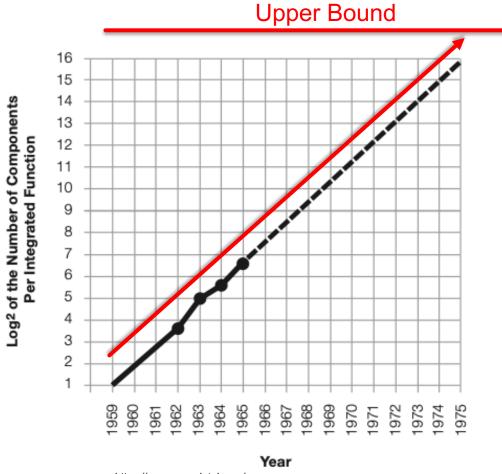


The Accelerator Wall: Limits of Chip Specialization (HPCA19)


Adi Fuchs, David Wentzlaff - Princeton University (Department of Electrical Engineering)

Presented by Manuel Burger, ETH Zürich

Moore's Law

- Cramming more components onto integrated circuits – Gordon E. Moore, 1965
- Final Transistor Size 5nm

https://newsroom.intel.com/wpcontent/uploads/sites/11/2018/05/moores-law-electronics.pdf

Accelerators to the rescue

- Sacrifice flexibility and target specific application domains
 - Performance (Throughput)
 - Energy Efficiency (Throughput / Watt)
- Again limited by transistor size at some point

Outline

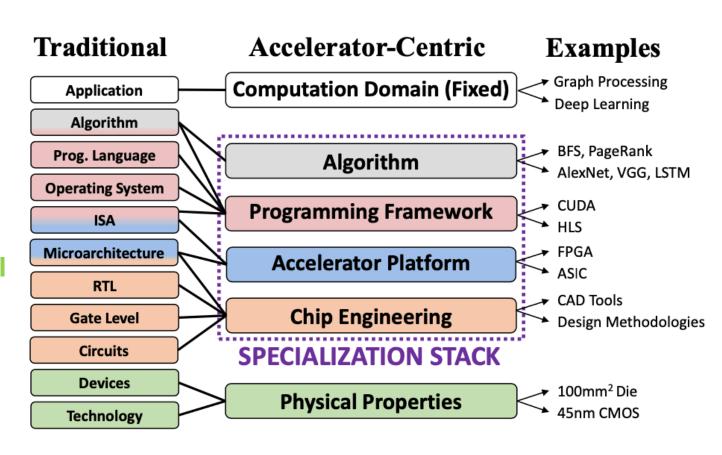
- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion

Problem

- CMOS scaling is ending
- Throughput and Efficiency through accelerators
- Gains (partly / entirely) rely on CMOS scaling
- Slowdown and eventual breakdown in performance scaling
- Accelerator Wall

Goal

- Analyzing the limits of chip specialization
- Analyze application scaling behavior on various accelerator architectures
- Build projection models for performance metrics for fixed application domain
- Predict upper performance limit for fixed application domain
- Understand the origins of these imposed upper bounds


Outline

- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion

Analyzing the software stack

- Are accelerators driven by Specialization or Transistors?
- Objective functions:
 - Throughput
 - Energy Efficiency
- Goal: isolate contribution of pyhsical layer

CSR (Chip Specialization Return)

 CSR: "How much did the chip's compute capabilities improve under a fixed physical budget?"

$$CSR(Alg, Fwk, Plt, Eng) = \frac{Gain(Alg, Fwk, Plt, Eng, Phy)}{Gain(Phy)}$$

- Gain(Alg, Fwk, Plt, Eng, Phy)
 - Effective Gain (measured by execution)
 - Coupled to objective function
- Gain(Phy)
 - Theoretical gain by physical scaling
 - CMOS Potential

