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Moore‘s Law
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Accelerators to the rescue

= Sacrifice flexibility and target specific application domains
= Performance (Throughput)

= Energy Efficiency (Throughput / Watt)
= Again limited by transistor size at some point
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Outline

= Problem & Goal

= Multi Phase Analysis

= New Metric CSR (Chip Specialization
Return)

= Physical Transistor Model

= Case Studies on specific domains and
accelerators

= Accelerator Wall
= Strengths
= \Weaknesses
= Discussion
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Problem

= CMOS scaling is ending

= Throughput and Efficiency through accelerators

= Gains (partly / entirely) rely on CMOS scaling

= Slowdown and eventual breakdown in performance scaling

= Accelerator Wall
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Goal

= Analyzing the limits of chip specialization

= Analyze application scaling behavior on various accelerator architectures

= Build projection models for performance metrics for fixed application domain
= Predict upper performance limit for fixed application domain

= Understand the origins of these imposed upper bounds
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Analyzing the software stack

Traditional Accelerator-Centric Examples
Application ]—{Computation Domain (Fixed)]<: Graph Processing

Deep Learning

= Are accelerators driven by
Specialization or ?

Algorithm

i Ob.ective funCtiOnS: Prog. Language Algorithm <: BFS, PageRank
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CSR (Chip Specialization Return)

. CSR ,,HOW mUCh d|d the Chlp‘S B Gain(Alg,ka,Plt,EngyPhy)
compute capabilities improve undera ~ CRAFwk Plt Eng) = Gain(Phy)
fixed physical budget?”

= Gain(Alg, Fwk, PIt, Eng, Phy)
= Effective Gain (measured by execution)
= Coupled to objective function

= Gain(Phy)
= Theoretical gain by physical scaling
= CMOS Potential
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CSR - Gain Metric

= Objective: Abstract chip specialization Gain(Ale. Fwk. Plt. Ene. Ph
. . CSR(Alg,Fwk,Plt,Eng) = ain(Alg, w Plt, Eng, Phy)
= Relative metric Gain(Phy)

= CSR > 1: Overall gains rely on specialization
stack optimizations
= CSR < 1: Gains rely on CMOS
= Higher CSR: advances in Alg, Fwk, Plt, Eng
= How to compute?
= Gain(Alg,Fwk,PIt,Eng,Phy) = simple
= Gain(Phy) - 777
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Computing Gain(Phy)

= Extract or predict # of active transistors on chip on new CMOS technology
= Assume (almost) perfect scaling of application
= Scaling factor of # active trans. yields Gain(Phy)

= Why?
= Fixed application domain

= Accelerators used for applications with high levels of parallelism
= Active transistors
= Worst case analysis
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Physical Transistor Model — Transistor Budget
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Physical Transistor Model — Active Transistor Budget

100

-~ 10nm-5nm

ors[10°] x Freq [GHZ]
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« TDP limits active transistor count

« Smaller nodes more affected by TDP constraints
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Physical Transistor Model — CMOS Potential

<50W mmm 50W-200W s 200W-8Q#
Throughput (OP/f

=
A

=
o
o
16nm
10nm
7nm
5nm

=
o

A5nm
28nm

Relative(x)

25mm? 50mm? 100mm? 200mm? /0mm? 800mm?

Limiting TDP caps (especially for larger chips)

For Seminar in Computer Architecture by Prof. Onur Mutlu — Supervised by Rahul Bera, Lois Orosa Manuel Burger | 12.12.2019 | 15



Physical Transistor Model — CMOS Potential

Energy Efficiency (OP/s/W,
sEEEE
ER~TTT n 1
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25mm? 50mm? 100mm? 200mm? 408mm? 800mm?

