
Self-Optimizing Memory Controllers:
A Reinforcement Learning Approach - ISCA 2008
Engin İpek1,2 , Onur Mutlu2 , José F. Martínez1 , Rich Caruana1

1 Cornell University
2 Microsoft Research

Presented by Marco Zeller



Outline

1. Motivation and Background

2. Mechanisms

3. Results

4. Summary

5. Discussion

Marco Zeller 2018-10-24 1



Moore’s Law and Memory Controller

Projection according to ITRS 2007 Executive Summary

Marco Zeller 2018-10-24 2



Off-Chip Memory Bandwidth Observations

Workload is increasing faster than the available bandwidth

Higher pressure on off-chip interface with each new technology
generation

Important to utilize available memory bandwidth efficiently

Marco Zeller 2018-10-24 3



The Memory Controller

CoreCore

C
ac

he
C
ac

he Memory
Controller

Memory
Controller MemoryMemory

Core1Core1

Core2Core2

Core0Core0

Core3Core3

C
ac

he
C
ac

he Memory
Controller

Memory
Controller MemoryMemory

Core1Core1

Core2Core2

Core0Core0

Core3Core3

C
ac

he
C
ac

he Memory
Controller

Memory
Controller MemoryMemory

Marco Zeller 2018-10-24 4



Memory Scheduling

We consider 4 DRAM-Interface commands:

1. Activate (row) ’Open’

2. Precharge (row) ’Close’

3. Read

4. Write

The paper distinguishes 5 commands (performance)

Marco Zeller 2018-10-24 5



Row Buffer
Activate

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Activate

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Write

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Write

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Col 1

Read

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Read

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Col 1

Precharge

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Precharge

Row Buffer

R
ow

 de coder

Column mux

Row address 0
Empty

HIT

Row 0

Column address 0

CONFLICT !

Columns

R
ow

sAddress

Memory Bus

Address

Bank 0 Bank 1

0

1

0 1

Col 1

Marco Zeller 2018-10-24 6



State of the Art Memory Controller

FR-FCFS (first-ready first-come first-serve) policy
Provides the best average performance

Drawbacks:

• Designed for average-case application behavior

• Does not consider long-term performance impacts

• Does not adapt its scheduling policy

Marco Zeller 2018-10-24 7



Assume the following workload: action (bank, row, column)

1. Read (0,0,0)

2. Read (0,1,0)

3. Write (0,1,0)

4. Read (0,1,0)

5. Read (0,0,1)

6. Read (0,1,1)

7. Read (1,0,0)

8. Write (1,0,0)

9. Read (1,0,0)

10. Read (1,1,0)

11. Read (1,0,1)

12. Read (1,1,1)

Where:
Activate and Precharge occupy 3 DRAM-cycles
Read and Write occupy 1 DRAM-cycles

Marco Zeller 2018-10-24 8



60 cycles!

Marco Zeller 2018-10-24 9



23 cycles!

Marco Zeller 2018-10-24 10



22 cycles!

Marco Zeller 2018-10-24 11



How Much Room Is There for Improvement?

Used for paper: ”Optimistic Scheduler”

All timing constraints lifted (except DRAM data bus conflicts)

Able to use the full bandwidth at all time

Not realizable!
but easy to implement
useful approximation for upper bound

Marco Zeller 2018-10-24 12



FR-FCFS Compared to Optimistic Scheduler

Marco Zeller 2018-10-24 13



Novelty: Self-Optimizing Memory Controller

Observation:
Efficient memory controller must be able to:

1. do long time planning

2. learn

Solution:
Apply machine learning to solve a system architecture problem

Marco Zeller 2018-10-24 14



Mechanisms

"Naturally formulated as an infinite-horizon discounted Markov
Decision Process"

Marco Zeller 2018-10-24 15



Potentially Complicated System

McLeod, S. A. (2018). Skinner - operant conditioning.
Retrieved from https://www.simplypsychology.org/operant-conditioning.html

Marco Zeller 2018-10-24 16



Simple System for the Learning Agent

Marco Zeller 2018-10-24 17



Reinforcement Learning Schematic

Environment

AgentAction a(t+1)
State s(t)

Reward r(t)

Environment

AgentAction a(t+1)
State s(t)

Reward r(t)

System

DRAM SchedulerScheduled
Command(t+1)

State
Attributes(t)
Data Bus

Utilization(t)

Marco Zeller 2018-10-24 18



How to Obtain a Good Set of State Attributes

More state attributes⇒ increased hardware complexity

Handpick potential state attributes (requires some intuition)
in the paper 226 candidates were identified

Apply (linear) feature selection on those candidates

Marco Zeller 2018-10-24 19



(Linear) Feature Selection

Automated process for finding a good (the best?) subset from N
candidates

1. For every candidate (N) simulate an RL memory controller

2. Select the attribute yielding best performance

3. Simulate for every not selected candidate (N-1) an RL memory
controller using the not selected attribute and the selected one

4. Repeat until preferred number of attributes reached

Marco Zeller 2018-10-24 20



State Attributes (simplified)