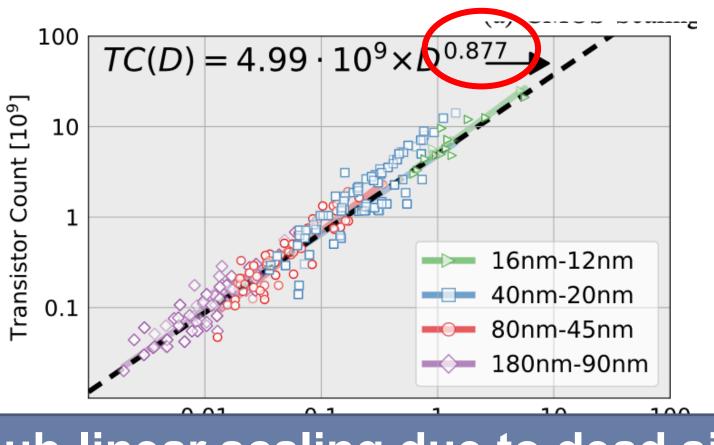
CSR – Gain Metric

- Objective: Abstract chip specialization
- Relative metric
- CSR > 1: Overall gains rely on specialization stack optimizations
- CSR < 1: Gains rely on CMOS
- Higher CSR: advances in Alg, Fwk, Plt, Eng
- How to compute?
 - Gain(Alg,Fwk,Plt,Eng,Phy) → simple
 - Gain(Phy) → ???

$$CSR(Alg, Fwk, Plt, Eng) = \frac{Gain(Alg, Fwk, Plt, Eng, Phy)}{Gain(Phy)}$$

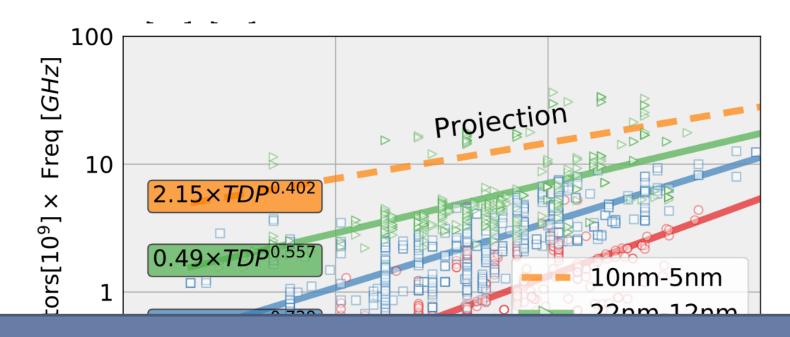
Computing Gain(Phy)

- Extract or predict # of active transistors on chip on new CMOS technology
- Assume (almost) perfect scaling of application
- Scaling factor of # active trans. yields Gain(Phy)
- Why?
 - Fixed application domain
 - Accelerators used for applications with high levels of parallelism
 - Active transistors
 - Worst case analysis

