transactional 
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I Name I Access I Shared? I Modified? 1 
INVALID 
VALID 
DIRTY 
RESERVED 

none - - 
R Yes No 
R,W No Yes 
R.W NO No 

Table 1: Cache line states 

Name IMeaning 
EMPTY I contains no data 
NORMAL contains committed data 
XCOMMIT discard on commit I XABORT discard on abort 

Table 2 Transactional tags 

cache is a small, fully-associative cache with additional 
logic to facilitate transaction commit and abort. The over- 
all hardware organization is similar to that used by Jouppi 
for the victim cache [22], and indeed one can readily extend 
the transactional cache to act as a victim cache as well. 

The idea is that the transactional cache holds all the 
tentative writes, without propagating them to other proces- 
sors or to main memory unless the transaction commits. If 
the transaction aborts, the lines holding tentative writes are 
dropped (invalidated): if the transaction commits, the lines 
may then be snooped by other processors, written back to 
memory upon replacement, etc. We assume that since the 
transactional cache is small and fully associative it is prac- 
tical to use parallel logic to handle abort or commit in a 
single cache cycle. 

3.1.2 Cache line states 

Following Goodman, each cache line (regular or trans- 
actional) has one of the states in Table 1. The possible 
accesses permitted are reads and/or writes; the "Shared?" 
column indicates whether sharing is permitted, and the 
"Modified?" column indicates whether the line may differ 
from its copy in main memory. 

The transactional cache augments these states with sep- 
arate transactional tags shown in Table 2, used as follows. 
Transactional operations cache two entries: one with trans- 
actional tag XCOMMIT and one XABORT. Modifications are 
made to the XABORT entry. When a transaction commits, 
it sets the entries marked XCOMMIT to m, and XABORT 
to NORMAL. When it aborts, it sets entries marked XABORT 

When the transactional cache needs space for a new en- 
to EMI*Ty, and XCOMMIT to NORMAL. 

Name !Kind I Meaninn I Newaccess 
readvalue I d~s; 
read value exclusive 
write back exclusive 
read value 
read value exclusive 
refuse access unchanged 

Table 3: Bus cycles 

try, it fust searches for an EMPTY entry, then for a NORMAL 
entry, and finally for an XCOMMIT entry. If the XCOMMIT 
entry is DIRTY, it must be written back. Notice that XCOM- 
MIT entries are used only to enhance performance. When 
a ST tentatively updates an entry, the old value must be 
retained in case the transaction aborts. If the old value is 
resident in the transactional cache and dirty, then it must 
either be marked XCOMMIT, or it must be written back to 
memory. Avoiding such write-backs can substantially en- 
hance performance when a processor repeatedly executes 
transactions that access the same locations. If contention is 
low, then the transactions will often hit dirty entries in the 
transactional cache. 

3.13 Bus cycles 

The various kinds of bus cycles are listed in Table 3. The 
READ (RFO (read-for-ownership)) cycle acquires shared (ex- 
clusive) ownership of the cache line. The WRITE cycle up- 
dates main memory when the protocol does write through; 
it is also used when modified items are replaced. Further, 
memory snoops on the bus so if a modified item is read 
by another processor, the main memory version is brought 
up to date. Thm cycles are all as in Goodman's original 
protocol. We add three new cycles. The TREAD and T-RFO 
cycles are analogous to READ and WO, but request cache 
lines transactionally. Transactional requests can be refused 
by responding with a BUSY signal. BUSY helps prevent 
transactions from aborting each other too much. When 
a transaction receives a BUSY response, it aborts and re- 
tries, preventing deadlock or continual mutual aborts. This 
policy is theoretically subject to starvation, but could be 
augmented with a queueing mechanism if starvation is a 
problem in practice. 

3.1.4 Processor actions 

Each processor maintains two flags: the transaction QC- 

live (TACTIVE) flag indicates whether a transaction is in 
progress, and if so, the transaction status (TSTATUS) flag in- 
dicates whether that transaction is active (True) or aborted 
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(False). The TACIlVE flag is implicitly set when a transac- 
tion executes its first transactional operation. (This implicit 
approach seems more convenient than providing an explicit 
sturt transaction instruction.) Non-transactional operations 
behave exactly as in Goodman’s original protocol. Trans- 
actional instructions issued by an aborted transaction cause 
no bus cycles and may return arbitrary values? 