1. Number of reads (load/store misses)

2. Number of writes (write-backs)

3. Number of reads (load misses)

4. Order of a load by core relative to other loads by the same core

5. Number of writes in the transaction queue waiting for the row

6. Number of load misses waiting for the row

Marco Zeller 2018-10-24 21



Reward Function

The agent optimizes for the sum of it’s future rewards

• Immediate reward of +1 every time it schedules a Read or
Write

• No reward at all other times

Problem: agent’s lifetime practically infinity
⇒ sum of the rewards will be infinity

Marco Zeller 2018-10-24 22



Solution: Discounted Rewards

Discount parameter: 0 ≤ γ < 1

E[
∞∑
i=0

γ i · rt+i ] = E[rt + γ1 · rt+1 + γ2 · rt+2 + γ3 · rt+3 + ...]

Store these for all state-action pairs
⇒ Q-values

Marco Zeller 2018-10-24 23



Example: Infinite-Horizon Discounted Markov
Decision Process

Marco Zeller 2018-10-24 24



Key Results

Marco Zeller 2018-10-24 25



Experimental Setup

Loosely based on Intel’s Nehalem processor
4 GHz Quadcore Processor
Shared L2 Cache: 4MB

Main Memory: DDR2 6.4 GB/s (1, 2, 4 Channels)
Transaction Queue: 64 Entries

Benchmarks: 9 mostly scientific memory-intensive applications
from Data Mining, NAS OpenMP, SPEC OpenMP, Splash-2

Simulator: heavily modified SESC

Marco Zeller 2018-10-24 26



Speedup Compared to FR-FCFS

5%-33% speedup

19% speedup on average
"(27% of the possible speedup)"

Marco Zeller 2018-10-24 27



Data-Bus Utilization

Marco Zeller 2018-10-24 28



Fixed Policy With Same State Information

RL uses more information about the system than FR-FCFS

Generate a family of policies based on additional state-attributes

Pick the one that performs best in simulations
⇒ Family-BEST

Marco Zeller 2018-10-24 29



Fixed Policy With Same State Information

using more state-attributes to improve FR-FCFS
yields only 5% speedup on average

Marco Zeller 2018-10-24 30



Speedup Compared to a Static RL Policy

using an offline RL Memory Controller
yields only 8% speedup on average

⇒ online learning is essential

Marco Zeller 2018-10-24 31



More Than Two Cores?

Can the Q-values successfully converge in the presence of
potential interactions between schedulers? Yes!

Marco Zeller 2018-10-24 32



Speedup Compared to Two Memory Channels

Hardware overhead:

1. logic required to compute state attributes

2. logic required to estimate and update Q-values

3. SRAM arrays required to store Q-values.

8192 distinct Q-values (32bits each)
⇒ 32kB of on-chip storage

Marco Zeller 2018-10-24 33



Speedup Compared to Two Memory Channels

How about increasing the memory bandwidth instead of
deploying a RL Memory Controller?

RL Memory Controller can deliver 50% of the
performance increase of doubling the bandwidth
⇒ lower cost than an over-provisioned system

Marco Zeller 2018-10-24 34



Summary

Problem: Off-chip memory bandwidth bottleneck

Goal: Improve usage of available bandwidth

Observation: Fixed policy memory controller are not optimal

Key idea: Apply RL to a computer architecture problem
self-optimizing memory controller

Key result: 19% average speedup compared to state-of-the-art
controller (between 5% and 33% speedup for every
tested application)
Scalability to more processors/memory-channels

Marco Zeller 2018-10-24 35



Strengths and Weaknesses

Marco Zeller 2018-10-24 36



Strengths

Improves the memory bandwidth usage and therefore the
performance.

Reduces the human design effort for the memory controller.
Black-box-model

Well written.

Marco Zeller 2018-10-24 37



Weaknesses

State attributes attribute candidates identified based on intuition
Relatively high number (226) of candidates

The (linear) feature selection process used does not take into
account potentially important interactions between attributes

The reward function proposed in the paper might not be ideal
⇒ Bias with all machine learning algorithms

The reward function proposed in the paper does not easily
generalize

Marco Zeller 2018-10-24 38



Thoughts and Ideas

Marco Zeller 2018-10-24 39



My Opinion about the Paper

It is worthwhile reading.

Although ten years old still relevant (more than ever)

Interesting symbioses of two not often related topics (Machine
Learning and Micro-architecture)

Detailed description about possible implementation

Suggested reading: MORSE Multi-objective Reconfigurable
Self-optimizing Memory Scheduler - 2011

Marco Zeller 2018-10-24 40

https://ieeexplore.ieee.org/abstract/document/6168945
https://ieeexplore.ieee.org/abstract/document/6168945


Takeaways

Marco Zeller 2018-10-24 41



Combined knowledge from two little related fields

The authors took ideas from the field of Data-Processing and
applied them to design a ’superior’ Micro-Architecture.

Remember this was before the Machine Learning Hype!