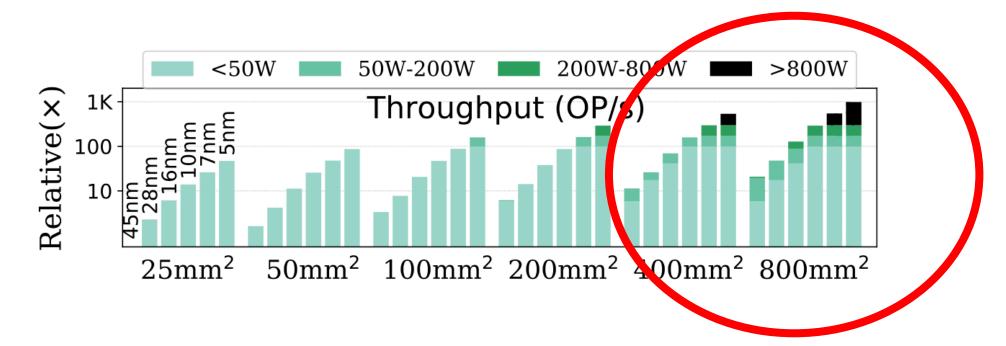


Outline

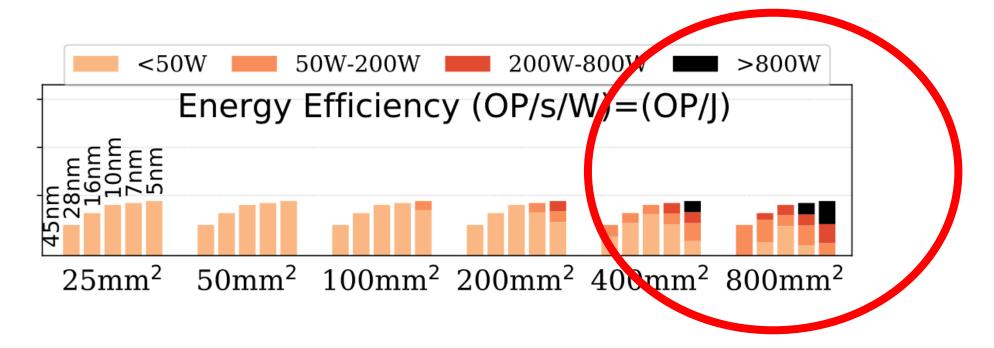
- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion


Physical Transistor Model – Transistor Budget

Sub-linear scaling due to dead silicon


Physical Transistor Model – Active Transistor Budget

- TDP limits active transistor count
- Smaller nodes more affected by TDP constraints

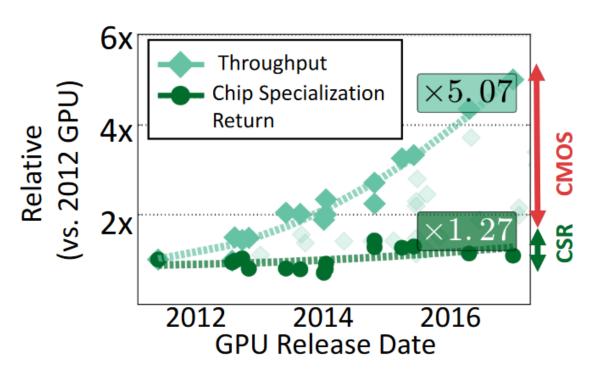

Physical Transistor Model – CMOS Potential

Limiting TDP caps (especially for larger chips)

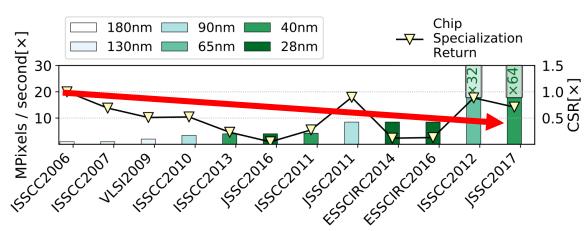
Physical Transistor Model – CMOS Potential

Energy efficiency favours smaller chips (due to static power consumption)

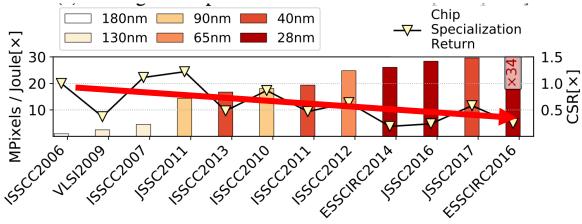
Outline


- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion

Case Study 1 – GPUs for graphics

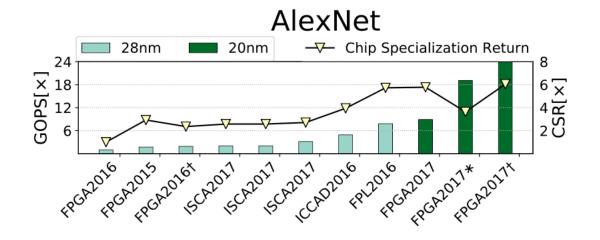

- Throughput (Gain) Improved: 5.07x
- Specialization Contribution: <u>1.27x</u>
- CMOS Scaling Contribution: 4x
- Similarly for energy efficiency