Energy efficiency favours smaller chips (due to

static power consumption)
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Case Study 1 — GPUs for graphics

GTAV FHD
= Throughput (Gain) Improved: 5.07x

= Specialization Contribution: 1.27x ox . Throughput
= CMOS Scaling Contribution: 4x 2 . =@ Chip Specialization | | X5O7
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Case Study 2 — ASIC video decoders
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Diminishing CSR

Gain relying on CMOS potential and scaling
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Case Study 3 — FPGA for conv. neural nets

AlexNet

[ 28nm  EEE 20nm —V— Chip Specialization Return 8 I 28nm EEE 20nm —~ Chip Specialization Return

GOPS/J[X]

Newer domains show better CSR values

Stagnating CSR
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Case Study 4 — Bitcoin mining across platforms

n H|gh CSR boost on platform change GHashes/(secondsxmm?) GHashes/Joule
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Figure 9: Bitcoin Mining Capabilities of CPU, GPU, FPGA
and ASIC chips (vs. AMD Athlon 64 CPU Miner).
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Case Studies - Summary

= Specialization returns and computation maturity
= |ntroduction of a new specialization platform

= Confined computations

= Dependence on CMOS scaling
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The Accelerator Wall

320
100

8
10

Mining GHash/)
1

Mining GHash/s/mm?
0.2
&

The Accelerator Wall
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The Accelerator Wall

= Performance scaling linear with CMOS
= Energy efficiency to scale sub-linear (logarithmic)
= Predictions easier for more mature domains (algorithmically stable)
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Conclusion

= Developped metric for analysis

= Modelled potential physical gains by CMOS scaling

= Characterize influence of CMOS scaling on well-known application domains
= Show the accelerator wall based on the developed models and concepts

= So the goals have been achieved.....have they?

Questions?
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Strengths

= High level of abstraction
= CSR metric

= Analysis across a wide dataset incorporating many different use cases,
maturities and platforms

= Developped general procedure and tools, which could be applied to many other
application domains

= |nsights into accelerator development over time
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Weaknesses

Performance Analysis Rat Holes

Specific
Details

Performance Configuration
Criteria

Source: P. Jarupunphol, “Using Buddhist Insights to Analyse the Cause of System Project Failures,” Ph.D. Thesis, 2013
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Weaknesses

= Transistor model based on CPU/GPU data
= Unreliable data sources

= Evaluation not too focused
= Many domains
= Many configurations

= High dependency on fitting curves (many implicit assumptions)
= Assuming perfect scaling: Amdahl’s law
= Difficult to start reading

= |ntroduction of many new and own concepts
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Related Work

Conservation Cores:
Reducing the Energy of Mature Computations

Ganesh Venkatesh Jack Sampson Nathan Goulding Saturnino Garcia
Vladyslav Bryksin Jose Lugo-Martinez Steven Swanson Michael Bedford Taylor
Department of Computer Science & Engineering
University of California, San Diego
{gvenkatesh,jsampson,ngouldin,sat,vbryksin,jlugomar,swanson,mbtaylor } @cs.ucsd.edu

= ASPLOS (2010, 2017)

Moonwalk: NRE Optimization in ASIC Clouds
or, accelerators will use old silicon

Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor
UC San Diego

= Dark Silicon limits number of usable transistors
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Related Works

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric
Pushing the Limits of Accelerator Efficiency While

Retaining Programmability _ , ,
Mingyu Gaof  Christina DelimitrouY  Dimin Niu}% ~ Krishna T. Malladi®  Hongzhong Zheng?

. . . . . ané 1stos akis
Tony Nowatzki*  Vinay Gangadhar  Karthikeyan Sankaralingam*  Greg Wrightt Bob Brennan Christos Kozyrakis

‘University of Wisconsin-Madison ‘Qualcomm Stanford University! ~ Samsung Semiconductor Inc.58  Cornell University! ~ EPFL?

{tjn,vinay,karu} @cs.wisc.edu gwright@qti.qualcomm.com {mgao12, cdel, kozyraki}@stanford.edu
{dimin.niu, k.tej, hz.zheng, bob.brennan}@ssi.samsung.com

= HPCAand ISCA 2016

= Various studies about improving accelerator reusability and optimization
techniques
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Related Work

Analyzing Behavior Specialized Acceleration

Tony Nowatzki  Karthikeyan Sankaralingam
University of Wisconsin - Madison
{tjn,karu}@cs.wisc.edu

= ASPLOS 2016
= Accelerator modelling using dependence graphs
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Related Work

DOI:10.1145/1941487.1941507

Energy efficiency is the new fundamental
limiter of processor performance,
way beyond numbers of processors.

