

RK SILICON...

...AND THE END
OF MULTICORE SCALING

Appears in the Proceedings of the 38th International Symposium on Computer Architecture (ISCA '11)

Dark Silicon and the End of Multicore Scaling

Hadi Esmaeilzadeh[†] Emily Blem[‡] Renée St. Amant[§] Karthikeyan Sankaralingam[‡] Doug Burger[°]

[†]University of Washington [‡]University of Wisconsin-Madison

[§]The University of Texas at Austin [°]Microsoft Research

hadianeh@cs.washington.edu blem@cs.wisc.edu stamant@cs.utexas.edu karu@cs.wisc.edu dburger@microsoft.com

EXECUTIVE SUMMARY

Problem: Dennard- and multicore-scaling don't work anymore

Transistor underutilisation is underrated

Goal: Predict how technology-scaling will affect transistor-underutilisation

Method: Model future chip-development

Calculate future transistor underutilisation

Result: Power- & multicore-scaling won't sustain Moore's Law due to transistor underutilisation

OUTLINE

 $\prod_{\mathbf{o}}$

THE PROBLEM/ NOVELTY

THE MODEL

THE RESULTS

THE GOOD / THE IMPROVABLE TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

THE PROBLEM THE NOVELTY

Dennard scaling:

- Broke down ~2006
- Solution: Multicore-scaling
 - Exploit parallelism by adding more cores
 - Keeping Moore's Law alive

Source: Benchmarking Adiabatic Quantum Optimization for Complex Network Analysis

We aren't getting the performance-gains, we'd expect – but why?

Dark Silicon – [...]the amount of circuitry of an integrated circuit that cannot be powered-on at the nominal operating voltage for a given **thermal design power** (TDP) constraint.

- Wikipedia

Dark Silicon – Transistors which suffer from underutilization

ANANALOGY

- Weather-forecast for performance-scaling
- Based on models

Explain why the weather is getting rought

OUTLINE

THE PROBLEM/ NOVELTY
THE MODEL

THE RESULTS

 $\boxed{ } \boxed{ }$

THE GOOD / THE IMPROVABLE TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

THEMODEL

Scaling-Models

This model represents a best-case scenario!

Predictions

Optimal # of Cores

Multicore Speed-Up

% of Dark Silicon

DEVICE MODEL

COREMODEL

Power vs. Performance

Why take this one... Core Power (W) 10 ...if I could use less power AND Have more Performance? Intel Nehalem (45nm) 30 35 40 Performance (SPECmark)

Area vs. Performance

SPEC =
Standard
Pervormance
Evaluation
Corporation

DEVICE X CORE

MULTICORE MODEL

- Chip Organisations: CPU vs. GPU
- 4 microarchitectural features:

Asymmetric Multicore

DEVICE X CORE X MULTICORE

1. All points along the area/performance Pareto-frontier are considered

- 2. Adding cores
- 3. Speed-up is computed
- 4. As the area or power-limit is hit, we obtain the optimal Number of cores and its speed-up
- 5. Dark Silicon = ChipArea UsedArea

OUTLINE

THE PROBLEM/ NOVELTY
THE MODEL

THE RESULTS

THE GOOD / THE IMPROVABLE TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

THEMODEL

Scaling-Models

Predictions

Optimal # of Cores

Multicore Speed-Up

% of Dark Silicon

RESULTS: # OF CORES

- Using Optimistic ITRS scaling
- Tested with PARSEC
- No explosive growth in corecount
- The GPU-core-count low due to PARSEC
- For raytracing-application:
 - Transistor-size: 8 nm
 - Core count: 4864

RESULTS: SPEED-UP

- Normalized speed-up, to
 - quadcore
 - Nehalem
 - 45 nm
- Speed-up in geomean saturates

RESULTS: % OF DARK SILICON

- At 8nm:
 - CPU > 50%
 - GPU > 90% !!!
- GPU Raytracing
 - 8 nm
 - Dark silicon: 8 %

A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps

Nandita Vijaykumar Gennady Pekhimenko Adwait Jog^{\dagger} Abhishek Bhowmick Rachata Ausavarungnirun Chita Das † Mahmut Kandemir † Todd C. Mowry Onur Mutlu