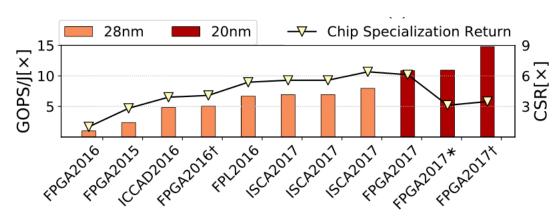
GTA V FHD



Case Study 2 – ASIC video decoders

(a) Scaling of Performance and Chip Specialization Return




(c) Scaling of Energy Efficiency and Chip Specialization Return

- Diminishing CSR
- Gain relying on CMOS potential and scaling

Case Study 3 – FPGA for conv. neural nets

- Newer domains show better CSR values
- Stagnating CSR

Case Study 4 – Bitcoin mining across platforms

- High CSR boost on platform change
- Almost constant CSR within platform
- **Decline in CSR on ASICs** shows heavy reliance on CMOS scaling
- Extremely specific computation, small optimization space

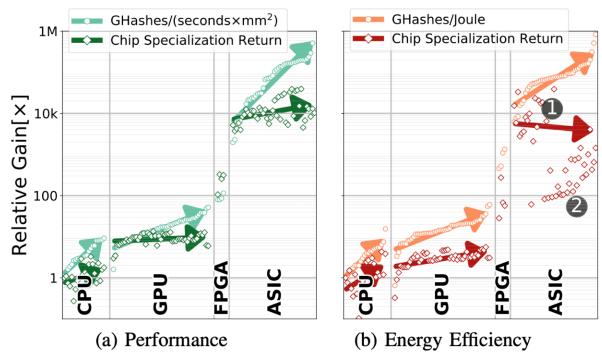
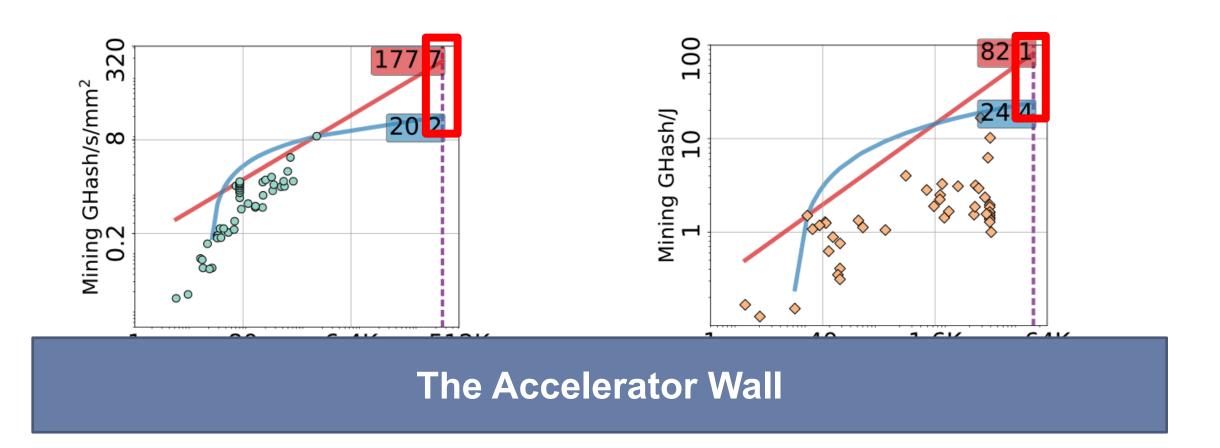


Figure 9: Bitcoin Mining Capabilities of CPU, GPU, FPGA and ASIC chips (vs. AMD Athlon 64 CPU Miner).

