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Executive summary
■ Problem: DRAMs lose their data gradually after the power 

is cut 
■ Goal: Present a new type of attack which exploits 

remanence effect 
■ Method: 

■ Acquire usable full-system memory image 
■ Extract cryptographic key 
■ Gain access to secret data  

■ Evaluation: succeeded on most popular disk encryption 
systems

2



Background, Problem & Goal
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DRAM
■ A DRAM cell consists of a capacitor and an access 

transistor.  

■ It stores data in terms of change in the capacitor.
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DRAM refresh
■ DRAM capacitor charge leaks over time 

■ Each DRAM row is refreshed periodically to restore charge 
■ Period usually is 64 ms 

■ Retention time: maximum time a cell can go without being 
refreshed while maintaining its stored data 

■ Decay: bit flips caused by charge leak 
■ Cell leak = cell decays to ground state  

■ When powered off DRAM loses its data completely
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Retention time and temperature
■ Contents survive at some extent even at room temperature 

■ LINK, W., AND MAY, H. Eigenschaften von MOS - Ein 
Transistorspeicherzellen bei tiefen Temperaturen. Archiv fur 
Elekotronik und Ubertragungstechnik 33 (June 1979),   
229–235 

■ DRAM showed no data loss for a full week without 
refresh when cooled with liquid nitrogen  

■ Retention time can be increased by cooling 
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Retention time and booting
■ Chow, Jim & Pfaff, Ben & Garfinkel, Tal & Rosenblum, 

Mendel. (2005). Shredding your garbage: Reducing data 
lifetime through secure deallocation. USENIX 2005 

■ Experiment on data lifetime 
■ On soft reboot some data remain in memory  
■ On hard reboot results varied 

■ Once laptop kept some data for 30s after hard reboot
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Problem & Goal
Problem 
■ DRAM data is still available after powered off 
■ Retention time can be made longer by cooling 
■ This gives enough time to an attacker to capture the 

memory 

Goal  
■ Exploit the remanence property of DRAM  
■ Mount attack on disk encryption systems 
■ Bypass isk encryption by obtaining encryption key
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Novelty

9



Novelty
■ Exposes a new type of physical attack 
■ First security study with focus on security implications of 

DRAM remanence 
■ New method to obtain memory image 
■ New algorithm for reconstructing keys in the presence of 

errors 
■ First to apply attacks on real disk encryption systems 
■ First to offer systematic discussion of countermeasures
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Key approach and Ideas
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Key approach
■ Steps of cold-boot attack: 

➡ 1. Extract memory - data decay slowed down by cooling  
➡ 2. Locate key in memory - target key schedule  
➡ 3. Reconstruct decayed keys - target key schedule 
➡ 4. Decrypt hard drive
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correction
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Reconstructed key 



Decay at operating temperature

■ Method: 
■ Full memory with pseudorandom pattern 
■ Read back these regions after various periods of time 

■ Without refresh 
■ Observation: decay curves are similar 

■ Initial period of slow decay, intermediate period of rapid 
decay, final period of slow decay
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Decay at reduced temperature
■ Method:  

■ Load pseudorandom test pattern 
■ Cool down to -50°C using compressed air 
■ Power off machine and maintain temperature 
■ Restore power 

14



Decay at reduced temperature
■ Use liquid nitrogen  
■ -196°C 

■ <0.17% decay after 1 hour
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Decay patterns and predictability
■ DRAM tends to decay in non-uniform patterns 
■ Patterns and order are predictable 
■ Almost all bits tend to decay to predictable ground
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Mechanisms
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Imaging tools
■ Used to produce dumps of memory to external medium 

■ Preboot Execution Environment(PXE) network boot  
■ USB drives 
■ Extensible Firmware Interface(EFI) boot  
■ iPod
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Imaging attacks
■ 1. Simple reboot 

■ Reboot machine and configure BIOS to boot from 
imaging tool 

■ 2. Transferring memory module 
■ Physically remove DIMM 
■ Capture image using another computer 
■ Slow decay by cooling 
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Slowing decay by cooling
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Identifying keys in memory
■ Brute force 

