
Lest We Remember:
Cold Boot Attacks on Encryption Keys

J. Alex Halderman*, Seth D. Schoen†, Nadia Heninger*, William
Clarkson, William Paul‡, Joseph A. Calandrino*, Ariel J. Feldman*,

Jacob Appelbaum and Edward W. Felten*

*Princeton University †Electronic Frontier Foundation ‡Wind River Systems

USENIX Security Symposium, 2008

Presented by: Andra-Maria Ilieș
Seminar in Computer Architecture 1

Executive summary
■ Problem: DRAMs lose their data gradually after the power

is cut
■ Goal: Present a new type of attack which exploits

remanence effect
■ Method:

■ Acquire usable full-system memory image
■ Extract cryptographic key
■ Gain access to secret data

■ Evaluation: succeeded on most popular disk encryption
systems

2

Background, Problem & Goal

3

DRAM
■ A DRAM cell consists of a capacitor and an access

transistor.

■ It stores data in terms of change in the capacitor.

4

bi
tli

ne

wordline

bi
tli

ne
access

transistor

bi
tli

ne

storage
capacitor

DRAM refresh
■ DRAM capacitor charge leaks over time

■ Each DRAM row is refreshed periodically to restore charge
■ Period usually is 64 ms

■ Retention time: maximum time a cell can go without being
refreshed while maintaining its stored data

■ Decay: bit flips caused by charge leak
■ Cell leak = cell decays to ground state

■ When powered off DRAM loses its data completely

5

Retention time and temperature
■ Contents survive at some extent even at room temperature

■ LINK, W., AND MAY, H. Eigenschaften von MOS - Ein
Transistorspeicherzellen bei tiefen Temperaturen. Archiv fur
Elekotronik und Ubertragungstechnik 33 (June 1979),
229–235

■ DRAM showed no data loss for a full week without
refresh when cooled with liquid nitrogen

■ Retention time can be increased by cooling

6

Retention time and booting
■ Chow, Jim & Pfaff, Ben & Garfinkel, Tal & Rosenblum,

Mendel. (2005). Shredding your garbage: Reducing data
lifetime through secure deallocation. USENIX 2005

■ Experiment on data lifetime
■ On soft reboot some data remain in memory
■ On hard reboot results varied

■ Once laptop kept some data for 30s after hard reboot

7

https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/chow/chow.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/chow/chow.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/chow/chow.pdf

Problem & Goal
Problem
■ DRAM data is still available after powered off
■ Retention time can be made longer by cooling
■ This gives enough time to an attacker to capture the

memory

Goal
■ Exploit the remanence property of DRAM
■ Mount attack on disk encryption systems
■ Bypass isk encryption by obtaining encryption key

8

Novelty

9

Novelty
■ Exposes a new type of physical attack
■ First security study with focus on security implications of

DRAM remanence
■ New method to obtain memory image
■ New algorithm for reconstructing keys in the presence of

errors
■ First to apply attacks on real disk encryption systems
■ First to offer systematic discussion of countermeasures

10

Key approach and Ideas

11

Key approach
■ Steps of cold-boot attack:

➡ 1. Extract memory - data decay slowed down by cooling
➡ 2. Locate key in memory - target key schedule
➡ 3. Reconstruct decayed keys - target key schedule
➡ 4. Decrypt hard drive

12

101010100001110
10101010010100
000101101110100
010100001110111
111111000100101

Original memory

0 -> 1
1 -> 0

Key error
correction

Data
acquisition 101010100001110

10101010010100
000101101110100
010100001110111
111111000100101

 Memory dump
(with bit errors)

101010100001110
10101010010100
000101101110100
010100001110111
111111000100101

Key
search

Identified key
101010100001110
10101010010100
000101111100100
010100001110111
111111000100101

Reconstructed key

Decay at operating temperature

■ Method:
■ Full memory with pseudorandom pattern
■ Read back these regions after various periods of time

■ Without refresh
■ Observation: decay curves are similar

■ Initial period of slow decay, intermediate period of rapid
decay, final period of slow decay

13

Decay at reduced temperature
■ Method:

■ Load pseudorandom test pattern
■ Cool down to -50°C using compressed air
■ Power off machine and maintain temperature
■ Restore power

14

Decay at reduced temperature
■ Use liquid nitrogen
■ -196°C

■ <0.17% decay after 1 hour

15

Decay patterns and predictability
■ DRAM tends to decay in non-uniform patterns
■ Patterns and order are predictable
■ Almost all bits tend to decay to predictable ground

