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Abstract—While the move to smaller transistors has been a
boon for performance it has dramatically increased the cost o
fabricate chips using those smaller transistors. This forces the
vast majority of chip design companies to trust a third party—
often overseas—to fubricate their design. To guard against ship-

s paper, we show how a fabrication-time attacker can

e analog circuits to creste a hardware attack that is

e gate) and stealthy (ie.

aser sequence before effcting a <

paces of an already placed and
ui

s to
5 on between
ital values. When the capacitors fully charge, they deploy
an attack that forces a victim fip-flop to a desired value. We
weaponize this attack into a_ remotely-controllable privilege
escalation by attaching the capacitor to a wire controllable
and by selecting a victim fip-flop that holds the privilege bit
for our processor. We implement this attack in an OR1200
a chip. Experimental results show that
w that our attacks elude activation by a
set of benchmarks, and suggest that our attacks evade
known defenses.

Keywords-analog; attack; hardware; malicious; security;
Troja

1

Hardware is the base of a system. All software executes
on top of a processor. That software must trust that the
hardware faithfully implements the specification. For many
types of hardware flaws, software has no way to check if
something went wrong [11. [2]. Even worse, if there is an
attack in hardware, it can contaminate all layers of a system
that depend on that hardware—violating high-level sec
policies correctly implemented by software.

The wend of smaller transistors while beneficial for in-
creased performance and lower power. has made fabricating
a chip expensive. With every generation of transistor comes
the cost of retooling for that smaller transistor. For example.
it costs more to setup the fabrication line for each
successive process node and by 2020 it is expected that
setting-up a fabrication line for the smallest transistor size

NTRODUCTION

will require a $20,000,000,000 upfront investment [3]. To
amortize the cost of the initial woling required t support
a given transistor size, most hardware companies outsource
fabrication

Outsourcing of chip fabrication opens-up hardware to
attack. The most pernicious fabrication-time attack is the
dopant-level Trojan [4], [SI. Dopant-level Trojans convert
trusted circuitry into malicious circuitry by changing the
dopant ratio on the input pins 0 victim transistors. This
effectively ties the input of the victim transistors o a
logic level O or 1—a shon circuit. Converting existing
circuits makes dopant-level Trojans very difficult to detect
since there are no added or removed gates or wites. In
fact, detecting dopant-level Trojans requires a complete
chip delayering and comprehensive imaging with a scan-
ning electron microscope [6]. Unfc y. this
comes at the cost of expressiveness. Dopant-level Trojans are
limited by existing circuits, making it difficult to implement
sophisticated attack wiggers [5]. The lack of a sophisticated
trigger means that dopant-level Trojans are more detectable
by post-fabrication functional testing. Thus, dopant-level
Trojans represent an extreme on a tradeoff space between
detectability during physical inspection and detectability
during testing.

To defend against malicious hardware inserted during
fabrication, researchers have proposed two fundamental de-
fenses: 1) use side-channel information (e.g.. power and
temperature) to characterize acceptable behavior in an effort
to detect anomalous (i.e.. malicious) behavior [7]-[10] and
2) add sensors to the chip that measure and characterize fea-
tures of the chip's behavior (e.g.. signal propagation delay)
in order to identify dramatic changes in those features (pre-
sumably caused by activation of a malicious cireuit) [11}-
[13]. Using side channels as a defense works well against
large Trojans added to purely combinational circuits where it
is possible to test all inputs and there exists a reference chip
to compare against. While this accurately describes most
existing fabrication-time attacks, we show that it is possible
1o implement u stealthy and powerful processor atiack using
only a single added gate. Adding sensors 1o the design would
seem 10 adapt the side-channel approach to more complex.
combinational circuits, but we design an anack that operates
in the analog domain until it directly modifies processor
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20-30% of chip area is unused ‘_ |
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Mostly caused by routing constraints

Opens up possibility for attackers to
embed malicious hardware

Example GDSII layout with free space
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Threat Model for the Attack —

= Attack implemented at time of fabrication
= The attacker has only access to a correctly implemented GDSII file
= The attacker cannot change dimensions or move stuff around

= The attacker has no knowledge over tests conducted on the chip
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Enter The A2 Attack “

The A2 attack uses analog behaviour to mitigate
these issues!