Carnegie Mellon University † Pennsylvania State University

{nandita,abhowmick,rachata,onur}@cmu.edu
{gpekhime,tcm}@cs.cmu.edu {adwait,das,kandemir}@cse.psu.edu

THE SOURCE OF DARK SILICON

SpeedUp vs. Power

SpeedUp vs. Parallelism

MOOREVS. REALITY

ITRS scaling

Dark Silicon

Conservative scaling

Dark Silicon

CONCLUSION

Problem:	Dennard- and multicore-scaling don't work anymore
	Dark Silicon is taking over
Goal:	Find the source of dark silicon
	Predict the development of core-numbers, performance and dark silicon
Method:	Model future chip-designs
	Calculate future dark silicon from model
Result:	Predictions toward's % of dark silicon, # of cores and speedUp
	Power and multicore-scaling is limited by dark silicon
	Limited parallelism is the primary source of dark silicon

OUTLINE

brack

THE PROBLEM/ NOVELTY
THE MODEL
THE RESULTS

 \prod

THE GOOD / THE IMPROVABLE
TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

THE GOOD

- Big impact on the industry
- Shows where the problems are and how they will develop
- Covers various architectures and applications
- Well structured paper

THEIMPROVABLE

- Number-of-cores for GPU is a somehow sparse prediction
- ARM was not considered in this model
- Calculation of Dark Silicon percentage is explained in only one sentence
- Is Dark Silicon the sole enemy of Moore's Law?
- More information to replicate test-environment
- How would it behave in an multi-application-environment?

OUTLINE

brack

THE PROBLEM/ NOVELTY

THE MODEL

THE RESULTS

П.

THE GOOD / THE IMPROVABLE
TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

TAKE-AWAY'S

- Moore's and Dennard's Law will no longer apply
- Multicore-scaling might not be the answer for everything
- Limited parallelism is at least as problematic as powerconstraints

BEYOND THE PAPER: 4 HORSEMEN

THE SHRINKING

THE DIMMED

THE SPECIALICED

THE EX-MACHINA

«Simply remove» Dark Silicon physically Underclock or only use in bursts

Build specialized cores, and only turn on the ones we need

Beyond Silicon

Graphics & content: http://darksilicon.org/

OUTLINE

 $\int \int_{0}^{\infty}$

THE PROBLEM/NOVELTY
THE MODEL
THE RESULTS

 \mathbb{II}_{\circ}

THE GOOD / THE IMPROVABLE TAKE-AWAYS / THE FUTURE

QUESTIONS / DISCUSSION

DISCUSSION

- What new technologies come to mind, that might prevent the end of performance-scaling?
- Philosophical: What if we hit the end? What might be the consequences?
- What could Neuro-Science tell us?

Dark Silicon and the End of Multicore Scaling

Hadi Esmaeilzadeh[†] Emily Blem[‡] Renée St. Amant[§] Karthikeyan Sankaralingam[‡] Doug Burger[°]

[†]University of Washington [‡]University of Wisconsin-Madison

[§]The University of Texas at Austin [°]Microsoft Research

hadianeh@cs.washington.edu blem@cs.wisc.edu stamant@cs.utexas.edu karu@cs.wisc.edu dburger@microsoft.com

Thank you and Happy Halloween!

...and Thank you Giray and Geraldo :D

Beyond MOSFET's

Silicon-in-insulator	Vertical replacement gate FET	GaN MOSFET	Neuro-Informatics
----------------------	-------------------------------	------------	-------------------

Silicon-on-"nothing"	Ballistic FET	Superconductive FET	And many more!

Double-gate FETs	Tunneling FET	Quantum
		O. O. O

FinFETs	CN-FET	Graphene

Vertical FETs MESFET Nano-Tubes

Source: http://darksilicon.org/horsemen/horsemen_slides.pdf

PARALLELTOTHEHUMAN BRAIN

- 100 trillion synapses
- Embody an existence proof of highly parallel, mostly dark operation

Source: http://darksilicon.org

AMDAHL'S LAW

Source Graphics and Data: Presented Paper

CORE MODEL - (DITCHED)

Pollacks Rule:

$$\Delta Performance \cong \sqrt{\Delta Area}$$

Power is no longer only constrained by area

- Empirical Data from 152 Processors
- Deriving Pareto-Frontiers

WORK-AROUNDS

Figure 7: Sensitivity studies of L2 size and memory bandwidth using symmetric topology at 45 nm