16

5 sec 30 sec 60 sec 5 min

Mechanisms

17

Imaging tools
■ Used to produce dumps of memory to external medium

■ Preboot Execution Environment(PXE) network boot
■ USB drives
■ Extensible Firmware Interface(EFI) boot
■ iPod

18

Imaging attacks
■ 1. Simple reboot

■ Reboot machine and configure BIOS to boot from
imaging tool

■ 2. Transferring memory module
■ Physically remove DIMM
■ Capture image using another computer
■ Slow decay by cooling

19

Slowing decay by cooling

20
<0.2% decay after 1 min

21

22

Identifying keys in memory
■ Brute force

■ Large key space
■ Presence of bit errors makes it intractable

■ Fully automatic techniques to locate keys in memory in
presence of bit errors
■ Target key schedule
■ Key schedule uses multiple round keys derived from

a single original key to modify intermediate result
■ Search blocks of memory that satisfy combinatorial

properties of a valid key schedule

23

Key schedule
■ Exploit the fact that most encryption programs speed up

computation by storing precomputed data from
encryption key
➡ AES - key schedule with 1 sub-key for each round(12-14)
➡ RSA - extended form of private key, p, q

■ This data contains more structure than key by itself

■ All the studied disk encryption systems precompute key
schedules and keep them in memory for as long as the
encrypted disk is mounted

24

Identifying keys in memory: AES
■ Input: memory image
■ Output: list of keys
■ Algorithm:

➡1. Iterate through each byte of memory. Treat the
following block of 176 or 240 bytes as a AES key
schedule

➡2. For each words in the potential key schedule,
calculate the Hamming distance from that word to the
key schedule word that should have been generated by
the surrounding words

➡3. If the total number of bits violating the constraints
on a correct AES key schedule is sufficiently small,
output the key.

25

Key reconstruction 1: Brute force
■ Perform error correction on key
■ Brute force key over keys with a low Hamming distance

from the decayed key that was retrieved from memory

■ (-) computational burden
■ 10% of 1s decayed => possible keys > 2^56

26

1 0 1 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0 1 1

Hamming distance = 3

Key reconstruction 2: AES key
■ Exploit structure of AES key schedule:

➡Brute force segments
➡Combine to form key

■ 128 bit key —> 11 128-bit round keys

27

CORE + + + +

Round key 1

Round key 2

Key reconstruction 2: AES key

■ 1. Slice: 4 bytes in Round n determine 3 bytes in Round
n+1

■ 2. Examine each 2^32 possibility in order of distance to
recovered key

■ 3. Calculate the probabilities that the bytes decayed

28

CORE + + + +

Round key 1

Round key 2

Key reconstruction 2: AES key

■ 4. Repeat for all 4 slices
■ 5. Combine in candidate keys (calc. probability of decay)
■ 6. Test candidates keys by expanding them into full key

schedules – compare to recovered memory

29

CORE + + + +

Round key 1

Round key 2

Key Results: Methodology and
Evaluation

30

Methodology

31

Evaluation
■ Performed the attack on most popular disk encryption

systems
■ BitLocker VULNERABLE
■ File Vault VULNERABLE
■ TrueCrypt VULNERABLE
■ Dm-crypt VULNERABLE
■ Loop-AES VULNERABLE

32

FileVault
■ 128-bit AES in CBC mode
■ 2 keys:

■ AES keys
■ Key to compute initialisation vector

■ Result:
✓ Attack recovered only AES key
✓ Can decrypt 4080 bytes out of 4096 in a disk block
✓ Can use previous methods to obtain initialisation vector

key

33

Loop-AES
■ On-the-fly encryption
■ 128-bit AES using option “multi-key-v3”

■ Each disk block is encrypted with one of 64 encryption
keys

■ Result:
✓ The 64 keys found
✓ Assignment between keys and blocks with trial

decryptions

■ Stores key schedule and also an inverted copy
■ Protection against memory burn-in

■ For attacker this is useful additional redundancy

34

Evaluation

Disk encryption is valuable,
BUT

not necessarily a sufficient defence

35

Countermeasures
■ Scrubbing memory

■ Overwrite keys when not in use
■ Clear memory at boot time
■ (-) still can physically move the memory to different

computer with a more permissive BIOS

■ Limiting booting from network or removable media
■ Require password
■ (-) swap out drive
■ (-) easy to reset NVRAM to re-enable booting from

external device

36

Countermeasures
■ Suspending a system safely

■ Power off machine when not in use
■ Guard machine after powered off
■ (-) inconvenient

■ Avoid precomputation
■ (-) hurts performance

■ Key expansion
■ Apply some transform to key as it is stored in memory
■ Key is more resistant to reconstruction