■ Large key space  
■ Presence of bit errors makes it intractable 

■ Fully automatic techniques to locate keys in memory in 
presence of bit errors 
■ Target key schedule 
■ Key schedule uses multiple round keys derived from 

a single original key to modify intermediate result 
■ Search blocks of memory that satisfy combinatorial 

properties of a valid key schedule
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Key schedule
■ Exploit the fact that most encryption programs speed up 

computation by storing precomputed data from 
encryption key 
➡ AES - key schedule with 1 sub-key for each round(12-14) 
➡ RSA - extended form of private key, p, q 

■ This data contains more structure than key by itself 

■ All the studied disk encryption systems precompute key 
schedules and keep them in memory for as long as the 
encrypted disk is mounted
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Identifying keys in memory: AES
■ Input: memory image 
■ Output: list of keys 
■ Algorithm: 

➡1. Iterate through each byte of memory. Treat the 
following block of 176  or 240 bytes as a AES key 
schedule 

➡2. For each words in the potential key schedule, 
calculate the Hamming distance from that word to the 
key schedule word that should have been generated by 
the surrounding words 

➡3. If the total number of bits violating the constraints 
on a correct AES key schedule is sufficiently small, 
output the key.
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Key reconstruction 1: Brute force
■ Perform error correction on key  
■ Brute force key over keys with a low Hamming distance 

from the decayed key that was retrieved from memory  

■ (-) computational burden  
■ 10% of 1s decayed => possible keys > 2^56
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Key reconstruction 2: AES key
■ Exploit structure of AES key schedule: 

➡Brute force segments  
➡Combine to form key  

■ 128 bit key —> 11 128-bit round keys 
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Key reconstruction 2: AES key

■ 1. Slice: 4 bytes in Round n determine 3 bytes in Round 
n+1 

■ 2. Examine each 2^32 possibility in order of distance to 
recovered key  

■ 3. Calculate the probabilities that the bytes decayed 
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Key reconstruction 2: AES key

■ 4. Repeat for all 4 slices  
■ 5. Combine in candidate keys (calc. probability of decay) 
■ 6. Test candidates keys by expanding them into full key 

schedules – compare to recovered memory
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Key Results: Methodology and 
Evaluation
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Methodology
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Evaluation
■ Performed the attack on most popular disk encryption 

systems 
■ BitLocker       VULNERABLE     
■ File Vault       VULNERABLE 
■ TrueCrypt      VULNERABLE 
■ Dm-crypt       VULNERABLE 
■ Loop-AES       VULNERABLE 
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FileVault 
■ 128-bit AES in CBC mode 
■ 2 keys: 

■ AES keys 
■ Key to compute initialisation vector 

■ Result:  
✓ Attack recovered only AES key 
✓ Can decrypt 4080 bytes out of 4096 in a disk block 
✓ Can use previous methods to obtain initialisation vector 

key
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Loop-AES
■ On-the-fly encryption 
■ 128-bit AES using option “multi-key-v3” 

■ Each disk block is encrypted with one of 64 encryption 
keys 

■ Result:  
✓ The 64 keys found 
✓ Assignment between keys and blocks with trial 

decryptions 

■ Stores key schedule and also an inverted copy 
■ Protection against memory burn-in 

■ For attacker this is useful additional redundancy

34



Evaluation

Disk encryption is valuable,  
BUT  

not necessarily a sufficient defence
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Countermeasures
■ Scrubbing memory 

■ Overwrite keys when not in use 
■ Clear memory at boot time 
■ (-) still can physically move the memory to different 

computer with a more permissive BIOS 

■ Limiting booting from network or removable media 
■ Require password  
■ (-) swap out drive  
■ (-) easy to reset NVRAM to re-enable booting from 

external device 
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Countermeasures
■ Suspending a system safely 

■ Power off machine when not in use 
■ Guard machine after powered off  
■ (-) inconvenient 

■ Avoid precomputation 
■ (-) hurts performance 

■ Key expansion 
■ Apply some transform to key as it is stored in memory 
■ Key is more resistant to reconstruction 
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Countermeasure
■ Physical defences 