1 T 5 T

RBACE = victim wire

on_every(RBACE) do
if(count == 12345) then
do_attack() P
else e

count = count + 1

Capacitor

done

How does this work?
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1. What can this trigger be used for?
2. What do we connect it to?
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Observation:
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Tap into reset wires of supervisor mode register
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Observation:

Need to find a software controllable wire with usually very low toggle rate

Idea:

Simulate different programs to find wires with low toggle rates
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How the attack was evaluated:

1. Verification of design in simulation on 65nm CMOS in SPICE
2. Implementation and verification of design in a real processor
3. Comparison of the results from 1. and 2.
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OpenRISC 1200 Processor
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Circuits tested under temperature,
clock frequency and voltage
variations

Tested on multiple chips

Trigger and retention times Testing setup
measured using the separate testing
structure
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Attacks in the chips are:

Robust against manufacturing variations
Robust against supply voltage fluctuations

Robust against temperature changes
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Circuit Rate (MHz) (10 chip avg) (Typical corner)
w/o 10 device 120.00 7.4 74

w/o 10 device 34.29 8.4 8

w/o 10 device 10.91 11.6 10

Comparison shows that simulation has good enough accuracy to fabricate
precise and controllable attacks!
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Side Channel Information
Temperature

Power requirements
Electromagnetic measurements

Detects attacks that get hot or use
much power

Visual Inspection
Delayering the chip

Inspection via scanning electron
microscope

Detects attacks that are big

Adding Sensors
Measure signal propagation delays

Detects attacks that add logic to
wires

Functional Testing
Test for unexpected behaviour

Detects some attacks that change
the circuit behaviour

Bastian Schildknecht | 17.10.2019 |

14
4



ETHzurich
How Stealthy is the Attack? Key Results

Bastian Schildknecht | 17.10.2019 |

14
5



ETHzurich
How Stealthy is the Attack? Key Results

Can the attack be detected by side channels?

Bastian Schildknecht | 17.10.2019 |

14
6



ETHzurich
How Stealthy is the Attack? Key Results

Can the attack be detected by side channels?

Measuring of chip power consumption

Bastian Schildknecht | 17.10.2019 |

14
7



ETHzurich
How Stealthy is the Attack? Key Results

Can the attack be detected by side channels?
Measuring of chip power consumption

Simulating theoretical power usage of trigger circuit

Bastian Schildknecht | 17.10.2019 |

14
8



ETHzurich
How Stealthy is the Attack? Key Results

Can the attack be detected by side channels?
Measuring of chip power consumption

Simulating theoretical power usage of trigger circuit

Answer:

Bastian Schildknecht | 17.10.2019 |

14
9



ETHzurich
How Stealthy is the Attack? Key Results

Can the attack be detected by side channels?
Measuring of chip power consumption

Simulating theoretical power usage of trigger circuit

Answer:

The power requirements of the attack are well below normal fluctuations
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Maybe With On-Chip Sensors? Key Results

Can the attack be detected by measuring propagation delays?
High accuracy simulation of trigger wire delays

Reset wires are typically asynchronous

Answer:

For a 4ns clock period the delay change is only 0.33% and well below process
variation and noise
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Can the attack be found by looking at the chip?
A2 Is as small as one gate and is almost identical to the other gates in a design

Difficult to distinguish one gate in a sea of hundreds of thousands of gates (or
even more)

Requires delayering to very low layers

Answer:

A2 is unlikely to be found by visual inspection
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What About Functional Testing? Key Results

Is the attack triggered during normal execution?
Testing with five selected benchmark programs

Testing over 6 different temperatures from -25°C to 100°C

Answer:

The attack was not activated across all programs and temperatures
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A2 is not easily detectable!
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One possible defense against A2 could come in the form of split
manufacturing:

Subset of the chip design is fabricated in a trusted manufacturing facility
Very expensive

Difficult to do, as wires can be reverse engineered and flip-flops are typically
fabricated by the third party

Needs a new type of defense!
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Problem: Current hardware attacks have some inherent flaws, i.e., they are 1) big, 2)
uncontrollable or 3) not stealthy enough

Goal: create a hardware attack that is small (i.e., requires as little as one gate) and stealthy
(i.e.,requires an unlikely trigger sequence before effecting a chip’s functionality) and controllable.