We now consider transactional operations issued by an 
active transaction (TSTATUS is True). Suppose the operation 
is a LT instruction. We probe the transactional cache for an 
XABORT entry, and return its value if there is one. If there is 
no XABORT entry, but there is a NORMAL one, we change the 
NORMAL entry U, an XABORT entry, and allocate a second 
entry with tag XCOMMIT and the same data? If there is no 
XABORT or NORMAL entry, then we issue a TREAD cycle. If 
it completes successfully, we set up two transactional cache 
entries, one tagged XCOMMIT and one XABORT, both with 
whatever state the Goodman protocol would get on a READ 
cycle. If we get a BUSY response, we abort the transaction 

XCOMMIT entries to NORMAL) and return arbitrary data. 
For LTX we use a TRFO cycle on a miss rather than a 

T-READ, and change the cache line state to RESERVED if the 
T-0 succeeds. A ST proceeds like a LTX, except it updates 
the XABORT entry’s data. The cache line state is updated as 
in the Goodman protocol with LT and LTX acting like M A D  
and ST acting like STORE. 

The VALIDATE instruction returns the TSTATUS flag, and 
if it is False, Sets the TACTIVE flag to False and the TSTATUS 
flag to True. The ABORT instruction discards cache en- 
Uies as previously described, and sets TSTATUS to True and 
TACIlVE to False. Finally, COMMIT returns TSTATUS, sets 
TSTATUS to True and TACTIVE to False, drops all XCOMMIT 
cache entries, and changes all XABORT tags to NORMAL. 

Interrupts and transactional cache overflows abort the 
current transaction. 

(Set TSTATUS to False, drop d l  XABORT entries, and Set d l  

3.1.5 Snoopy cache actions 

Both the regular cache and the transactional cache snoop 
on the bus. A cache ignores any bus cycles for lines not 
in that cache. The regular cache behaves as follows. On a 
READ or TREAD, if the state is VALID, the cache returns the 
value. If the state is RESERVED or DIRTY, the cache returns 
the value and resets the state to VALID. On a RFO or T-RFO, 
the cache returns the data and invalidates the line. 

The transactiond cache behaves aS follows. If TSTATUS 
is False, or if the cycle is non-transactional (READ and 

2As discussed below in Section 4, it is possible to provide stronger 
guarantees on values read by aborted transactions. 

3Different variations are possible here. Also. allocating an entry may 
involve replacing a dirty cache entry, in which case it must be written 
back, as previously mentioned. 

RFO), the cache acts just like the regular cache, except that 
it ignores entries with transactional tag other than NORMAL. 
On TREAD, if the state is VALID, the cache returns the value, 
and for all other transactional operations it returns BUSY. 

Either cache can issue a WRITE request when it needs to 
replace a cache line. The memory responds only to READ, 
TREAD, WO, and T N O  requests that no cache responds 
to, and to WRITE requests. 

4 Rationale 

It would be possible to use a single cache for both trans- 
actional and non-transactional data. This approach has 
two disadvantages: (1) modern caches are usually set as- 
sociative or direct mapped, and without additional mech- 
anisms to handle set overflows, the set size would deter- 
mine the maximum transaction size, and (2) the parallel 
commidabort logic would have to be provided for a large 
primary cache, instead of the smaller transactional cache. 

For programs to be portable, the instruction set archi- 
tecture must guarantee a minimum transaction size, thus 
establishing a lower bound for the transactional cache size. 
An altemative approach is suggested by the LimitLESS 
directory-based cache coherence scheme of Chaiken, Ku- 
biatowicz, and Agarwal[6]. This scheme uses a fast, fixed- 
size hardware implementation for directories. If a directory 
overflows, the protocol traps into software” the software 
emulates a larger directory. A similar approach might be 
used to respond to transactional cache overflow. Whenever 
the transactional cache becomes full, it traps into software 
and emulates a larger transactional cache. This approach 
has many of the same advantages as the OriginalLimitLESS 
scheme: the common case is handled in hardware, and the 
exceptional case in software. 

Other transactional operations might be useful. For 
example, a simple “update-and-commit” operation (like 
STORE-COND) would be useful for single-word updates. It 
might also be convenient for a transaction to be able to 
drop an item from its read or write set. Naturally, such an 
operation must be used with care. 