■ Lock DRAM modules on machine 
■ System could respond to cold temperatures 
■ (-) additional cost 

■ Architectural changes 
■ Add key-store hardware that erases state on power-up, 

reset, shutdown 
■ (-) old machines still at risk
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Countermeasures
■ Encrypt in the disk controller 

■ Use a write-only key register for encryption 
■ (-) key register is now vulnerable 

■ Trusted computing 
■ Boot history decides if it is safe to keep key in RAM 
■ (-) once key is in RAM, system is vulnerable
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Summary
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Summary
■ DRAM holds values surprisingly long after powered off  
■ This enables security attacks 

■ Steps: 
➡ 1. Extract memory - data decay slowed down by cooling  
➡ 2. Locate key in memory - target key schedule’s redundancy  
➡ 3. Reconstruct decayed keys - target key schedule’s redundancy 
➡ 4. Decrypt hard drive 

■ Disk encryption systems which use various encryption 
techniques are vulnerable  

■ Many countermeasures, but each has its tradeoffs 
■ Disk encryption is not enough to protect against a physical 

attack
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Questions?
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Strengths
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Strengths
■ Thorough study of misconceptions about DRAM 
■ Opened research towards a new type of attacks 
■ Defeated the most commonly used disk encryption 

products 
■ Works for both symmetric and asymmetric encryption 
■ Fast 
■ Non-destructive 
■ Requires accessible equipment 
■ Open source tools and demo 
■ Well written, easy to read 

■ Especially well analysed countermeasure section
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Weaknesses
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Weaknesses

■ Paper assumes that all bits decay to the same ground state 
■ Analyse attack at “more normal” temperatures  
■ Attack on each system requires system specific tools 
■ Key identification assumes that key schedules are contained 

in continuous regions of memory  
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Thoughts and Ideas
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Thoughts and ideas
■ Does it work for other devices? 

■ Paper focuses on laptops 

■ Attach a boot monitoring tool and wait for CPU to request 
sensitive data 

■ Introduce some randomness in key schedule storage
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Takeaways
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Takeaways
■ What is a cold boot attack and how it can be performed 
■ Encryption is not as secure as it seems 
■ Data fades instantaneously when DRAM has no power  
■ Residual data is difficult to recover  
■ Temperature influences decay speed  
■ Leakage happens as a result of computation 

■ But can happen also when no computation is done 
■ Example of tradeoff between security and performance 
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Open Discussion
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Open discussion
■ What other devices could be susceptible to this attack? 

■ Mobile phones 
■ Müller, Tilo & Spreitzenbarth, Michael. (2013). FROST: 

forensic recovery of scrambled telephones
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Open discussion
■ Is this still an issue nowadays?  

■ Mitigation: Data scrambling 
■ XOR’ing it with a pseudorandom number before writing 

it to DRAM 
■ Yitbarek, Salessawi & Aga, Misiker & Das, Reetuparna & 

Austin, Todd. (2017). Cold Boot Attacks are Still Hot: 
Security Analysis of Memory Scramblers in Modern 
Processors 
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Open discussion
■ Is this still an issue nowadays? 

■ Mitigation: Overwrite content of DRAM 
■ For performance reasons this is not done at every start 

■ Attack 
■ Clear firmware bit for memory overwrite request  
■ Settings stored on non-volatile memory  
■ Attack demo and blogpost
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Open discussion 
■ Is this still an issue nowadays? 

■ Mitigation: clear DRAM data at startup 
■  Orosa, Lois & Wang, Yaohua & Puddu, Ivan & Sadrosadati, Mohammad & Razavi, Kaveh & Gómez-

Luna, Juan & Hassan, Hasan & Mansouri-Ghiasi, Nika & Tavakkol, Arash & Patel, Minesh & Kim, Jeremie 
& Seshadri, Vivek & Kang, Uksong & Ghose, Saugata & Azevedo, Rodolfo & Mutlu, Onur. (2019). 
Dataplant: Enhancing System Security with Low-Cost In-DRAM Value Generation Primitives  

■ Mechanism completely implemented in DRAM by changing the internal DRAM timing signals 
■ Depends on power-on detection circuit  
■ Solutions to cold boot attack:  

■ Self destruction - refresh the whole DRAM memory in self-refresh mode at power-on, using 
Dataplant primitives instead of activation commands 

■ Command based destruction - memory controller forces DRAM to obey sequence of 
instructions that leads to data destruction at power-on 
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Open discussion
■ How could the encryption process be changed?  

