
Tesseract
A Scalable Processing-in-Memory Accelerator

for Parallel Graph Processing (ISCA’15)

Junwhan Ahn, Sungpack Hong §, Onur Mutlu*, Sungjoo Yoo, Kiyoung Choi

Seoul National University, § Oracle Labs, *Carnegie Mellon University

Seminar on Computer Architecture (Fall 2018)

presented by Mauro Bringolf

1



2

Background and Problem

• Big-data analytics requires processing of ever-growing, 
large graphs

• Conventional architectures not well suited for graph 
processing

2+ billion users 300+ million users 45+ million pages



3

Graph Processing Characteristics

• Frequent random memory accesses during neighbor 
traversals

• Typically small amount of computation per vertex

Source: [1] O.Mutlu, “A Scalable Processing-in-Memory…” (Slides)



4

Summary

• Problem: Memory bandwidth is the bottleneck for graph 
processing on conventional architectures

• Goal: Ideally, performance should increase proportionally to 
size of stored graphs in a system

• Key Mechanism: A new Processing-in-Memory architecture 
which increases available memory bandwidth by 10x and a 
programming model to use it efficiently

• Results: In evaluation, Tesseract achieves 10x performance 
and 87% energy reduction over conventional architectures



5

Example - PageRank

Source: [2] J. Ahn et al., “A Scalable Processing-in-Memory…”



6

Key Ideas – Processing-in-Memory

• Apply the idea of Processing-in-Memory (PIM) using a 
Hybrid Memory Cube (HMC) which allows efficient stacking 
of memory and logic layers

• Exploit internal memory bandwidth of HMC



7

Architecture

• A Tesseract core is an HMC enhanced with one processor per 
vault

• Tesseract is memory-mapped to non-cacheable memory of 
the host processor

• Each processor only has access to its local vault but can 
communicate with other vaults via messages



8

HMC Internal Memory Bandwidth

• Each vault is connected via a 64bit wide interface sending at 
2GB/s to the crossbar network

• One HMC consists of 32 vaults which yields an internal 
available bandwidth of 512GB/s versus 320 GB/s external

Source: [2] Junwhan Ahn et al., “A Scalable Processing-in-Memory…”



9

Key Ideas – Programming Model

• Apply vertex-focused programming model to PIM

• Use a message passing mechanism to exploit data 
parallelism



10

Programming Interface

• Blocking vs. non-blocking remote function call

• Message queue, interrupts for batch processing of messages



11

Prefetch Mechanisms

• Stride prefetcher for traversal of vertex list or list of edges 
per vertex

• Message-triggered prefetcher to hide access latency

Source: [2] Junwhan Ahn et al., “A Scalable Processing-in-Memory…”



12

Example - PageRank

Source: [2] Junwhan Ahn et al., “A Scalable Processing-in-Memory…”



13

Evaluation

• Design is evaluated in simulation against conventional 
DDR3-based and HMC-based architectures

• 16 HMC’s are used yielding 128 GB main memory

• DDR3-based: 102.4 GB/s

• HMC-based: 640 GB/s

• Tesseract: 8 TB/s



14

Workloads

• Five standard graph algorithms including PageRank

• Data sets are obtained from applications in the internet 
context including Wikipedia

• Input graphs contain a couple of million nodes, 100-200 
millions of edges and are 3-5 GB



15

Key Results - Speedup

Source: [1] O.Mutlu, “A Scalable Processing-in-Memory…” (Slides)



16

Key Results - Speedup

Source: [1] O.Mutlu, “A Scalable Processing-in-Memory…” (Slides)



17

Key Results - Scalability

Source: [2] Junwhan Ahn et al., “A Scalable Processing-in-Memory…”



18

Summary

• Problem: Memory bandwidth is the bottleneck for graph 
processing on conventional architectures

• Goal: Ideally, performance should increase proportionally to 
size of stored graphs in a system

• Key Mechanism: A new Processing-in-Memory architecture 
which increases available memory bandwidth by 10x and a 
programming model to use it efficiently

• Results: In evaluation, Tesseract achieves 10x performance 
and 87% energy reduction over conventional architectures



19

Strengths

• Combines two strong ideas such that they benefit from each 
other: PIM and parallel programming model

• Performance analysis tries to isolate the different parts of 
the design

• Message-triggered prefetching is an intuitive idea with great 
performance benefits

• Design is not overly specific to graph workloads



20

Weaknesses

• Re-implemention of algorithms presents a tradeoff

• Global synchronization barrier might be problematic for 
imbalanced workloads across vaults

• The importance of graph distribution seems understated in 
the paper to me



21

Effects of Graph Distribution

• From the GraphP paper (1.7x speedup):

“In TESSERACT, data organization aspect is not treated as a 
primary concern and is subsequently determined by the 

presumed programming model”

Source: [3] M.Zhang, Y.Zhuo et al, “GraphP: Reducing Communication…”



22

Takeaways

• Processing-in-Memory can be a viable solution to the 
memory bottleneck

• A paradigm shift from the current conventional 
architectures can give great improvements by designing 
radically new systems

• Proven ideas from software can manifest themselves as 
new hardware designs



Tesseract
A Scalable Processing-in-Memory Accelerator

for Parallel Graph Processing (ISCA’15)

Junwhan Ahn, Sungpack Hong §, Onur Mutlu*, Sungjoo Yoo, Kiyoung Choi

Seoul National University, § Oracle Labs, *Carnegie Mellon University

Seminar on Computer Architecture (Fall 2018)

presented by Mauro Bringolf



24

Discussion

• Is there a better way to handle synchronization across one 
HMC between vaults?

• Is this design specific to graph workloads? Can you think of 
scenarios where it performs poorly?

• Do you think automatic translation of algorithms is difficult?



25

References

(1) O. Mutlu, “A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing” (Slides)

(2) J. Ahn et al, “A Scalable Processing-in-Memory Accelerator 
for Parallel Graph Processing” (ISCA’15)

(3) M. Zhang, Y. Zhuo et al, “GraphP: Reducing Communication 
for PIM-based Graph Processing with Efficient Data 
Partition”

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://alchem.usc.edu/%7Eyouwei/publications/2018.hpca.graphp.pdf


26

get

• Retrieve data from a remote core

• Blocking remote function call



27

set, copy

• Store data on a remote core

• Non-blocking remote function call

• Guaranteed to be finished before next synchronization 
barrier



28

disable_interput, enable_interput

• Stop processing messages and only do local work

• Can be used to avoid data races



29

barrier

• A synchronization barrier across all Tesseract cores

• Can be used to avoid data races



30

list_begin, list_end

• Configure the prefetcher before doing a list traversal


	Tesseract
	Background and Problem
	Graph Processing Characteristics
	Summary
	Example - PageRank
	Key Ideas – Processing-in-Memory
	Architecture
	HMC Internal Memory Bandwidth
	Key Ideas – Programming Model
	Programming Interface
	Prefetch Mechanisms
	Example - PageRank
	Evaluation
	Workloads
	Key Results - Speedup
	Key Results - Speedup
	Key Results - Scalability
	Summary
	Strengths
	Weaknesses
	Effects of Graph Distribution
	Takeaways
	Tesseract
	Discussion
	References
	get
	set, copy
	disable_interput, enable_interput
	barrier
	list_begin, list_end