Key Idea:
-Construct a circuit that only uses 2 capacitors to siphon charge from nearby
wires as they transition between digital values.
-When the capacitors are fully charged, deploy an attack that forces a victim
flip-flop to the desired value.

Key Results: 1) Implemented this attack in an OR1200 processor and fabricated a chip; 2)
Experimental results show that the attack works efficiently; 3) The attack eludes activation by a
diverse set of benchmarks; 4) the attack evades known defenses
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+ Shows a new type of hardware attack not seen before

+ Real hardware implementation

+ Shows thorough testing of the attack

+ Uses a strong and realistic threat model

+ Assesses the possibility of an implementation in different architectures
+ Well written and relatively easy to understand

+ Gives a history on previous work done in the field
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Weaknesses & Limitations Weaknesses & Limitations

- Does not give a concrete defense mechanism

- Cannot test hypothesis on other architectures due to cost and secrecy

- Contains a few typos
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= Can this charge-pump mechanism be used for good purposes?
= |.e. avoiding complicated state machines where precision is not as important
= As was mentioned last week, maybe to prevent Rowhammer attacks?

= |Is this attack already used?
= | have not found any evidence that this attack is being used yet (please prove me wrong)
= | have found cases for other hardware trojans though, e.g.
= Can you think of other cases of hardware attacks being used?
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= |.e. avoiding complicated state machines where precision is not as important
= As was mentioned last week, maybe to prevent Rowhammer attacks?

= |Is this attack already used?
= | have not found any evidence that this attack is being used yet (please prove me wrong)
= | have found cases for other hardware trojans though, e.g.
= Can you think of other cases of hardware attacks being used?

= What has to be considered when applying this attack to other (smaller)
technology nodes?

'S. Skorobogatov, C. Woods, "Breakthrough silicon scanning discovers backdoor in military chip", Proc. 14th Int. Conf. Cryptograph. Hardw.
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Meng Li, Bei Yu, Yibo Lin, Xiaoging Xu, Wuxi Li, David Z. Pan, "A practical split manufacturing
framework for Trojan prevention via simultaneous wire lifting and cell insertion", Design Automation
Conference (ASP-DAC) 2018 23rd Asia and South Pacific, pp. 265-270, 2018.

Bastian Schildknecht | 17.10.2019 |

21
7



Some Interesting Follow-Up Papers

= Yumin Hou, Hu He, Kaveh Shamsi, Yier Jin, Dong Wu, Huagiang Wu, "R2D2: Runtime reassurance and
detection of A2 Trojan", Hardware Oriented Security and Trust (HOST) 2018 IEEE International

= Xiaolong Guo, Huifeng Zhu, Yier Jin, Xuan Zhang, "When Capacitors Attack: Formal Method Driven
Design and Detection of Charge-Domain Trojans", Design Automation & Test in Europe Conference &
Exhibition (DATE) 2019, pp. 1727-1732, 2019. Symposium on, pp. 195-200, 2018.
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Open Discussion Open Discussion

= How would you try to detect A2?

= How bad do you think is this type of attack?

= (Can you think of a better attack?

= Do you think the shown follow-up papers solve the problem?
= (Can the proposed mechanism be used for good?

= What are your thoughts on this paper?

= What do you think are the most important takeaways here?
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Open Discussion Open Discussion

= How would you try to detect A2?

= How bad do you think is this type of attack?

[=]1:

= (Can you think of a better attack? Moodle Discussion

https://moodle-app2.let.ethz.ch/
mod/forum/discuss.php?

= Do you think the shown follow-up papers solve the problem? d=38995
= (Can the proposed mechanism be used for good?
= What are your thoughts on this paper?

