
||Seminar in Computer Architecture

M. Aater Suleman¹, Onur Mutlu², Moinuddin K. Qureshi³, Yale N. Patt¹

¹University of Texas at Austin ²Carnegie Mellon University ³IBM Research

12.12.2019 1

Accelerating Critical Section Execution with
Asymmetric Multi -Core Architectures, ASPLOS 2009

Luca Schweri

||Seminar in Computer Architecture

ÁWhat Are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 2

Outline

||Seminar in Computer Architecture

ÁCMPs provide multiple processing cores on a single chip

ÁApplication must be split into threads which execute concurrently on multiple
cores

ÁAccesses to shared data must be synchronized

12.12.2019Luca Schweri 3

Chip Multiprocessors (CMPs)

||Seminar in Computer Architecture

ÁAccesses to shared data are encapsulated inside critical sections

ÁMutual Exclusion:
ÁThreads should not update shared data concurrently

ÁOnly one thread can execute a critical section at a given time

ÁCritical sections are different from the serial part

12.12.2019Luca Schweri 4

Critical Sections & Mutual Exclusion

CS(X)Thread 1

Thread 2

Thread 1

CS(X)

Thread 2

Shared
Data (X)

?

?
waitǍ

||Seminar in Computer Architecture

ÁWhat are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 5

Outline

||Seminar in Computer Architecture 12.12.2019Luca Schweri 6

Motivation: Less Serialization -> Better Performance

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

ὸ ὸ ὸ ὸ ὸ ὸ ὸ

Speedup

Parallel Part

Critical Section

IdleWith Faster Execution of the
Critical Sections We Can
Improve Performance !

||Seminar in Computer Architecture

Á The number of threads at which performance saturates

ÁHigh contention -> bad scalability

ÁCritical sections limit scalability

12.12.2019Luca Schweri 7

Motivation: Higher Scalability

0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

With Faster Execution of the
Critical Sections We Can

Improve Scalability !

||Seminar in Computer Architecture

ÁWhat are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 8

Outline

||Seminar in Computer Architecture

ÁACS is based on ACMP

ÁSerial part of an application is executed on one (or more) large core

ÁParallel part of an application is executed on multiple small cores and the large
core

12.12.2019Luca Schweri 9

Asymmetric Chip Multiprocessor (ACMP)

||Seminar in Computer Architecture

ÁWhat are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 10

Outline

||Seminar in Computer Architecture

ÁSelected critical sections and the serial part of an application are executed on
the large core

ÁParallel part is executed on the small cores

ÁGoals:
ÁImprove performance

ÁImprove scalability

12.12.2019Luca Schweri 11

Accelerated Critical Sections (ACS)

||Seminar in Computer Architecture

P2

12.12.2019Luca Schweri 12

Asymmetric Chip Multiprocessor (ACMP)

1. P2 encounters a critical section
2. P2 sends a request for the lock
3. P2 acquires the lock
4. P2 executes critical section
5. P2 releases the lock

P1 P3P0

Large Core

Chip Interconnect

Small Cores P

P

Core not in Critical Section

Core in Critical Section

CSCALL request & CSDONE signal

||Seminar in Computer Architecture 12.12.2019Luca Schweri 13

Accelerated Critical Sections (ACS)

1. P2 encounters a critical section
2. P2 sends CSCALL request to P0
3. CSRB receives request
4. P0 executes critical section
5. P0 sends CSDONE signal to P2

P1 P3P2P0

Large Core

CSRB

Chip Interconnect

Small Cores P

P

Core not in Critical Section

Core in Critical Section

CSCALL request & CSDONE signal

||Seminar in Computer Architecture

Á ISA requires two new instructions:
ÁCSCALL

ÁArguments: CORE_ID, LOCK_ADDR, STACK_PTR, TARGET_PC

ÁCSRET

ÁArguments: REQ_CORE, LOCK_ADDR

Á The compiler inserts CSCALL and CSRET
ÁCSCALL is inserted beforeǆmpdl!bdrvjsfǇ

ÁCSRET is inserted after ǆmpdl!sfmfbtfǇ

12.12.2019Luca Schweri 14

ISA Support & Compiler/Library Support

||Seminar in Computer Architecture

Á Interconnect Extensions
ÁTo transfer the CSCALL request from a small core to the CSRB

ÁTo transfer the CSDONE signal from the CSRB to the requesting small core

ÁCritical Section Request Buffer (CSRB)
ÁOnly in the large core

ÁNumber of entries = maximum number of concurrent CSCALL requests

12.12.2019Luca Schweri 15

Hardware Support

||Seminar in Computer Architecture 12.12.2019Luca Schweri 16

Challenges

||Seminar in Computer Architecture

ÁAccess to critical section which are protected by different locks
ÁFine-grained locking leads to false serialization

ÁConventional CMP

ÁACS

12.12.2019Luca Schweri 17

Challenge: False Serialization

CS(X)

CS(Y)

T1

T2

CS(X)

CS(Y)

T1

T2
xbjuǍ

Slowdown

||Seminar in Computer Architecture

ÁAdd more large cores

ÁMake large core capable of executing multiple critical sections concurrently,
using simultaneous multithreading (SMT)

ÁSelective Acceleration of Critical Sections (SEL)
ÁEstimate the occurrence of false serialization and adaptively decide whether to execute the

critical section on the large core

12.12.2019Luca Schweri 18

Solutions: False Serialization

||Seminar in Computer Architecture

ÁSaturating counters to track false serialization

ÁHash LOCK_ADDR to smaller number of sets

ÁPeriodically reset ACS_DISABLE bits

12.12.2019Luca Schweri 19

Selective Acceleration of Critical Sections (SEL)

CSCALL (X)

CSCALL (X)

CSCALL (Y)

4

4

X

Y

Critical Section
Request Buffer
(CSRB)
at the large core

To large core

From small cores

32

5

||Seminar in Computer Architecture

ÁNested critical sections can cause deadlocks in ACS with SEL

12.12.2019Luca Schweri 20

Challenge: Handling Nested Critical Sections

large core small core

O I

Program:

Ǎ

acquireLock(O)

Ǎ

acquireLock(I)

Ǎ

releaseLock(I)

Ǎ!!!

releaseLock(O)

Ǎ

?
?