One could reduce the need for VALIDATE instructions by 
guaranteeing that an orphan transaction that applies a LT or 
LTX instruction to a variable always observes some value 
previously written to that variable. For example, if a shared 
variable always holds a valid array index, then it would not 
be necessary to validate that index before using it. Such 
a change would incur a cost, however, because an orphan 
transaction might sometimes have to read the variable’s 
value from memory or another processor’s cache. 

-1 

293 

IT 



I 

5 Simulations shared int counter; 

Transactional memory is intended to make lock-free 
synchronization as efficient as conventional lock-based 
techniques. In this section, we present simulation results 
suggesting that transactional memory is competitive with 
well-known lock-based techniques on simple benchmarks. 
Indeed, transactional memory has certain inherent advan- 
tages: for any object that spans more than a single word of 
memory, techniques based on mutual exclusion must em- 
ploy an explicit lock variable. Because transactional mem- 
ory has no such locks, it typically requires fewer memory 
accesses. 

We modified a copy of the Proteus simulator 151 to 
support transactional memory. proteus is an execution- 
driven simulator system for multiprocessors developed by 
Eric Brewer and Chris Dellarocas of MIT. The program to 
be simulated is written in a superset of C. References to 
shared memory are transforined into calls to the simulator, 
which manages the cache and charges for bus or network 
contention. Other instructions are executed directly, aug- 
mented by cyclecounting code inserted by a preprocessor. 
Proteus does not capture the effects of instruction caches 
or local caches. 

We implemented two versions of transactional memory, 
one based on Goodman's snoopy protocol for a bus-based 
architecture, and one based on the Chaiken directory pro- 
tocol for a (simulated) Alewife machine [l]. Our motive 
in choosing these particular protocols was simply ease of 
implementation: the proteus release includes implementa- 
tions of both. As noted below, a more complex snoopy 
protocol could make spin locks more efficient. 

Both simulated architectures use 32 processors. The 
regular cache is a direct-mapped cache with 2048 lines 
of size 8 bytes, and the transactional cache has 64 8-byte 
lines. In both architectures, a memory access (without 
contention) requires 4 cycles. The network architecture 
uses a two-stage network with wire and switch delays of 1 
cycle each. 

The ability to commit and abort transactions quickly is 
critical to the performance of transactional memory. In 
our simulations, each access to the regular or transac- 
tional cache, including transaction commit and abort, is 
counted as a single cycle. Single-cycle commit requires 
that the transactional cache provide logic to m e t  the trans- 
actional tag bits in parallel. Moreover, commit must not 
force newly-committed entries back to memory. Instead, 
in the implementations simulated here, committed entries 
are gradually replaced as they are evicted or invalidated by 
the ongoing cache coherence protocol. 

We constructed three simple benchmarks, and com- 
pared transactional memory against two software mech- 
anisms and two hardware mechanisms. The software 

void process (int work) 
( 
int success = 0, backoff = BACKOFF-MIN; 
unsigned wait; 

while (success < work) { 
ST(&counter, LTX(&counter) + 1); 
if (COMMIT()) { 

success++; 
backoff = BACKOFF-MIN; 

1 
else ( 
wait = random() % (01 << backoff); 
while (wait--) ; 
if (backoff < BACKOFF-M?W 
backoff++; 

1 
1 

1 

Figure 1: Counting Benchmark 

typedef struct ( 
Word deqs; 
Word enqs; 
Word items[QUEUE-SIZE]; 

1 queue; 

unsigned queue-deq (queue *q) I 
unsigned head, tail, result; 
unsigned backoff = BACKOFF-MIN 
unsigned wait; 
while (1) { 

result = QUEUE-EMPTY; 
tail = LTX (&q->enqs) ; 
head = LTX (hq->deqs) ; 

/*  queue not empty? * /  
if (head != tail) { 

result = 

/ *  advance counter * /  
ST (&q-Meqs , head + 1) ; 

LT (&q->items [head % QUEUE-SIZE] ; 

1 
if (COMMIT ( )  ) break; * 
/ *  abort -> backoff * /  
wait = random() % (01 << backoff) ; 
while (wait--) ; 
if (backoff < BACKOFF-MAX) 
backoff++; 

1 
return result; 