Case Studies - Summary

- Specialization returns and computation maturity
- Introduction of a new specialization platform
- Confined computations
- Dependence on CMOS scaling



Outline

- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Chip Specialization Upper Bounds
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion

The Accelerator Wall

The Accelerator Wall

- Performance scaling linear with CMOS
- Energy efficiency to scale sub-linear (logarithmic)
- Predictions easier for more mature domains (algorithmically stable)

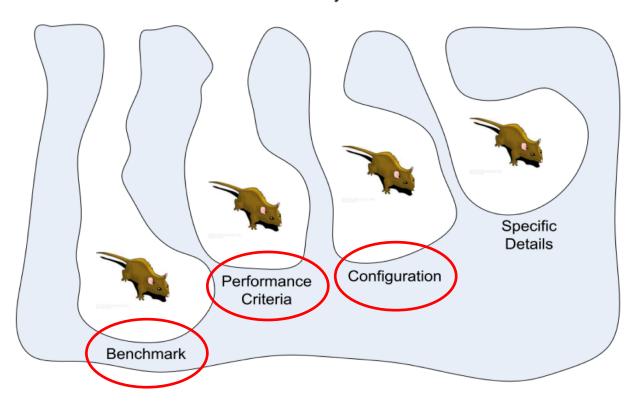
Conclusion

- Developped metric for analysis
- Modelled potential physical gains by CMOS scaling
- Characterize influence of CMOS scaling on well-known application domains
- Show the accelerator wall based on the developed models and concepts
- So the goals have been achieved.....have they?

Questions?

Outline

- Problem & Goal
- Multi Phase Analysis
 - New Metric CSR (Chip Specialization Return)
 - Physical Transistor Model
 - Chip Specialization Upper Bounds
 - Case Studies on specific domains and accelerators
 - Accelerator Wall
- Strengths
- Weaknesses
- Discussion


Strengths

- High level of abstraction
 - CSR metric
- Analysis across a wide dataset incorporating many different use cases, maturities and platforms
- Developped general procedure and tools, which could be applied to many other application domains
- Insights into accelerator development over time

Weaknesses

Performance Analysis Rat Holes

Source: P. Jarupunphol, "Using Buddhist Insights to Analyse the Cause of System Project Failures," Ph.D. Thesis, 2013

Weaknesses

- Transistor model based on CPU/GPU data
- Unreliable data sources
- Evaluation not too focused
 - Many domains
 - Many configurations
- High dependency on fitting curves (many implicit assumptions)
- Assuming perfect scaling: Amdahl's law
- Difficult to start reading
 - Introduction of many new and own concepts

Related Work

Conservation Cores: Reducing the Energy of Mature Computations

Ganesh Venkatesh Vladyslav Bryksin

Jack Sampson Jose Lugo-Martinez Nathan Goulding Steven Swanson Saturnino Garcia Michael Bedford Taylor

Department of Computer Science & Engineering University of California, San Diego

{gvenkatesh,jsampson,ngouldin,sat,vbryksin,jlugomar,swanson,mbtaylor}@cs.ucsd.edu

Moonwalk: NRE Optimization in ASIC Clouds or, accelerators will use old silicon

Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor
UC San Diego

- ASPLOS (2010, 2017)
- Dark Silicon limits number of usable transistors

Related Works

Pushing the Limits of Accelerator Efficiency While Retaining Programmability

Tony Nowatzki* Vinay Gangadhar* Karthikeyan Sankaralingam* Greg Wright†

*University of Wisconsin-Madison †Qualcomm {tjn,vinay,karu}@cs.wisc.edu gwright@qti.qualcomm.com

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric

Mingyu Gao[†] Christina Delimitrou[†] Dimin Niu[§] Krishna T. Malladi[§] Hongzhong Zheng[§]
Bob Brennan[§] Christos Kozyrakis^{†‡}

Stanford University[†] Samsung Semiconductor Inc.[§] Cornell University[¶] EPFL[‡]

{mgao12, cdel, kozyraki}@stanford.edu
{dimin.niu, k.tej, hz.zheng, bob.brennan}@ssi.samsung.com

- HPCA and ISCA 2016
- Various studies about improving accelerator reusability and optimization techniques

Related Work

Analyzing Behavior Specialized Acceleration

Tony Nowatzki Karthikeyan Sankaralingam
University of Wisconsin - Madison
{tjn,karu}@cs.wisc.edu

- ASPLOS 2016
- Accelerator modelling using dependence graphs

Related Work

- Article in: Communications of the ACM, 2011
- Decouple chip and application performance to estimate impact of microarchitecture on general-purpose microprocessors

