Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt
University of Texas at Austin ~ Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu
I |

Presented by Lara Lazier

Outline

Introduction and Background
Proposed Solution - ACS
Methodology and Results
Strengths

Weaknesses

Takeaways

Questions and Discussion

Executive Summary

e PROBLEM: Critical sections |limit both
performance and scalability

e Accelerating Critical Sections (ACS):
o improves performance by moving the computation of
the Critical Section to a larger and faster core.
o First approach to accelerate critical sections in

Hardware.
e RESULTS:

o ACS improves performance on average
by 34% compared to a Symmetric CMP
and by 24% compared to a Asymmetric CMP
o ACS improves scalability of 7 out of 12 Workloads.

3
s

Introduction and
Background

Background

e Large single core processors are complex and have high power
consumption

e Chip-multiprocessors (CMP) are less complex and have less power
consumption

Cc Cc c c Cc c
large core
Cc Cc ¢ c Cc c
Cc Cc c c c Cc Cc c
Cc Cc c c c Cc Cc c
SymmetricChipMultiProcessor AsymmetricChipMultiProcessor

e To be able to extract high performance, programs must be split into threads

Background - Threads and Critical Sections

e Threads operate on different portions of the same problem

e Threads are not allowed to update shared data at the same time —
MUTUAL EXCLUSION

e Acritical section is a portion of a program that only one thread can
execute at a given time

mm) Limits both performance and scalability

Amdahl's Law
1

Speedup = 5
(1 L Pparallel) I parallel

NCOT‘&S

Problem overview and Goal

Contention increases when number of cores increases

Key Insight

e Accelerating critical sections can provide significant
performance improvement

e Asymmetric CMP can accelerate serial part using the
large core

e Moving the computation of critical sections to the larger
Core(s) could improve the performance

ACS

Accelerating Critical Sections

Overview

A = Compute();
Lock X

result = CS(A);
Unlock X
return result;

P1 P2
PO

P3 P4

P5 P6 P7 P8

P9 | P10 | P11 | P12

e Homogeneous ISA

e Asymmetric CMP with cache coherence

Implementation

== | A = Compute();
== | Lock X
r = CS(A);
== [Unlock X
return r;
CSRB (Critical Section Request Buffer)
!
CSCALL
POP A W
r= CS(A) STACK_PTR’ CORE D ’ POP r
PUSH r __—_________;;____________.
CSDONE

e Lock and Shared Data do not need to be moved

e ACS reduces the number of L2 caches misses inside the critical
sections by 20%

Implementation

CSRET from large core

|
HEAD ENTRY |l AN ENTRY IN CSRB

» VALID |REQ_CORE |LOCK_ADDR TARGET_PC | STACK_PTR

CSDONE to requesting core

e [SA Support

O CS CAL |_ an d CS R ET T— CSCALL Requests from small cores
Figure 7. Critical Section Request Buffer (CSRB)

e Compiler Support:
o insert CSCALL and CSRET and removes any register dependencies
— function outlining

25 bytes

e Modification to small Core
o support for executing instructions remotely

e Modification to larger Core
o CSRB (Critical Section Request Buffer)

e Interconnect Extension
o CSCALL and CSDONE

e OS support
o allocates the large core to a single application

o sets the same program context for all cores
12

False Serialization

Without ACS

With ACS

Time

Time

13

SEL
HOW TO SOLVE FALSE SERIALIZATION?

SEL (SELective Acceleration of Critical Sections)

Storage Overhead of 36 bytes (16 counters of 6-bits and 16 ACS_DISABLE for

each of the 12 small cores)

To implement SEL we need:

ACS_DISABLE_N On each small core: s N On the large core:
When ACS_DISABLED i =] Saturating counter for each
0 for a critical section i _ critical section:
then the core sends a . .
CSCALL to the larger core e ifthere are atleast 2
ACS_DISABLE_1 CS_1 CS in the CSRB + #CS
ACS_DISABLE_O Counter is saturated 0 o ifthereis1 CSinthe
CSRB -1

ACS_DISABLE bits a reset and the values of the saturating counter are halved every 10 million

cycles 14

Performance Trade-offs

Faster critical sections vs. fewer threads
- Reduced parallel throughput

+ When the number of cores increases, loss of throughput decreases and
increased contention benefits more from ACS

e CSCALL/CSDONE signals vs. lock acquire/release

- The communication over the on-chip interconnect is an overhead
+ ACS keeps the lock at the large core and reduces cache misses

e Cache misses due to private data vs. cache misses

due to shared data
- worse private data locality

+ ACS eliminates the transfer of shared data by keeping it at the large core

15

Results

Methodology

Small core | 2-wide In-order, 2GHz, 5-stage. L1: 32KB write-through. L2:
256KB write-back, 8-way, 6-cycle access

Large core | 4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB, 12- .))
stage, L1: 32KB write-through. L2: 1-MB write-back, 16-way, 8- ® S|mU|at|ng CMPs using a

cycle cycle-accurate x86 simulator.