1 

Figure 2: part of Producer/Consumer Benchmark 



typedef struct l i s t - e l e m {  
/* next t o  dequeue * /  
struct l i s t - e l e m  *next; 
/ *  previously enqueued */ 
struct list-elem *prev; 
i n t  value; 

1 entry;  

shared en t ry  *Head, * T a i l ;  

void l i s t -enq(ent ry*  new) { 

en t ry  *old-tail; 
unsigned backoff = BACKOFF-MIN; 
unsigned w a i t ;  

new->next = new->prev = NULL; 

while (TRUE) { 
old-tai l  = (entry*)  LTX ( & T a i l )  ; 
if (VALIDATE()) { 

ST (&new->prev, o ld- ta i l )  ; 
if (old- ta i l  == NULL) { 

} else { 

1 
ST ( & T a i l ,  new) ; 
i f  (COMMIT ( )  ) re turn;  

ST (&Head, new) ; 

ST (tiold-tail->next, new) ; 

1 
w a i t  = random() % ( 0 1  << backoff) ; 
while ( w a i t - - )  ; 
i f  (backoff < BACKOFF-MAX) 

backoff++; 
1 

Figure 3: part of Doubly-Linked List Benchmark 

mechanisms were (1) test-and-test-and-set ( ' ITS)  [30] spin 
locks with exponential backoff [3, 281, and (2) software 
queueing [3, 17, 271. The hardware mechanisms were 

backoff, and (2) hardware queueing [ 161. For a single-word 
counter benchmark, we ran the U/SC implementation di- 
rectly on the shared variable, while on the others we used 
W S C  to implement a spin lock. Both software mech- 
anisms perform synchronization in-line, and all schemes 
that use exponential backoff use the same fixed minimum 
and maximum backoff durations. We now give a brief 
review of these techniques. 

A spin lock is perhaps the simplest way to implement 
mutual exclusion. Each processor repeatedly applies a 
test-and-set operation until it succeeds in acquiring the 
lock. As discussed in more detail by Anderson [3], this 
Wve technique performs poorly because it consumes ex- 
cessive amounts of processor-to-memory bandwidth. On a 
cache-coherent architecture, the test-and-test-and-set [30] 
protocol achieves somewhat bener performance by repeat- 
edly rereading the cached value of the lock (generating no 
memory traffic), until it observes the lock is free, and then 
applying the test-and-set operation directly to the lock in 
memory. Even better performance is achieved by introduc- 
ing an exponential delay after each unsuccessful attempt 
to acquire a lock [3,27]. Because Anderson and Mellor- 
Crummey et al. have shown that TTS locks with expo- 
nential backoff substantially outperform conventional ' I T S  
locks on small-scale machines, it is a natural choice for our 
experiments. 

The U operation copies the value of a shared variable 
to a local variable. A subsequent SC to that variable will 
succeed in changing its value only if no other process has 
modified that variable in the interim. If the operation does 
not succeed, it leaves the shared variable unchanged. The 
LL/SC operations are the principal synchronization primi- 
tives provided by the MIPS IIarchitecture [291 and Digital's 
Alpha [31]. On a cache-coherent architecture, these oper- 
ations are implemented as single-word transactions - a 
SC succeeds if the processor retains exclusive access to the 
entry read by the LL. 

In sofwure queuing, a process that is unable to acquire 
a lock places itself on a software queue, thus eliminating 
the need to poll the lock. Variations of queue locks have 
been proposed by Anderson [3], by Mellor-Crummey and 
Scott 1273, and by Graunke and Thakkar [ 171. Our simula- 
tions use the algorithm of Mellor-Crummey and Scott. In 
hardware queuing, queue maintenance is incorporated into 
the cache coherence protocol itself. The queue's head is 
kept in memory, and unused cache lines are used to hold 
the queue elements. The directory-based scheme must also 
keep the queue tail in memory. Our simulations use a 

(1) LOAD-LINKED/STORE-CD (LL/sc) with exponentid 
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queuing scheme roughly based on the QoSB mechanism 
of Goodman et al. [16]. 