CSCALL Request

ACS_DISABLE
O: 0
I: 0

xbjuǍ xbjuǍ

large core

small core

||Seminar in Computer Architecture

ÁACS does not convert any nested critical section into a CSCALL

Á The compiler identifies the critical sections that can possibly become nested at
runtime using simple control -flow analysis

12.12.2019Luca Schweri 21

Solution: Handling Nested Critical Sections

||Seminar in Computer Architecture

Á Faster critical sections vs. fewer threads
ÁOne large core vs. more small cores

ÁPerformance gained by accelerating critical sections vs. loss of throughput

ÁBt!uif!ovncfs!pg!dpsft!po!dijq!jodsfbtftǍ

ÁFractional loss in parallel performance decreases

ÁContention increases -> Acceleration more beneficial

ÁCSCALL/CSDONE signals vs. lock acquire/release
ÁCSCALL/CSDONEtransfers vs. Cache-to-Cache transfers

ÁCache misses due to private data vs. cache misses due to shared data
ÁCache misses are reduced if shared data > private data

12.12.2019Luca Schweri 22

Performance Trade-offs

||Seminar in Computer Architecture

ÁWhat are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 23

Outline

||Seminar in Computer Architecture

ÁSimulated on cycle-accurate x86 simulator

ÁSmall cores are modeled after the Intel Pentium processor
Á3.3 million transistors

ÁIn-order

Á Large core is modeled after the Intel Pentium-M processor
Á14 million transistors

ÁOut-of-order

Á2-way Simultaneous Multithreading (SMT)

12.12.2019Luca Schweri 24

Configuration of Simulated Machines

||Seminar in Computer Architecture 12.12.2019Luca Schweri 25

Area equivalent Architectures (N = 16)

SCMP ACMP ACS

Å N small cores Å N-4 small cores

Å 1 large core

Å N-4 small cores

Å 1 large core

Å CSRB at large core

||Seminar in Computer Architecture

Á 12 critical -section-intensive workloads (>1%)

ÁCoarse-hsbjofe;!ǳ!21!dsjujdbm!tfdujpot

Á Fine-grained: > 10 critical sections

12.12.2019Luca Schweri 26

Simulated Workloads

||Seminar in Computer Architecture

1. Evaluate performance on systems with the optimal number of threads for a
given area budget
Á Area budget: 8, 16, 32

Á Test all possible number of threads -> choose best

2. Evaluate performance on systems with maximum number of threads for a given
area budget
Á Area budget (N): 8, 16, 32

Á Maximum number of Threads: SCMP = N, ACMP = N-2, ACS = N-4

3. Impact of ACS on application scalability

12.12.2019Luca Schweri 27

Evaluation

||Seminar in Computer Architecture

ÁWhat are Chip Multiprocessors & Critical Sections?

ÁWhy Is Accelerating Critical Sections Beneficial?

ÁAsymmetric Chip Multiprocessor (ACMP)

ÁAccelerated Critical Sections (ACS)

ÁExperimental Methodology

ÁEvaluation

ÁSummary & Conclusion

ÁStrengths & Weaknesses

ÁRelated Work

ÁDiscussion, Thoughts & Ideas

12.12.2019Luca Schweri 28

Outline

||Seminar in Computer Architecture 12.12.2019Luca Schweri 29

1. Optimal Number of Threads & Coarse-Grained
Average number of

threads waiting

ὛὬὥὶὩὨὨὥὸὥ

ὖὶὭὺὥὸὩὨὥὸὥ

ACS Performs Well If More
Shared Data Than Private

Data Is Used or If the
Contention Is High

||Seminar in Computer Architecture 12.12.2019Luca Schweri 30

1. Optimal Number of Threads & Coarse-Grained

Average reduction of execution
ujnf!dpnqbsfe!upǍ
ACMP: 11%
SCMP: 22%

Average reduction of execution
ujnf!dpnqbsfe!upǍ
ACMP: 31%
SCMP: 42%

area budget = 8 small cores area budget = 32 small cores

ACS Performs Better with
More Cores

||Seminar in Computer Architecture 12.12.2019Luca Schweri 31

1. Optimal Number of Threads & Fine-Grained
Average number of

threads waiting

ὛὬὥὶὩὨὨὥὸὥ

ὖὶὭὺὥὸὩὨὥὸὥ

For Fine-Grained Workloads
ACS Performs Worse Than

for Coarse-Grained
Workloads

||Seminar in Computer Architecture 12.12.2019Luca Schweri 32

1. Optimal Number of Threads & Fine-Grained

Average increase of execution
ujnf!dpnqbsfe!upǍ
ACMP: 10%
SCMP: 42%

Average reduction of execution
ujnf!dpnqbsfe!upǍ
ACMP: 13%
SCMP: 17%

area budget = 8 small cores area budget = 32 small cores

ACS Performs Better with
More Cores

||Seminar in Computer Architecture 12.12.2019Luca Schweri 33

2. Maximum number of Threads Maximum Speedup

ACS

ACMP

SCMP