= What do you think are the most important takeaways here?
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Two possibilities for threshold
detectors
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Two possibilities for threshold
detectors

Skewed inverter with fixed switching
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Two possibilities for threshold VDD
detectors o —
=  Skewed inverter with fixed switching — E_
voltage E IS v L o
= Schmitt trigger with hysteresis, i.e. i LoD [
high threshold on rising edge and -
low threshold on falling edge gl N
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Threshold Detector Backup Slides

Two possibilities for threshold
detectors

= Skewed inverter with fixed switching
voltage IN

= Schmitt trigger with hysteresis, i.e.
high threshold on rising edge and
low threshold on falling edge

Paper chooses Schmitt trigger as it
extends trigger and retention time
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= Triggers can be combined to form more complex trigger mechanisms
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Possibility: Chaining Triggers Together Backup Slides

Simgle stage

A— " tdgger -D"%_
|

E Singe stage [ oa :_: Single stage | oA
: i Final ; Ll Fimal ;' gl
I I Singe stage
Trigger Trigger B tiiggar
; EE OB
Single stage Single stage

B ——H 8 —

trigger OB trgger a] ¢

2

Final
Trigger

c } Single stage | o

tigger

Final Trigger = OA & OB Final Trigger = 0A | OB Final Trigger = (0OA & OB) | OC
Either A or B triggers Both A and B trigger One of A and B trigger, C trigger

= Triggers can be combined to form more complex trigger mechanisms

= Can be used to construct well hidden multi-stage triggers
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SPICE Using I/O Devices in 65nm CMOS
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SPICE Using I/O Devices in 65nm CMOS

standard cells

and retention times

To mitigate gate leakage, 1/O Device
Cells can be used instead of normal

Results in more control over trigger
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= To mitigate gate leakage, I/O Device
Cells can be used instead of normal
standard cells

= Results in more control over trigger
and retention times

= Uses slightly more chip area

SPICE Using I/O Devices in 65nm CMOS
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= To mitigate gate leakage, I/O Device
Cells can be used instead of normal
standard cells

= Results in more control over trigger
and retention times

= Uses slightly more chip area

= Also simulated in 65nm low power
CMOS

SPICE Using I/O Devices in 65nm CMOS
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Stand-alone Testing Structure Backup Slides

CLI{%‘

CLK divider and duty
cycle controller

1)

7

Parameters From
Scan Chain

Single stage
trigger

% COUNTER

> To Scan
Chain

To Scan

Chain

Bastian Schildknecht | 17.10.2019 |

23
9



ETH:urich
Results Across 10 Chips (1V, 25°C) Backup Slides

Bastian Schildknecht | 17.10.2019 |

24
0



ETH:zurich

Results Across 10 Chips (1V, 25°C) Backup Slides

-~
e |
-

120MHz 9.23MHz 1.875MHz,
.36 64 = 64
= Shows number of chips which show 1 Y | R J
a certain trigger time in cycles at 3 : :
different switching frequencies 2] : i
LI
1oc;éles14 16 10 C;§|es14 16 12 C;;Iesﬂi 18

(a) Distribution of analog trigger circuit using IO device

7 7 7
120MHz 34.3MHz 10.9MHz
) G- _— 64 — 64 *2chips cannot
o trigger at this
L 5 54 5 switching activity
(&)
D 4 — 4 — 4
—
Q 3 34 3
Kol
E 2 24 2
=
= 4 N .
0 T L] T 0 T T T 0 T T 'rl
4 6 8 10 6 8 10 12 10 12 14 16
Cycles Cycles Cycles

(b) Distribution of analog trigger circuit using only core device

Bastian Schildknecht | 17.10.2019 |

24
1



ETHzirich
Results Across 10 Chips (1V, 25°C) Backup Slides

=  Shows number of chips which show
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different switching frequencies
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Results Across 10 Chips (1V, 25°C) Backup Slides

=  Shows number of chips which show
a certain trigger time in cycles at
different switching frequencies

= Also shows number of chips which
show a certain retention time in s

= Shows robustness against
manufacturing variations

7 7 7 7
120MHz 9.23MHz 1.875MHz| Retention Time
m pr— - -
2_6 6 6 6
L5 — 5 54 54
(&)
S ¢ — 4+ 44 - 44
o
Q3 34 34 3.1
Q
€2 24 24 24
=]
B 1| LU ) AR
0 L L] LJ 0 IIIIII 0 IIIIII {-" -------
10 12 14 16 10 12 14 16 12 14 16 18 4 6 8 10 12
Cycles Cycles Cycles Retention Time (us)