37

Countermeasure
■ Physical defences

■ Lock DRAM modules on machine
■ System could respond to cold temperatures
■ (-) additional cost

■ Architectural changes
■ Add key-store hardware that erases state on power-up,

reset, shutdown
■ (-) old machines still at risk

38

Countermeasures
■ Encrypt in the disk controller

■ Use a write-only key register for encryption
■ (-) key register is now vulnerable

■ Trusted computing
■ Boot history decides if it is safe to keep key in RAM
■ (-) once key is in RAM, system is vulnerable

39

Summary

40

Summary
■ DRAM holds values surprisingly long after powered off
■ This enables security attacks

■ Steps:
➡ 1. Extract memory - data decay slowed down by cooling
➡ 2. Locate key in memory - target key schedule’s redundancy
➡ 3. Reconstruct decayed keys - target key schedule’s redundancy
➡ 4. Decrypt hard drive

■ Disk encryption systems which use various encryption
techniques are vulnerable

■ Many countermeasures, but each has its tradeoffs
■ Disk encryption is not enough to protect against a physical

attack

41

Questions?

42

Strengths

43

Strengths
■ Thorough study of misconceptions about DRAM
■ Opened research towards a new type of attacks
■ Defeated the most commonly used disk encryption

products
■ Works for both symmetric and asymmetric encryption
■ Fast
■ Non-destructive
■ Requires accessible equipment
■ Open source tools and demo
■ Well written, easy to read

■ Especially well analysed countermeasure section

44

https://www.youtube.com/watch?v=JDaicPIgn9U

Weaknesses

45

Weaknesses

■ Paper assumes that all bits decay to the same ground state
■ Analyse attack at “more normal” temperatures
■ Attack on each system requires system specific tools
■ Key identification assumes that key schedules are contained

in continuous regions of memory

46

Thoughts and Ideas

47

Thoughts and ideas
■ Does it work for other devices?

■ Paper focuses on laptops

■ Attach a boot monitoring tool and wait for CPU to request
sensitive data

■ Introduce some randomness in key schedule storage

48

Takeaways

49

Takeaways
■ What is a cold boot attack and how it can be performed
■ Encryption is not as secure as it seems
■ Data fades instantaneously when DRAM has no power
■ Residual data is difficult to recover
■ Temperature influences decay speed
■ Leakage happens as a result of computation

■ But can happen also when no computation is done
■ Example of tradeoff between security and performance

50

Open Discussion

51

Open discussion
■ What other devices could be susceptible to this attack?

■ Mobile phones
■ Müller, Tilo & Spreitzenbarth, Michael. (2013). FROST:

forensic recovery of scrambled telephones

52

https://www.cs1.tf.fau.de/research/system-security-and-software-protection-group/frost/
https://www.cs1.tf.fau.de/research/system-security-and-software-protection-group/frost/

Open discussion
■ Is this still an issue nowadays?

■ Mitigation: Data scrambling
■ XOR’ing it with a pseudorandom number before writing

it to DRAM
■ Yitbarek, Salessawi & Aga, Misiker & Das, Reetuparna &

Austin, Todd. (2017). Cold Boot Attacks are Still Hot:
Security Analysis of Memory Scramblers in Modern
Processors

53

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7920835&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7920835&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7920835&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7920835&tag=1

Open discussion
■ Is this still an issue nowadays?

■ Mitigation: Overwrite content of DRAM
■ For performance reasons this is not done at every start

■ Attack
■ Clear firmware bit for memory overwrite request
■ Settings stored on non-volatile memory
■ Attack demo and blogpost

54

https://www.youtube.com/watch?v=RqvPZnLkP70
https://blog.f-secure.com/cold-boot-attacks/

Open discussion
■ Is this still an issue nowadays?

■ Mitigation: clear DRAM data at startup
■ Orosa, Lois & Wang, Yaohua & Puddu, Ivan & Sadrosadati, Mohammad & Razavi, Kaveh & Gómez-

Luna, Juan & Hassan, Hasan & Mansouri-Ghiasi, Nika & Tavakkol, Arash & Patel, Minesh & Kim, Jeremie
& Seshadri, Vivek & Kang, Uksong & Ghose, Saugata & Azevedo, Rodolfo & Mutlu, Onur. (2019).
Dataplant: Enhancing System Security with Low-Cost In-DRAM Value Generation Primitives

■ Mechanism completely implemented in DRAM by changing the internal DRAM timing signals
■ Depends on power-on detection circuit
■ Solutions to cold boot attack:

■ Self destruction - refresh the whole DRAM memory in self-refresh mode at power-on, using
Dataplant primitives instead of activation commands

■ Command based destruction - memory controller forces DRAM to obey sequence of
instructions that leads to data destruction at power-on

55

https://arxiv.org/abs/1902.07344
https://arxiv.org/abs/1902.07344
https://arxiv.org/abs/1902.07344
https://arxiv.org/abs/1902.07344

Open discussion
■ How could the encryption process be changed?