Related Work – cited by

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms

Vidushi Dadu Jian Weng Sihao Liu Tony Nowatzki vidushi.dadu,jian.weng,sihao,tjn@cs.ucla.edu University of California, Los Angeles

- **MICRO 2019**
- Increase performance by accelerating common data dependency patterns

Discussion

- What's your impression on the CSR metric?
 - Do you think it is a useful and sensible abstraction?
 - Can you think of a better way to abstract gains of different optimization layers
- What's your impression on the active transistor count model and physical gain model?
 - Realistic, what is missing?
 - Can we just assume perfect scaling for abstraction purposes?
 - Can we use machine learning to predict performance metrics and transistor counts?
- Do you think we will hit an accelerator wall?

Discussion

- How far will the use of accelerators go in the future?
 - Will GP-CPUs go away?
 - What implications for system architecture does high accelerator usage bring?
- The paper shows an accelerator wall for a few specific application domains, what other important domains can you think of?
 - Do the paper's assumptions hold there as well?
- Large ML chip in introductory lecture, what's the paper's answer to chip size scaling?
- What about completely new physical technologies
 - Compound Semiconductors
 - Quantum Computing
 - Graphene and Carbon Nanotubes

Thank you for your attention!

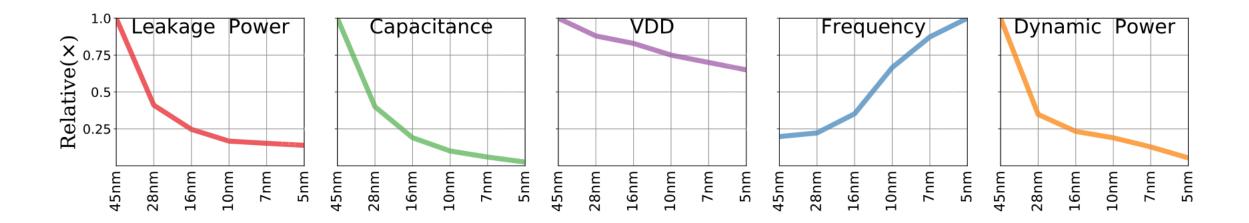
Moodle: http://bit.ly/accelerator-wall

Related Work

- D. W. Wall, "Limits of instruction-level parallelism," in Intl. Conf. on Arch. Support for Programming Languages & Operating Systems (ASPLOS), pp. 176–188, ACM, 1991.
- Limits of exploiting instruction level parallelism

Related Work

- A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, et al., "MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability," in Intl. Symp. on Computer Architecture (ISCA), pp. 320–332, ACM, 2017
- Scale beyond monolithic GPUs performance by putting several GPU cores modules on a single die



	Simplification	Heterogeneity	Partitioning
MEM. Time	$\Theta(V \cdot log(max WS_s))$	$\Theta(D)$	$\Theta(D \cdot log(max WS_s))$
Space	$\Theta(max WS_s)$	$\Theta(E)$	$\Theta(max WS_s)$
COMM Time	$\Theta(E)$	$\Theta(D)$	$\Theta(D)$
COMM. Space	$\Theta(V)$	$\Theta(E)$	$\Theta(max WS_s)$
COMP. Time	$\Theta(E)$	$\Theta(V_{IN})$	$\Theta(D)$
Space	$\Theta(1)$	$\Theta(2^{ V_{IN} }\cdot V_{OUT})$	$\Theta(max WS_s)$

Table II: Summary of Time and Space Complexity Limits for Chip Specialization Concepts, in Terms of DFG Definitions.