5.1 Counting Benchmark 
In our first benchmark (code in Figure l), each of n pro- 
cesses increments a shared counter 216/n times, where n 
ranges from 1 to 32. In this benchmark, transactions and 
critical sections are very short (two shared memory ac- 
cesses) and contention is correspondingly high. In Figure 
4, the vertical axis shows the number of cycles needed to 
complete the benchmark, and the horizontal axis shows the 
number of concurrent processes. With one exception, trans- 
actional memory has substantially higher throughput than 
any of the other mechanisms, at all levels of concurrency, 
for both bus-based and directory-based architectures. The 
explanation is simple: transactional memory uses no ex- 
plicit locks, and therefore requires fewer accesses to shared 
memory. For example, in the absence of contention, the 
' I T S  spin lock makes at least five references for each in- 
crement (a read followed by a test-and-set to acquire the 
lock, the read and write in the critical section, and a write to 
release the lock). Similar remarks apply to both software 
and hardware queueing. 

By contrast, transactional memory requires only three 
shared memory accesses (the read and write to the counter, 
and the commit, which goes to the cache but causes no 
bus cycles). The only implementation that outperforms 
transactional memory is one that applies LL/SC directly to 
the counter, without using a lock variable. Direct LL/SC 
requires no commit operation, and thus saves a cache ref- 
erence. In the other benchmarks, however, this advantage 
is lost because the shared object spans more than one word, 
and therefore the only way to use W S C  is as a spin lock. 

Several other factors influence performance. Our im- 
plementation of hardware queuing suffers somewhat from 
the need to access memory when adjusting the queue at the 
beginning and end of each critical section, although this 
cost might be reduced by a more sophisticated implemen- 
tation. In the bus architecture, the ' I T S  spin lock suffers 
because of an artifact of the particular snoopy cache proto- 
col we adapted [151: the first time a location is modified, it 
is marked reserved and written back. lTS would be more 
efficient with a cache protocol that leaves the location dirty 
in the cache. 

5.2 Producer/Consumer Benchmark 
In the producerlcommer benchmark (code in Figure 2), 
n processes share a bounded FIFO buffer, initially empty. 
Half of the processes produce items, and half consume 
them. The benchmark finishes when 216 operations have 

completed. In the bus architecture (Figure 5) ,  all through- 
puts are essentially flat. Transactional memory has higher 
throughputs than the others, although the difference is not 
as dramatic as in the counting benchmark. In the network 
architecture, all throughputs suffer somewhat as contention 
increases, although the transactional memory implementa- 
tions suffers least. 

5.3 Doubly-Linked List Benchmark 
In the doubly-linked list benchmark (code in Figure 3) n 
processes share a doubly-linked list anchored by head and 
tail pointers. Each process dequeues an item by removing 
the item pointed to by tai1,and then enqueues it by threading 
it onto the list at head. A process that removes the last item 
sets both head and tail to NULL, and a process that inserts 
an item into an empty list sets both head and tail to point to 
the new item. The benchmark finishes when 216 operations 
have completed. 

This example is interesting because it has potential con- 
currency that is difficult to exploit by conventional means. 
When the queue is non-empty, each transaction modifies 
head or tail, but not both, so enqueuers can (in principle) ex- 
ecute without interference from dequeuers, and vice-versa. 
When thequeue is empty, however, transactions must mod- 
ify both pointers, and enqueuers and dequeuers conflict. 
This kind of state-dependent concurrency is not realizable 
(in any simple way) using locks, since an enqueuer does 
not know if it must lock the tail pointer until after it has 
locked the head pointer, and vice-versa for dequeuers. If an 
enqueuer and dequeuer concurrently find the queue empty, 
they will deadlock. Consequently, our locking implemen- 
tations use a single lock. By contrast, the most natural way 
to implement the queue using transactional memory per- 
mits exactly this parallelism. This example also illustrates 
how VALIDATE is used to check the validity of a pointer 
before dereferencing it. 

The execution times appear in Figure 6. The locking 
implementations have substantially lower throughput, pri- 
marily because they never allow enqueues and dequeues to 
overlap. 

5.4 Limitations 
Our implementation relies on the assumption that transac- 
tions have short durations and small data sets. The longer a 
transaction runs, the greater the likelihoodit will be aborted 
by an interrupt or synchronization conflict4. The larger the 
data set, the larger the transactional cache needed, and (per- 
haps) the more likely a synchronization conflict will occur. 