Interconnect | 64-bit wide bi-directional ring, all queuing delays modeled, ring
hop latency of 2 cycles (latency between one cache to the next)

Coherence | MESI, On-chip distributed directory similar to SGI Origin [26],
cache-to-cache transfers. # of banks = # of cores, 8K entries/bank

3 Cache | 8V, shared, write-back, 20-cycle, T6-way e The large core occupies the same
Memory 32 banks, bank conflicts and queuing delays modeled. Row buffer |
hit: 25ns, Row buffer miss: 50ns, Row buffer conflict: 75ns area as 4 smaller cores and th €y are
Memory 4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipelined bus, 40- modeled after the Intel
bus cycle latency .
| Area-equivalent CMPs. Area = N small cores. N varies from I {0 32 | Pentium-M.
SCMP N small cores, One small core runs serial part, all N cores run

parallel part, conventional locking (Max. concurrent threads = N)

ACMP I large core and N-4 small cores; large core runs serial part, 2-way e The smaller cores are modeled
after the intel Pentium Processor.

SMT on large core and small cores run parallel part, conventional
locking (Maximum number of concurrent threads = N-2)

ACS 1 large core and N-4 small cores; (N-4)-entry CSRB on the large
core, large core runs the serial part, small cores run the parallel
part, 2-way SMT on large core runs critical sections using ACS
(Max. concurrent threads = N-4)

Workloads

The workloads are evaluated on:

e Symmetric CMP

e Asymmetric CMP with one large
core with 2-way SMT

e Asymmetric CMP with ACS.

| Locks | Workload | Description | Source | Inputset |
ep Random number generator [7] 262144 nums.
18 Integer sort [7] n = 64K
Coarse | pagemine Data mining kernel [31] 10Kpages
puzzle 15-Puzzle game [50] 3x3
gsort Quicksort [11] 20K elem.
sqlite sqlite3 [3] database engine [4] OLTP-simple
tsp Traveling salesman prob. [23] 11 cities
iplookup IP packet routing [49] 2.5K queries
oltp-1 MySQL server [1] 14] OLTP-simple
Fine oltp-2 MySQL server [1] (4] OLTP-complex
specibb | JAVA business benchmark [40] 5 seconds
webcache Cooperative web cache [45] 100K queries

18

Results

e ACS reduces the average execution time by 34% compared to an

equal-area baseline with 32-Core SCMP.

e ACS reduced the average execution time time by 23%

compared to an equal-area ACMP.

e ACS improves scalability of 7 workloads.

19

Coarse Grained vs. Fine Grained Results

mm ACS
s SCMP

120
o
S 1
Q
<
o
-

. 80
-
|-
(@)
=2
U a
E
=
(8]
Q
X 40
L

Coarse 3 Fine Coarse Flne Coarse Flne

Area Budget

20

160 253

On average, across all 12 workloads, ACS with
SEL outperforms ACS without SEL by 15%.

m ACS |
= ACS w/o SEL |

Exec. Time Norm. to ACMP
~l
=)
I

21

Summary

Summary

e PROBLEM: Critical sections |limit both
performance and scalability

e Accelerating Critical Sections (ACS):
o improves performance by moving the computation of
the Critical Section to a larger and faster core.
o First approach to accelerate critical sections in

Hardware.
e RESULTS:

o ACS improves performance on average
by 34% compared to a Symmetric CMP
and by 24% compared to a Asymmetric CMP
o ACS improves scalability of 7 out of 12 Workloads.

23
s

Strengths

Strengths

e Novel, intuitive idea. First approach to accelerate
critical sections directly in hardware

e The results are going to become more and more
interesting

e Low hardware overhead
e The paper analyzes very well all possible trade offs

e The figures complement very well the explanations

25

Weaknesses

Weaknesses

e ACS only accelerate critical sections

e SEL might overcomplicating the problem. There
might be some easier ideas that don’t need
additional hardware

e The area budget to outperform both SCMP and
ACMP make it less attractive for an everyday use

e (Costly to implement : ISA, Compiler, interconnect...

27

Thoughts and Ideas

Thoughts and ldeas

e How would it work with more than one large core?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and
Scheduling in Multithreaded Applications" (ASPLOS “12)

e How could we also accelerate other bottlenecks as barriers and slow
pipeline stages?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and
Scheduling in Multithreaded Applications" (ASPLOS “12)

e Improving locality in staged execution

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt, "Data Marshaling for
Multi-core Architectures"”, (ISCA ‘10)

e Accelerating more (BIS with Lagging Threads):

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Utility-Based Acceleration of
Multithreaded Applications on Asymmetric CMPs" (ISCA ‘13)

29

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf

Takeaways

Key Takeaways

e The idea of moving specialized sections of computation
to a different “core” (= accelerator, GPU...) has a lot of
potential

e ACS is a novel way to accelerate critical section in
hardware

e The key idea is very intuitive and easy to understand

e Software is not the only solution

31

Questions ?