Physical Transistor Model – Device Scaling

Device Scaling Models from [20-22]

Chip Specialization - Limitations

- CMOS scaling ends at 5nm
- Fixed # active transistors
- But we can still be smart right?! (Alg, Fwk, Plt, Eng)
 - Alg, Fwk: Fixed application domain
 - Limited solution space
 - Often already quite exhausted
 - Plt, Eng: Limited ways to map problems to silicon
 - Upper bounds given by abstracted dataflow

Chip Specialization – Concepts

		Simplification		Partitioning		Heterogeneity
Memory	0	Simple DDR3 chips, interfaces, and physical memory space	2	Memory module banking storing NN layer weights	8	Hybrid memory for input and intermediary results
Communication	4	Simple FIFO communication	6	Concurrent FIFOs for weights and systolic array data	6	Software-defined DMA Interface for chip I/O
Computation	0(Multiply+add computation units with small precision (8-bit integers)	8	Parallel multiply+add paths	9	Non-linear activation unit (e.g., ReLU) and systolic array data reuse

Table I: Chip Specialization Concepts. Examples From a TPU ASIC Chip.

- Simplification: reduce functionality and simplify datapaths
- Partitioning: exploit parallelism
- Heterogenity: tailor to application patterns

- Simplification: reduce functionality and simplify datapaths
- Partitioning: exploit parallelism
- Heterogenity: tailor to application patterns

- Model application in dataflow graph
- Couple # transistors and dataflow graph

- Space, Simplified:
 - Θ(1) all mathematical ops, constant number of gates
- Time, Simplified:
 - Θ(E) computation limited by number of edges in dataflow
- Space, Heterogenity:
 - $\Theta(2^{|Vin|} \times |V_{out}|)$ lookup table
- Time, Heterogenity:
 - Θ(|V_{in}|) read in input

Chip specialization is coupled to the # transistors

	Simplification	Heterogeneity	Partitioning
MEM. Time	$\Theta(V \cdot log(max WS_s))$	$\Theta(D)$	$\Theta(D \cdot log(max WS_s))$
Space	$\Theta(max WS_s)$	$\Theta(E)$	$\Theta(max WS_s)$
COMM Time	$\Theta(E)$	$\Theta(D)$	$\Theta(D)$
COMM. Space	$\Theta(V)$	$\Theta(E)$	$\Theta(max WS_s)$
COMP. Time	$\Theta(E)$	$\Theta(V_{IN})$	$\Theta(D)$
Space	$\Theta(1)$	$\Theta(2^{ V_{IN} }\cdot V_{OUT})$	$\Theta(max WS_s)$

Table II: Summary of Time and Space Complexity Limits for Chip Specialization Concepts, in Terms of DFG Definitions.

Chip Specialization – Accelerator Gains Bounds

- Aladdin: modelling tool for accelerator design
- Runtime vs. Power Efficiency
- Importance of CMOS technology

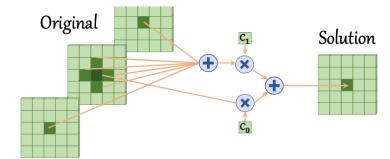


Figure 12: Visualization of a 3D Stencil Computation

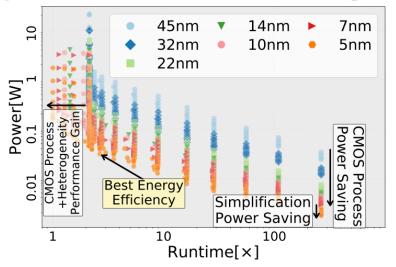


Figure 13: 3D Stencil Power, Timing, and CMOS Sweep. Arrows Highlight Optimal Point and Gain Sources.

Chip Specialization – Verdict

- Chip specialization performance gains are eventually coupled to CMOS scaling
 - Dataflow abstraction
 - Common optimization techniques
- Couples Gain(Plt) and Gain(Eng) to CMOS scaling

