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Presented at MICRO 2017

Moritz Knüsel
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Executive Summary

• Problem: Bulk bitwise operations
- Problematic when used on large in-memory bitvectors
- Limited by available memory bandwidth

• The proposal: Ambit

- Perform bulk bitwise operation in DRAM
- Activate multiple DRAM rows to compute AND/OR
- Use existing inverters to compute NOT
- AND, OR and NOT are sufficient to compute all bitwise

operations (NAND,XOR,...)
- less than 1% area overhead

• Results compared to state-of-the-art:

- 32x performance improvement, 35x energy reduction averaged
across 7 bulk bitwise operations

- 3x-7x performance improvement for real-world data intensive
workloads
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Background, Problem & Goal
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Background

• Applications that rely on bulk bitwise operations include:

- Bitmap indices in databases
- Set operations
- DNA sequencing
- Encryption
- ...

• Bulk bitwise operations become problematic if

- The bitvectors involved are very large
- They cannot be combined with other processing
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Problem

Memory bandwidth is a bottleneck

Processor Memory

Read

Write
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Goal

Idea: Perform bitwise operations directly in DRAM

Processor

Start

Done
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Mechanism

6 / 46



Background on DRAM
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Mechanism

Ambit-AND-OR
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Ambit-AND-OR

• Ambit-AND-OR relies on analog charge sharing.

• The final state of the bitline depends mostly on the deviation
of the bitline after charge sharing

• Key observation: By activating three rows at once, the
bitwise majority of the three rows is computed
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Initial State
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Triple Row Activation (TRA)
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After Sense Amplification
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Ambit-AND-OR

C A B Bitwise Majority

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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Ambit-AND-OR

C A B Bitwise Majority

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1
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Problems with näıve TRA

A
1

B
1

C
1

1

• Source Rows are overwritten
during TRA

• Capacitor discharging between
refreshes could affect the correctness

• Solution: Use three designated rows T0, T1, T2

- Copy source rows to two designated rows
- Initialize the third row to all 0 or all 1
- Do a TRA on the designated rows
- Copy result to destination

• Source rows are no longer directly involved in TRA

• All rows in a TRA have been refreshed recently
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Problems with näıve TRA

• A lot of copying and initialization is needed for designated
rows

• Ambit relies on RowClone for copying data and initializing
rows

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,

Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry

RowClone: Fast and Energy-Efficient In-DRAM Bulk
Data Copy and Initialization
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Problems with näıve TRA

• Another problem is additional complexity in the memory bus
and the address decoder

• How can we transmit a command to activate three rows
without sending and decoding 3 addresses?

• The solution: We use a reserved address to communicate a
TRA on the designated rows

• Also, we can split up the row decoder into two parts, which
leads to a simpler design and better performance
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Mechanism

Ambit-NOT
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Ambit-NOT

Notice that, during normal DRAM operation, the voltage level of
bitline is the negation of the value in the cell.
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Dual Contact Cell (DCC)
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Initial State
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After Charge Sharing
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Activated Source Row
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Activated n-Wordline
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Implementation
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Implementation
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Computing C = A XOR B

0 1 1 0 1 0

1 0 0 0 1 1

1 1 1 1 1 1

0 0 0 0 0 0

A

B

C

• A XOR B = (A OR B)
AND NOT (A AND B)

• Copy A to T0 and
B to T1

• Initialize T2 to 0 to
compute A AND B

• Store the negation of T0
in the DCC row

• Prepare T0, T1 and T2
to compute A OR B

• Copy the DCC row to
T0 and set T2 to 0

• Do a TRA and copy
the result to C
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Integrating Ambit with the System

• As a PCIe device

- Simple approach, similar to other accelerators

• Directly plugged onto the memory bus

- Makes sense since Ambit uses the same interface as regular
DRAM

- However, this requires additional support such as a new CPU
instruction

21 / 46



Integrating Ambit with the System

• As a PCIe device

- Simple approach, similar to other accelerators

• Directly plugged onto the memory bus

- Makes sense since Ambit uses the same interface as regular
DRAM

- However, this requires additional support such as a new CPU
instruction

21 / 46



Integrating Ambit with the System

Proposal: New CPU instruction

bbop dst src1 [src2] size

• Size is required to be a multiple of the row size

• Source and destination need to be row-aligned

• The CPU checks the constraints. If they are met, Ambit is
used to complete the operation. Otherwise, the CPU does the
operation normally.
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Integrating Ambit with the System

Other system considerations:

• API/Driver support

- Rows involved in bulk bitwise operations need to be in the
same subarray so we can use fast copying mechanisms

- Applications need a way to specify which parts of memory are
likely to be involved in bulk bitwise operations

• Cache coherence

- Ambit changes the contents of memory directly
- Existing DMA techniques can be utilised
- Alternatively, the bbop instruction could implicitly manage the

caches as well
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Key Results: Methodology &
Evaluation
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Ambit Throughput & Energy

Microbenchmarks with 32MB input vectors
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Ambit Throughput & Energy

• Energy is estimated for DDR3-1333 using the Rambus power
model

• Energy numbers include only the DRAM and channel energy,
and not the energy consumed by the processor