4The identical concems apply to current implementations of the 
U ) A D - L l "  and STORECOND instructions [31. Appendix A]. 
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Figure 4: Counting Benchmark Bus and Network 

Such size and length restrictions are reasonable for applica- 
tions that would otherwise have used short critical sections, 
but not for applications that would otherwise lock large ob- 
jects for a long time (such as navigating a B-link tree with a 
large node size). Support for larger and longer transactions 
would require more elaborate hardware mechanisms. 

The implementation described here does not guarantee 
forward progress, relying instead on software-level adap- 
tive backoff to reduce the abort rate by spacing out con- 
flicting transactions. Our simulations suggest that adaptive 
backoff works reasonably well when conflicting transac- 
tions have approximately the same duration. If durations 
differ, however, then longer transactions will be more likely 
to abort. Some kind of hardware queueing mechanism [ 161 
might alleviate this limitation. 

The cache coherence protocols used in our simulations 
provide a sequentially consistent memory 1241. A number 
of researchers have proposed weaker notions of correct- 
ness that permit more efficient implementations. These 
altematives include processor consistency 1141, weak con- 
sistency [9,81, release consistency [13], and others'. Most 
of these models guarantee that memory will appear to be 

%ee Gharachorloo et al. [12] for concise descriptions of these models 
as well as performance comparisons. 

sequentially consistent as long as the programmer executes 
a barrier (orfence) instruction at the start and finish of 
each critical section. The most straightforward way to pro- 
vide transactional memory semantics on top of a weakly- 
consistent memory is to have each transactional instruction 
perform an implicit barrier. Such frequent barriers would 
limit performance. We believe our implementation can be 
extended to require barriers only at transaction start, finish, 
and validate instructions. 

6 Related Work 

Transactional memory is a direct generalization of the 
IDADLINKED and S~RE-COND instructions originally pro- 
posed by Jensen et al. [21], and since incorporated into 
the MIPS I1 architecture [29] and Digital's Alpha [311. 
The IDADLINKED instruction is essentially the same as 
LTX, and STORE-COND is a combination of ST and CoM- 
MIT. The LoADLINKED/SmRE-COND combination can im- 
plement any read-modify-write operation, but it is restricted 
to a single word. Transactional memory has the same flex- 
ibility, but can operate on multiple, independently-chosen 
words. 

We are not the first to observe the utility of performing 
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atomic operations on multiple locations. For example, the 
Motorola 68000 provides a coMpARE&sWAp2 that operates 
on two independent locations. Massalin and PU 1251 use 
this instruction for lock-free list manipulation in an oper- 
ating system kernel. Transactional memory provides more 
powerful support for this “lock-free” style of programming. 

Other work that uses after-thefact conflict detection to 
recognize violations of desired correctness conditions in- 
clude Gharachorloo and Gibbons [ll], who propose an 
implementation of release consistency that exploits an un- 
derlying invalidation-based cache protocol to detect viola- 
tions of sequential consistency, and Franklin and Sohi [ 101, 
who propose a hardware architecture that optimistically 
parallelizes sequential code at runtime. 

Other researchers who have investigated architectural 
support for multi-word synchronization include Knight 
[23], who suggests using cache coherence protocols to add 
parallelism to “mostly functional” LISP programs, and the 
IBM 801 [7], which provides support for database-style 
locking in hardware. Note that despite superficial similar- 
ities in terminology, the synchronization mechanisms pro- 
vided by transactional memory and by the 801 are intended 
for entirely different purposes, and use entirely different 
techniques. 

Our approach to performance issues has been heavily 

influenced by recent work on locking in multiprocessors, 
including work of Anderson [3], Bershad [4], Graunke and 
Thakkar [17], and Mellor-Crummey and Scott [271. 

7 Conclusions 

The primary goal of transactional memory is to make it 
easier to perform general atomic updates of multiple in- 
dependent memory words, avoiding the problems of locks 
(priority inversion, convoying, and deadlock). We sketched 
how it can be implemented by adding new instructions 
to the processor, adding a small auxiliary, transactional 
cache (without disturbing the regular cache), and making 
straightforward changes to the cache coherence protocol. 
We investigated transactional memory for its added func- 
tionality, but our simulations showed that it outperforms 
other techniques for atomic updates. This is primarily be- 
cause transactional memory uses no explicit locks and thus 
performs fewer shared memory accesses. Since transac- 
tional memory offers both improved functionality and bet- 
ter performance, it shouldbe considered in future processor 
architectures. 
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