"To our knowledge, this paper is the first to propose such a
scheduler along with a rigorous methodology to designing self-
optimizing DRAM controllers."

Marco Zeller 2018-10-24 42



What can we learn from this paper?

Thinking in a unconventional way can lead to good results

For that it is important to not only be an expert in one field, one does
need to know about other fields to get inspiration

In addition to that, one needs the ability to carry out the ideas
inspired by these other fields in order for them to form something
more than a just dream

Marco Zeller 2018-10-24 43



Discussion

Questions . . .

Marco Zeller 2018-10-24 44



Ensuring Correct Operation 1

The scheduler’s decisions are restricted to picking among the
set of legal commands each cycle

Care must be taken to ensure that the system is guaranteed to
make forward progress regardless of the scheduler’s decisions

1. the scheduler is not permitted to select NOPs when other legal
commands are available

2. the scheduler cannot choose to activate an arbitrary row with
no pending requests

3. the scheduler is not allowed to precharge a newly activated row
until it issues a read or write command to it.

Marco Zeller 2018-10-24 45



Ensuring Correct Operation 2

Starvation
⇒ Timeout policy: any request that has been pending for a fixed
(but large - in our case 10,000) number of cycles is completed in its
entirety before other commands can be considered for scheduling

DRAM refresh
we do not allow the RL controller to dictate the refresh schedule.
Instead, at the end of a refresh interval, the RL scheduler is
disabled, the appropriate rows are refreshed, and then control is
returned to the RL scheduler

Marco Zeller 2018-10-24 46



Critique From the ATLAS Paper

”Other scheduling algorithms have been proposed to improve DRAM
throughput in single-threaded, multi-threaded, or streaming systems.
None of these works consider the existence of multiple competing
threads sharing the memory controllers (as happens in a multi-core
system).”
Link: ATLAS Paper

Marco Zeller 2018-10-24 47

https://people.inf.ethz.ch/omutlu/pub/atlas_hpca10.pdf


Bigger Picture: General issues with Memory

Key issues to tackle:

• Enable reliability at low cost/high capacity

• Reduce energy

• Reduce latency

• Improve bandwidth

• Reduce waste (capacity, bandwidth, latency)

• Enable computation close to data

according to: Memory Systems course, Technion, Summer 2018

Marco Zeller 2018-10-24 48

https://romankap.github.io/memory-systems-course


Difficulties in Optimizing Memory Controllers

1. The controller needs to obey all DRAM timing constraints to
provide correct functionality

2. the controller must intelligently prioritize DRAM commands
from different memory requests to optimize system
performance.

Current memory controllers use relatively simple policies to
schedule DRAM accesses.

Marco Zeller 2018-10-24 49



Machine Learning and its Limits

Study of computer programs and algorithms that learn about their
environment and improve automatically with experience
TODO: PICTURE FUNCTION (on blackboard ?)

Marco Zeller 2018-10-24 50



Applicability of RL to DRAM Scheduling

To apply RL to DRAM scheduling an agent is defined.
The agent interacts with its environment over a discrete set of time
steps.
At each step, the agent senses the current state of its environment,
and executes an action.
This results in a change in the state of the environment (which the
agent can sense in the next time step), and produces an immediate
reward.
The agent’s goal is to maximize its long-term cumulative reward by
learning an optimal policy that maps states to actions

Marco Zeller 2018-10-24 51



Design Paradigms for the Agent

Temporal credit assignment The agent needs to learn how to
assign credit and blame to past actions for each
observed immediate reward

Exploration vs. exploitation Too little exploration of the environment
can cause the agent to commit to sub-optimal policies
early on, whereas excessive exploration can result in
long periods during which the agent executes
sub-optimal actions to explore its environment.

Generalization it is exceedingly improbable for the agent to
experience the same state more than once over its
lifetime

Marco Zeller 2018-10-24 52



State-Attributes (not simplified)

1. Number of reads (load/store misses) in the transaction queue.
2. Number of writes (writebacks) in the transaction queue.
3. Number of reads in the transaction queue that are load misses.
4. If the command is related to a load miss by core C in the

transaction queue, the load’s order in C’s dynamic instruction
stream relative to other loads by C with requests in the
transaction queue.

5. Number of writes in the transaction queue waiting for the row
referenced by the command under consideration.

6. Number of load misses in the transaction queue waiting for the
row referenced by the command under consideration which
have the oldest sequence number among all load misses in the
transaction queue from their respective cores.

2018-10-24 53



Experimental Setup

Presented by Marco Zeller 2018-10-24 54



Experimental Setup

Presented by Marco Zeller 2018-10-24 55



Experimental Setup

Presented by Marco Zeller 2018-10-24 56



Transaction Queue and L2 Miss Penalties

Presented by Marco Zeller 2018-10-24 57



More than two Cores?

Presented by Marco Zeller 2018-10-24 58



Speedup compared to Fair Queuing

Presented by Marco Zeller 2018-10-24 59



Finding the right Paramters

Presented by Marco Zeller 2018-10-24 60