DRAM & Channel Energy (nJ/KB)
Design not and/or nand/nor xor/xnor

DDR3 93.7 137.9 137.9 137.9
Ambit 1.6 3.2 4.0 5.5

Energy reduction 59.5x 43.9x 35.1x 25.1x
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Methodology

Evaluations were carried out using the Gem5 full-system simulator.
Major simulation parameters:

Processor
x86, 8-wide, out-of-order, 4 Ghz
64-entry instruction queue

L1 cache 32 KB D-cache, 32 KB I-cache, LRU policy
L2 cache 2 MB, LRU policy, 64 B cache line size
Memory Controller 8 KB row size, FR-FCFS scheduling
Main memory DDR4-2400, 1-channel, 1-rank, 16 banks

Workloads:

• Set Operations - Comparing to bitvectors and red-black trees

• Bitmap Indices

• Bitweaving - Column scans using bulk bitwise operations
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Workload: Sets

• Sets with limited domain may be represented as bitvectors or
trees

• Example: Subsets of {A,B,C ,D,E ,F}
• The set {B,C ,F} may be represented by:

C

B F

or a bitvector 011001a tree

• Set operations on trees scale with the number of elements
in the set, whereas bitvectors also have to process elements
that are not in the set
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Performance of Set Operations

• Ambit shifts the balance heavily in favor of bitvectors
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Workload: Bitmap Index

• Using bitsets to build database indices

• As an example, consider this table:

USER ID REGION INCOME LEVEL

101 east bracket 1
102 central bracket 1
103 west bracket 2
104 east bracket 2
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Workload: Bitmap Index

• A bitmap for the REGION and INCOME LEVEL columns
might look like this:

REGION INCOME

east central west bracket 1 bracket 2

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1
1 0 0 0 1
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Bitmap Index Performance

Running an analytic query using a bitmap index.
Each query takes O(w) bulk bitwise operations, each of which
takes O(u) time.
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Workload: Bitweaving

• Used to speed up predicate evaluation in databases

• Tables are stored columnwise, but at the bitlevel

• For details on how it works, refer to BitWeaving: Fast
Scans for Main Memory Data Processing by Yinan Li and
Jignesh M. Patel
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Bitweaving Performance

• Evaluated Query:

s e l e c t count (∗ ) from T where c1 <= v a l <= c2
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Executive Summary

• Problem: Bulk bitwise operations
- Problematic when used on large in-memory bitvectors
- Limited by available memory bandwidth

• The proposal: Ambit

- Perform bulk bitwise operation in DRAM
- Activate multiple DRAM rows to compute AND/OR
- Use existing inverters to compute NOT
- AND, OR and NOT are sufficient to compute all bitwise

operations (NAND,XOR,...)
- less than 1% area overhead

• Results compared to state-of-the-art:

- 32x performance improvement, 35x energy reduction averaged
across 7 bulk bitwise operations

- 3x-7x performance improvement for real-world data intensive
workloads
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Strengths

• Addresses a problem with often used operations

• Simple but novel mechanism

• Paper discusses many low level- and implementation issues

• Low hardware overhead

• Well written

• 43 citations over the last year
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Weaknesses

• Doesn’t work well with ECC memory (ECC scheme must
satisfy ECC(A op B) = ECC(A) op ECC(B)

• Vectors whose length is a multiple of the row size are a
problem

• Multicore performance was not evaluated/considered

How are concurrent Ambit requests to the same subarray
scheduled?
How much slowdown occurs if a thread accesses data on a
subarray which does a lot of bulk bitwise operations?
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Key Takeaways

• A novel method to accelerate bulk bitwise operations

• Mechanism is simple but effective, low overhead

• Big savings in real world applications (3x-7x speedup)

• Potential for further work
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Related Work

• Add more processing capabilites to DRAM

• DRISA: A DRAM-based Reconfigurable In-Situ
Accelerator (2017)
Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob

Brennan, Yuan Xie

- Adds more mechanism for data movement, such as bit shifting

• DrAcc: a DRAM based Accelerator for Accurate CNN
Inference (2018)
Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, Jun Yang

- Builds an in-DRAM carry-lookahead adder to accelerate CNN
Inference
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• Processing in other kinds of memory

• In the cache:

- Compute Caches (2017)
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• In non-volatile memory:
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Questions?
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Discussion Starters

How could we better support bitvectors whose length is not a
multiple of the row size?
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Masking

• A bitmask could be used to preserve part of a row

• Say we only want to do an operation on half rows

- Initialize a row M with 00...011...1
- Compute C = ((A op B) AND NOT M) OR (M AND C)

• Creating a mask might be expensive, but they can be reused

• DRISA proposes a shifting mechanism, which could speed up
mask initialization

• But: Even if mask creation is cheap, it still requires 4
additional operations to mask off a single useful operation
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Discussion Starters

What kind of changes thoughout the system might be necessary to
make Ambit useful for applications?
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• The internal mapping of the DRAM needs to be exposed to
the rest of the system

• Applications need a way to place bitvectors in the right
subarrays

• Applications need to deal with vectors with bad lengths
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