Case Studies – GPUs for graphics

- Bad CSR on architecture changes
- Better CSR within same architecture

(b) Chip Specialization Return

Figure 6: Architecture + CMOS Scaling: Throughput

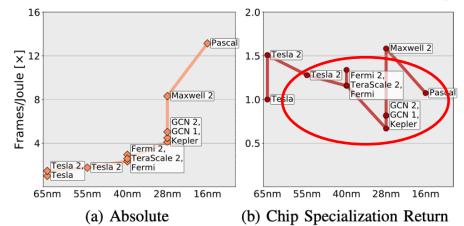
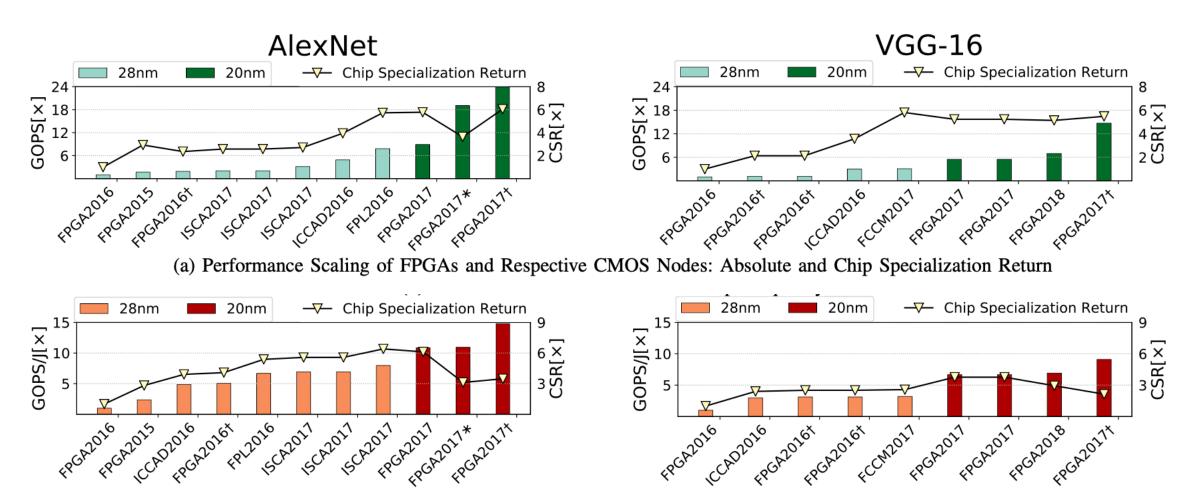
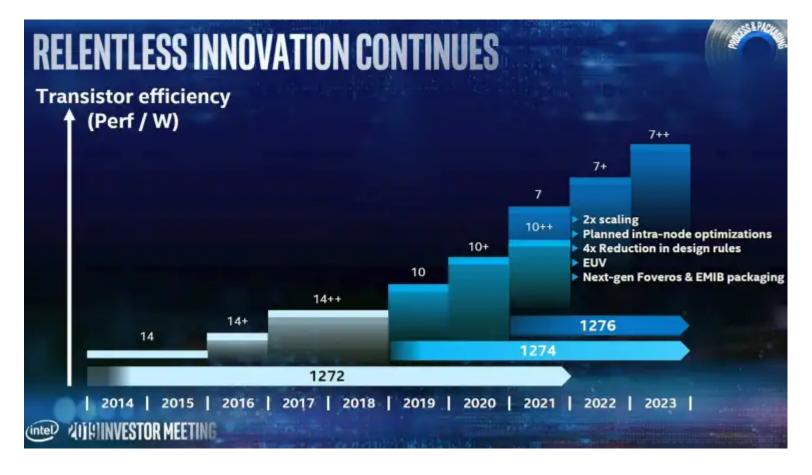



Figure 7: Architecture + CMOS Scaling: Energy Efficiency

Case Studies – FPGA for conv. neural nets

(c) Energy Efficiency Scaling of FPGAs and Respective CMOS Nodes: Absolute and Chip Specialization Return



Related Works

- A. Fuchs and D. Wentzlaff, "Scaling datacenter accelerators with computer reuse architectures," in *Intl. Symp. on Computer Architecture (ISCA)*, pp. 353–366, 2018.
- Intensive use of pre-computed results with new low energy non-volatile memory solutions in accelerators (memoization)

Intel Roadmap for CMOS architectures

https://www.heise.de/newsticker/meldung/Intel-plant-7-nm-Chips-ab-2021-4418708.html

Intel Roadmap for CMOS architectures

https://www.anandtech.com/show/15217/intels-manufacturing-roadmap-from-2019-to-2029