BY SHEKHAR BORKAR AND ANDREW A. CHIEN

The Future
of
Microprocessors

= Article in. Communications of the ACM, 2011

= Decouple chip and application performance to estimate impact of
microarchitecture on general-purpose microprocessors
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Related Work — cited by

Towards General Purpose Acceleration by Exploiting Common
Data-Dependence Forms

Vidushi Dadu  Jian Weng  Sihao Liu  Tony Nowatzki
vidushi.dadu,jian.weng,sihao, tjn@cs.ucla.edu
University of California, Los Angeles

= MICRO 2019
* |ncrease performance by accelerating common data dependency patterns
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Discussion

= What's your impression on the CSR metric?
= Do you think it is a useful and sensible abstraction?
= Can you think of a better way to abstract gains of different optimization layers
= What's your impression on the active transistor count model and physical gain
model?
= Realistic, what is missing?
= Can we just assume perfect scaling for abstraction purposes?
= Can we use machine learning to predict performance metrics and transistor counts?

= Do you think we will hit an accelerator wall?
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Discussion

= How far will the use of accelerators go in the future?
= Will GP-CPUs go away?
= What implications for system architecture does high accelerator usage bring?

= The paper shows an accelerator wall for a few specific application domains,
what other important domains can you think of?
= Do the paper's assumptions hold there as well?

= Large ML chip in introductory lecture, what's the paper’'s answer to chip size
scaling?

= What about completely new physical technologies
= Compound Semiconductors

= Quantum Computing
= Graphene and Carbon Nanotubes
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Thank you for your attention!

Moodle: http://bit.ly/accelerator-wall
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Related Work

= D.W. Wall, “Limits of instruction-level parallelism,” in Intl. Conf. on Arch. Support
for Programming Languages & Operating Systems (ASPLOS), pp. 176—-188,

ACM, 1991.

= Limits of exploiting instruction level parallelism

Manuel Burger | 12.12.2019 | 39
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Related Work

= A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, et al., “MCM-
GPU: Multi-Chip-Module GPUs for Continued Performance Scalability,” in
Intl. Symp. on Computer Architecture (ISCA), pp. 320-332, ACM, 2017

= Scale beyond monolithic GPUs performance by putting several GPU cores
modules on a single die
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Chip Specialization — Dataflow and Tight Bounds

Simplification Heterogeneity  Partitioning
MEM Time O(|V|-log(max|W Ss|)) ®(D§ O(D - log(max|W S;|)
" Space O(max|WS;|) O(|E|) O (max|WSs|)
Time O(|E]) O(D) O(D)
COMM. ¢ ace o(|v|) o(|E)) ® (max|WS;|)
comp Time O(|E|) O(|Vin|) ®(D)
~ Space O(1) @2Vl . |[Vour|) O (max|W S;|)

Table II: Summary of Time and Space Complexity Limits for
Chip Specialization Concepts, in Terms of DFG Definitions.
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Physical Transistor Model — Device Scaling
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= Device Scaling Models from [20-22]
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Chip Specialization - Limitations

= CMOS scaling ends at 5Snm
* Fixed # active transistors
= But we can still be smart right?! (Alg, Fwk, PIt, Eng)

= Alg, Fwk: Fixed application domain
= Limited solution space
= Often already quite exhausted

= PIt, Eng: Limited ways to map problems to silicon
= Upper bounds given by abstracted dataflow
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Chip Specialization — Concepts

Simplification Partitioning ogeneity
Simple DDR3 chips, interfaces, M in Hybrid memory for input
Memory o and physical memory space 24 storing NN layer weights o and intermediary results
. .. Concurrent FIFOs for weights -defin
Communication @ © and systolic array data 15/ Interface for chip I/O
. Mu]t1p1y+add computaﬁon units \11_1_1/ Non-linear activation unit (e.g., ReLU)
Computation o < with small precision (8-bit integers) Parallel multiply+add paths o and systolic array data reuse

TWConcepts. Examples From a TPU ASIC Chip.