■ Müller, Tilo & Freiling, Felix & Dewald, Andreas. (2011). 
TRESOR runs encryption securely outside RAM 
■ Take advantage of Intel’s new AES-NI instruction set 
■ Exploits the x86 debug registers in a non-standard 

way, namely as cryptographic key storage. 

■ Exploit variation in retention time of DRAM cells  
■ Store key in a part of memory with less retention time 
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Open discussion

■  Other data that could be obtained in a similar way?  

■ Naveed, Muhammad & Ayday, Erman & Clayton, Ellen & Fellay, Jacques & Gunter, Carl & Hubaux, 
Jean-Pierre & Malin, Bradley & Wang, Xiaofeng. (2014). Privacy in the Genomic Era. ACM Computing 
Surveys 

■ Genomic data is different than traditional healthcare data 
■ Properties: health/behaviour, static, unique, mystique, value, kinship  

■ Privacy risks:  
■ Re-identification threats 
■ Phenotype inference: aggregate genomic data, correlation of genomic data, kin privacy breach 
■ Other: anonymous paternity breach, legal and forensic 

■ Users generally not equipped with skills and equipment to protect the security and privacy of their 
genomic data 
■ Solution: store it on a cloud in an encrypted fashion, such that attacker needs to circumvent 

cloud security 
■ Data sharing issue 

■ Solution: functional encryption - computation directly on encrypted data
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Open discussion
■ Could it be possible to protect information even if key is 

leaked? 

■ Leakage Resilient Cryptography  
■ Regev, Oded. (2005). On Lattices, Learning with Errors, 

Random Linear Codes, and Cryptography. Journal of the 
ACM (JACM)  

■ Moni Naor and Gil Segev. 2009. Public-Key 
Cryptosystems Resilient to Key Leakage. In Proceedings 
of the 29th Annual International Cryptology Conference 
on Advances in Cryptology (CRYPTO ’09)
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Open discussion
■ Are DRAM alternatives at risk? 

■ NVRAM? 
■ Attack is trivial 

■ Hybrid? 
■ What would be kept on DRAM and what on NVRAM?
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Backup slides
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Key reconstruction: DES 
■ Exploit information from key schedule 
■ DES key schedule: 

■ 16 subkeys 
■ Each subway is a permutation of 

48-bit from the original 56-bit key 
■ Every bit from the original key is 

repeating in 14/16 sub-keys
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The key-schedule of  DES

Treat DES key scheduler as a repetition code



Key reconstruction 2: DES key
■ Treat DES scheduling as a repetition code 

■ The message is a single bit, and the corresponding 
codeword is a sequence of N copies of this bit  

■ Notation:  
■  - probability of a 1 flipping to 0 
■  - probability of a 0 flipping to 1 

■ If  → optimal decoding of bit is 0 if more than  

n/2 recovered bits are 0, else is 1 —> max occurrences 
■ If → optimal decoding is 0 if more than N*r of the 

recovered bits are 0, else is 1

δ0
δ1

δ0 = δ1 <
1
2

δ0 ≠ δ1
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r =
log (1 − δ0) − log δ1

log (1 − δ0) + log (1 − δ1) − log δ1 − log δ0



Results: key reconstruction
■ DES 

- Even at 50% error, probability of key being correct >98% 

■ AES 
- Reconstruct key with 15% error in fractions of a second 
- Reconstruct half of keys with 30% error in 30 s 

■ RSA 
- 1024-bit primes 

- Error 4% - 4.5 s 
- Error 6% - 2.5 min 

- 512-bit primes 
- Error 10% - 1 min
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