(a) Distribution of analog trigger circuit using IO device

7 7 7 7
120MHz 34.3MHz 10.9MHz Retention Time
W s — 64 — 64 *2chips cannot 64
o trigger at this
£ 5 54 54 switching activity 54
(&)
"'6 4 e 4« e 4 - 4
-
Q 3 34 34 34
Ko
E 2 24 24 2+ 7 7
E 7
1 14 14 1+ %%
0 T T T 0 T T T 0 T T T rl 0+ 4éé
4 6 8 10 6 8 10 12 10 12 14 16 06 08 10 1.2
Cycles Cycles Cycles Retention Time (us)

(b) Distribution of analog trigger circuit using only core device

Bastian Schildknecht | 17.10.2019 |

24
3



Varying the Voltage Backup Slides

Bastian Schildknecht | 17.10.2019 |

24
4



ETH:zurich

Varying the Voltage Backup Slides

= Shows the trigger time in cycles for
a given voltage and frequency
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Varying the Temperature Backup Slides

= Shows the trigger time in cycles for
a given temperature and frequency
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Shows the trigger time in cycles for
a given temperature and frequency

Shows robustness across variations
In the ambient temperature

The paper states that both single
and two-stage attacks trigger in all
10 chips over 6 tested temperatures
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Evaluation of Side Channel Information Backup Slides

=  Power consumption of the chip Program Powicr (W)
measured down to 1 pA at 1V and Standby 6.210
25°C Basic math 23,703

Dijkstra 16.550
BT 18.120
SHA 18.032
Search 21.960
Single-stage Attack 19.505
Two-stage Attack 22,575
Unsigned Division 23.206

Table III: Power consumption of our test Chip running a
variety of benchmark programs.
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=  Power consumption of the chip Program Powicr (W)
measured down to 1 pA at 1V and Standby 6.210
25°C Basic math 23.703

= Simulated power consumption of the FDIE,}(S“E‘ 12?;8
trigger IS 5.3 nW with 1/O devices SHA 18.032
and 0.5 pW without 1/O devices at Search 21.960
maximum switching activity SIElESEee Alck [Aata

Two-stage Attack 22,575
Unsigned Division 23.206

Table III: Power consumption of our test Chip running a
variety of benchmark programs.
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Evaluation of Side Channel Information Backup Slides

=  Power consumption of the chip Program Power (mW)
measured down to 1 pA at 1V and Standby 6.210
25°C Basic math 23703

* Simulated power consumption of the L e
trigger is 5.3 nW with 1/O devices SHA 18.032
and 0.5 yW without 1/O devices at Search 21.960
maximum switching activity SRIE ShiEe. At e
Two-stage Attack 22,575

* Well below normal power Unsigned Division 23.206

fluctuations

Table III: Power consumption of our test Chip running a
variety of benchmark programs.
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Evaluation of Side Channel Information Backup Slides

=  Power consumption of the chip Program Power (mW)
measured down to 1 pA at 1V and Standby 6.210
25°C Basic math 23703

* Simulated power consumption of the L e
trigger is 5.3 nW with 1/O devices SHA 18.032
and 0.5 yW without 1/O devices at Search 21.960
maximum switching activity SRIE ShiEe. At e
Two-stage Attack 22,575

* Well below normal power Unsigned Division 23.206

fluctuations Table III: Power consumption of our test Chip running a
= Temperature and propagation delays variety of benchmark programs.

are nearly unaffected by A2 as it is

as small as one gate
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= The authors expect A2 to be easier to implement in X86 as in OR1200
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= Due to the complexity of X86, A2 should also be more difficult to detect

Bastian Schildknecht | 17.10.2019 |

26
0



Is X86 Safe From A2? Backup Slides

= The authors expect A2 to be easier to implement in X86 as in OR1200

= X86 has likely more possible target registers
= X86 has also likely more viable victim wires
= Due to the complexity of X86, A2 should also be more difficult to detect

= The only expected challenge is maintaining controllability over the many
redundant functional units in X86
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