= Simplification: reduce functionality and simplify datapaths
= Partitioning: exploit parallelism
= Heterogenity: tailor to application patterns
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Chip Specialization — Dataflow and Tight Bounds

= Simplification: reduce functionality and simplify datapaths
= Partitioning: exploit parallelism
= Heterogenity: tailor to application patterns

= Model application in dataflow graph
= Couple # transistors and dataflow graph
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Chip Specialization — Dataflow and Tight Bounds

= Space, Simplified:
= O(1) all mathematical ops, constant number of gates
= Time, Simplified:
= O(E) computation limited by number of edges in dataflow
= Space, Heterogenity:
= O(2Vinl x |V, ) lookup table
= Time, Heterogenity:
= O(|Vi,]) read in input

= Chip specialization is coupled to the # transistors
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Chip Specialization — Dataflow and Tight Bounds

Simplification Heterogeneity  Partitioning
MEM Time O(|V|-log(max|W Ss|)) ®(D§ O(D - log(max|W S;|)
" Space O(max|WS;|) O(|E|) O (max|WSs|)
Time O(|E]) O(D) O(D)
COMM. ¢ ace o(|v|) o(|E)) ® (max|WS;|)
comp Time O(|E|) O(|Vin|) ®(D)
~ Space O(1) @2Vl . |[Vour|) O (max|W S;|)

Table II: Summary of Time and Space Complexity Limits for
Chip Specialization Concepts, in Terms of DFG Definitions.
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Chip Specialization — Accelerator Gains Bounds

(thM E“ﬁi# (4 Solution
= Aladdin: modelling tool for accelerator design EJ'[ H @ ® '_JHL_
= Runtime vs. Power Efficiency FHH " | H
= Importance of CMOS technology _ﬂ ;

Figure 12: Visualization of a 3D Stencil Computation
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Figure 13: 3D Stencil Power, Timing, and CMOS Sweep.
Arrows Highlight Optimal Point and Gain Sources.
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Chip Specialization — Verdict

= Chip specialization performance gains are eventually coupled to CMOS scaling
= Dataflow abstraction

= Common optimization techniques

= Couples Gain(PIt) and Gain(Eng) to CMOS scaling
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Case Studies — GPUs for graphics

= Bad CSR on architecture changes
= Better CSR within same architecture
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Case Studies — FPGA for conv. neural nets
AlexNet VGG-16
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(a) Performance Scaling of FPGAs and Respective CMOS Nodes: Absolute and Chip Specialization Return
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(c) Energy Efficiency Scaling of FPGAs and Respective CMOS Nodes: Absolute and Chip Specialization Return
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Related Works

= A. Fuchs and D. Wentzlaff, “Scaling datacenter accelerators with compute-

reuse architectures,” in Intl. Symp. on Computer Architecture (ISCA), pp. 353—
366, 2018.

* |ntensive use of pre-computed results with new low energy non-volatile memory
solutions in accelerators (memoization)
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Intel Roadmap for CMOS architectures

RELENTLESS INNOVATION CONTINUES

Transistor efficiency
(Perf / W)

2x scaling

Planned intra-node optimizations
4x Reduction in design rules

EUV

Next-gen Foveros & EMIB packaging
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| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |

cinted 1511 INVESTOR MEETING

https://www.heise.de/newsticker/meldung/Intel-plant-7-nm-Chips-ab-2021-4418708.html
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Intel Roadmap for CMOS architectures

INMOORE WE TRUST

Development Definition Pathfinding Research

1 -
e‘Q"o

o""’&

9‘0" A
>0
‘,\ Q’b "\ QQ ’;,\ Q’b o"Qﬁ'\ \
s 4 4 & .
Backport ckport Backport Backport

opportunity opportunity opportunity opportunity

\@/ @/—@/—@/—» @

OPTIMAL COST- PERFORMAN

EUV New New New New
Features Features Features Features
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https://www.anandtech.com/show/15217/intels-manufacturing-roadmap-from-2019-to-2029
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