Discussion Starters

1. Do you think the trend of specializing hardware is
going to increase even more in future? What other
things could be done?

2. Do you think this could create new security
threats? Can you imagine a way modularity could
increase security?

3. Could ACS be combined with MorphCore?

33

Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt
University of Texas at Austin ~ Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu
I |

Presented by Lara Lazier

34

What more results?

An Asymmetric Multi-core Architecture for Accelerating Critical Sections

M. Aater Suleman Onur Mutlu Moinuddin Qureshi Yale N. Patt

"An Asymmetric Multi-core Architecture for Accelerating Critical Sections"

HPS Technical Report, TR-HPS-2008-003, September 2008.

35

https://people.inf.ethz.ch/omutlu/pub/acs-TR-HPS-2008-003.pdf

Backup Slides

Hardware specialization?

: : 29 o
=@= Transistor Density : %
o =@= Storage Density : P
m i 2 \!\ o o
- oll’ “# + Accelerators in Top500 : \&\‘,o' oo
o X]. : Q\CD“' ‘.‘
N 6 ... “‘
o : 0.’ -:::Iill-l.lllll
:)
e 30 XPOINT ;.o",'*‘
m \ “‘ By
N .®
= ISSCC 201,3 “‘A‘
€ «x1 o 5%
§ s &
N ~:‘:":" . . o |
o Pt g & 5
- ¥ - A
8 o4 &;og,:.:.."' . g’
m ??0’ ® ¢ A a
se " & @
x0.1 <3
e d
P & & &SP
% % % % % %

Adi Fuchs, David Wentzlaff, “Scaling Datacenter Accelerators With Compute-Reuse Architectures” (ISCA*18)

37

http://www.parallel.princeton.edu/papers/corex-isca18.pdf

Coarse-Grained Workloads

L LA
| T

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(b) Area budget=16 small cores
210 150

Exec. Time
Norm. to ACMP

QJQ N @6\ Q,'\;‘) 0“20 ‘,_"0\,

(c) Area budget=32 small cores

Figure 8. Execution time of workloads with coarse-grained lock-
ing on ACS and SCMP normalized to ACMP

For an area budget of 8:

ACS improves performance by
22%compared to SCMP and
11% compared to ACMP

For an area budget of 16:

ACS improves performance by
32%compared to SCMP and
22% compared to ACMP

For an are budget of 32:

ACS improves performance by
42% compared to SCMP and
31% compared to ACMP

Fined Grained Workloads

e The area budget required to outperform SCMP or

2 % ACMP for all workloads is less than or equal to 24
=3 cores.
2
=5
“ e Foran area budget of 8:
ACS increases execution time for all workloads except
- for iploockup compared to SCMP
EZ and increases execution time for all workloads
g ‘; compared to ACMP
4
e For an area budget of 16:
ACS improves performance by 2% compared to SCMP
: % and 6% compared to ACMP
= 3
2 é e Foran are budget of 32:
4

ACS improves performance by 17% compared to SCMP
and 6% compared to ACMP

(c) Area budget=32 small cores

39

Scalability

For 7 out of 12 applications ACS
improves Scalability

£3 4 £a
g g g
3, 52 EE
E - H H : E H H H H E 2
w 1 0 v H 5 H H @»
21 - SCMP: allmree—t | 2
2 —— ACMP; -§ P -§ 1
g | O-ACS £ B @ 2 P
7 J SR S S 20 SN S S S 2] e
§ 16 24 32 & 16 24 32 §16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(a)ep (b)is (c) pagemine
26 4 £
g 54 g°
= Z3 z4
§4 z 83
23 22 2
B2 g g2
ILER N EIR "EEREIR B
e O R D () brreerirrrrerrf e e
§ 16 24 32 8 16 24 32 8§ 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(d) puzzle (e) gsort (f) sqlite
£:9 £
th i L
E g 6 ER
z 5 @4
P 24 2 3
a 9-3 =
£ i £
‘§. T H H ﬂ-l : : : i n-l ¥ ¢ i ¥
) H R0 bereesfrrreiesessesjorreret @)
16 24 32 8 16 24 32 8§ 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(g) tsp (h) iplookup (1) oltp-1
10 2 10
g 9 S 5 9
= 8 = > 8
7 g 37
E 6 g E 6
2 3 z £ 3
g 3 %‘ g3
%2 £ 2
g g i & I B a log i F i
B’ O Drerrrprerreertereressieeerens D) berrereirererirerrersgerere 7§ J S S S
8 16 24 32 8 16 24 32 8§ 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(j) oltp-2 (k) specjbb (I) webcache

Figure 10. Speedup over a single small core

40