■ Müller, Tilo & Freiling, Felix & Dewald, Andreas. (2011).
TRESOR runs encryption securely outside RAM
■ Take advantage of Intel’s new AES-NI instruction set
■ Exploits the x86 debug registers in a non-standard

way, namely as cryptographic key storage.

■ Exploit variation in retention time of DRAM cells
■ Store key in a part of memory with less retention time

56

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.8472&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.8472&rep=rep1&type=pdf

Open discussion

■ Other data that could be obtained in a similar way?

■ Naveed, Muhammad & Ayday, Erman & Clayton, Ellen & Fellay, Jacques & Gunter, Carl & Hubaux,
Jean-Pierre & Malin, Bradley & Wang, Xiaofeng. (2014). Privacy in the Genomic Era. ACM Computing
Surveys

■ Genomic data is different than traditional healthcare data
■ Properties: health/behaviour, static, unique, mystique, value, kinship

■ Privacy risks:
■ Re-identification threats
■ Phenotype inference: aggregate genomic data, correlation of genomic data, kin privacy breach
■ Other: anonymous paternity breach, legal and forensic

■ Users generally not equipped with skills and equipment to protect the security and privacy of their
genomic data
■ Solution: store it on a cloud in an encrypted fashion, such that attacker needs to circumvent

cloud security
■ Data sharing issue

■ Solution: functional encryption - computation directly on encrypted data

57

https://dl.acm.org/doi/abs/10.1145/2767007
https://dl.acm.org/doi/abs/10.1145/2767007
https://dl.acm.org/doi/abs/10.1145/2767007

Open discussion
■ Could it be possible to protect information even if key is

leaked?

■ Leakage Resilient Cryptography
■ Regev, Oded. (2005). On Lattices, Learning with Errors,

Random Linear Codes, and Cryptography. Journal of the
ACM (JACM)

■ Moni Naor and Gil Segev. 2009. Public-Key
Cryptosystems Resilient to Key Leakage. In Proceedings
of the 29th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO ’09)

58

https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://eprint.iacr.org/2009/105.pdf
https://eprint.iacr.org/2009/105.pdf
https://eprint.iacr.org/2009/105.pdf
https://eprint.iacr.org/2009/105.pdf

Open discussion
■ Are DRAM alternatives at risk?

■ NVRAM?
■ Attack is trivial

■ Hybrid?
■ What would be kept on DRAM and what on NVRAM?

59

Lest We Remember:
Cold Boot Attacks on Encryption Keys

J. Alex Halderman*, Seth D. Schoen†, Nadia Heninger*, William
Clarkson, William Paul‡, Joseph A. Calandrino*, Ariel J. Feldman*,

Jacob Appelbaum and Edward W. Felten*

*Princeton University †Electronic Frontier Foundation ‡Wind River Systems

USENIX Security Symposium, 2008

Presented by: Andra-Maria Ilieș
Seminar in Computer Architecture 60

Backup slides

61

Key reconstruction: DES
■ Exploit information from key schedule
■ DES key schedule:

■ 16 subkeys
■ Each subway is a permutation of

48-bit from the original 56-bit key
■ Every bit from the original key is

repeating in 14/16 sub-keys

62

The key-schedule of DES

Treat DES key scheduler as a repetition code

Key reconstruction 2: DES key
■ Treat DES scheduling as a repetition code

■ The message is a single bit, and the corresponding
codeword is a sequence of N copies of this bit

■ Notation:
■ - probability of a 1 flipping to 0
■ - probability of a 0 flipping to 1

■ If → optimal decoding of bit is 0 if more than

n/2 recovered bits are 0, else is 1 —> max occurrences
■ If → optimal decoding is 0 if more than N*r of the

recovered bits are 0, else is 1

δ0
δ1

δ0 = δ1 <
1
2

δ0 ≠ δ1

63

r =
log (1 − δ0) − log δ1

log (1 − δ0) + log (1 − δ1) − log δ1 − log δ0

Results: key reconstruction
■ DES

- Even at 50% error, probability of key being correct >98%

■ AES
- Reconstruct key with 15% error in fractions of a second
- Reconstruct half of keys with 30% error in 30 s

■ RSA
- 1024-bit primes

- Error 4% - 4.5 s
- Error 6% - 2.5 min

- 512-bit primes
- Error 10% - 1 min

64

