The DirtyBlock Index

Vivek Seshadri

AbhishekBhowmick OnurMutluh O EEI I EBD "8 ' E
Kozucl h 41 AA #8 -1 xOU

Originally presented at ISCA 2014
Todayos pr e8Baeneggar . Bo.

d
SAFARI] CarnegieMellon (intel.

Executive Summary

Key problem: Inefficient dirty bit queries for on -chip caches
Inhibit several cache optimizations

Key idea: Store dirty bits in an independent DRAM row-
oriented structure

Key goal: Enable efficient implementation of three cache
optimizations proposed by previous work

Key results: DBI with all three optimizations enabled
outperforms the best previous mechanism by 6% while
reducing cache area cost and memory energy consumption

2

Background, Problem & Goal

Current Approach: Metadata in Tag Ent

Simple and scaleable

Cache Tag Store

Tag Entry

Is This Really The Best Organization?

Potential queries:

v Is block b valid

Cache Tag Store Y All dirty blocks of a
DRAM row

Tag Entry Mismatch between

metadata organization
and query

Focus of this Paper: The Dirty Bit

o
\ What if we didnbot

dirty bit in the tag store?

Why the dirty bit?

A Current approach inhibits several cache optimizations due
to impractical dirty bit queries

Goals

Allow for efficient dirty bit queries
¢ Quickly and efficiently identify spatially co-located dirty blocks

Enable efficient implementation of (previous) cache
optimizations

¢ DRAMaware aggressive writeback

¢ Cachelookup bypass

¢ Heterogeneous ECC

Also enable other optimizations and follow-up research

Novelty and ldeas

Key Mechanism

L e

Independent structure
for the dirty bits

Dirty - Block

Index Cache Tag Store

Key Properties of the DBI

DBI only tracks necessary bits for the query
¢ Smaller size of DBI allows for low latency dirty bit query

DBI allows for tailored organization of dirty bits
¢ Key ldea: Organize in a DRAM roworiented manner

DBI can be used to limit the number of the dirty blocks
present in cache

10

Mechanism of the Didiglock
Index

DBI Entry

DBI

_-~|| DBI Entry S

~
/, \\
’ N
/, \\
’ L

Dirty Bit Vector

\)\ J
| |

log, # rows 1 bit per block in
in DRAM one DRAM row

12

DBl Semantics

A block in the cache is dirty if and only if the DBI contains
¢ avalid entry for the DRAM row that contains the block and

¢ the bit corresponding to the block in the bit vector for that
DBI entry is set.

Note: DBI changes physical as well as logical organization
of the dirty bit

13

DB| Examples

A block in the cache is dirty if and only if the DBI contains
¢ avalid entry for the DRAM row that contains the block and

¢ the bit corresponding to the block in the bit vector for that
DBI entry is set.

All blocks in row 3 are

1 23 0jJ]o o 1 clean or not in cache
1 4 1]0 1 0O Block 1 in row 4 is in the
0 3 0 1 0 O cache and dirty

Block 1 in row 23 is either
clean or not in cache

14

Optimizations Enabled by the
DB

DRAM-awareAggressive Writeback

[C. J. L e e -aware ladt-level catHe Rradldack: Reducing write-caused
Il nterference I n memory systems. 0]

Key insight: Filling the write buffer with blocks from the
same DRAM row leadsto a more efficient writeback phase

Optimization: Proactively write back dirty blocks of a DRAM
row together

Key challenge: Requires multiple tag store lookups resulting
In significant tag store contention

16

Aggressive WritebatkWB)B)

Check DBI for evicted DBI
block address 4 DBI Entry

Single &
query Check if dirty

Ilﬂlﬂ

Only look up tag store for blocks that are dirty

Issue writebacks for
evicted block and all
dirty blocks in the
same DRAM row

17

Cachd_ookup Bypass

[G. Memiket al . , NnJust Say No: Benefits of
HPCA, 2003.]

Key insight: Bypassing the cache for accesses that are likely
to miss reduces latency and energy consumption of the
access

Optimization: Predict whether an access will hit or miss in
the cache

Key challenge: Cannot bypass the cache for dirty blocks
¢ Single dirty bit query currently requires full tag store lookup

18

Cachd.ookup BypasgJ(B)B)

(Any) Miss / [SkipCache, PACT 2012]

Predictor
Read

Access no

——> _____

Cache Tag
, Store

Block in
Block Is yes Cache?

dirty?

DB

nol
¥ Forward to

next level

Decreased latency/power consumption per dirty bit
guery allows for simple and/or aggressive predictors

19

Heterogeneous Err@orrectingCodes

[G. L 1 +«Cacheil AnGvEl low power scheme to protect large-capacity L2
caches from transient faults.o I n | AS,

Key insight: Only dirty blocks require error correction while
clean blocks require only error detection

Optimization: Use simple EDC for all blocks and stronger
ECC only for the dirty blocks

Key challenge: Previously proposed implementations
require significant changes to the error correction logic

20

DBl with Heterogeneous ECC

Cache Tag Cache Tag

Store Store

ECC

Only store ECC when necessary without significant
additional complexity

21

Key Results:
Methodology and Evaluation

Methodology

A In-house x86 Out-of-order multicore simulator
A SPEC CPU2006, STREAM

Processor 1-8 cores, 2.67 GHz, Single issue, Out-of-order, 128 entry instruction window

Private, 32KB, 2-way set-associative, tag store latency = 2 cycles, data store latency = 2 cycles, parallel tag and

L1 Cache data lookup, LRU replacement policy, number of MSHRs = 32

L2 Cache Private, 256KB, 8-way set-associative, tag store latency = 12 cycles, data store latency = 14 cycles, parallel tag and
data lookup, LRU replacement policy

L3 Cache Shared, 2MB/core. 1/2/4/8-core, 16/32/32/32-way set-associative] tag store latency = 10/12/13/14 cycles, data store
latency = 24/29/31/33 cycles, serial tag and data lookup, LRU replacement policy

DBI Size (cx) = 1/4, granularity = 64, associativity = 16, latency = 4 cycles, LRW replacement policy (Section 4.3)

DRAM Controller Open row, row interleaving, FR-FCFS scheduling policy [45, 60], 64-entry write buffer, drain when full policy [27]
DRAM and Bus DDR3-1066 MHz [20]] 1 channel, 1 rank, 8 banks, 8B-wide data bus, burst length = 8, 8KB row buffer

Table 1: Main configuration parameters used for our evaluation

A All optimizations applied to the last level cache
A Single- and multi-core evaluation
A 102 2-core, 259 4-core and 120 8-core workloads

23

Evaluated Mechanisms

Baseline: Baselinecache using LRU replacement policy
TA-DIP: Thread-aware dynamic insertion policy
DAWB: Employs DRAMaware aggressive writeback

VWQ: Uses set of blocks around LRU position as a virtual
write queue/buffer to produce proactive writebacks

DBI: DBI applied to last level cache with TA-DIP insertion

policy
¢ DBI, DBI+AWB, DBI+CLB, DBI+AWB+CLB

24

Single Core Performance

L .
< 10 1] Edta-pip [0 DAWB vwQ bl [DB+AWB [DBI+CLE [DBI+AWB+CLB

Pk a— i 1) el
DBI+AWB+CLB outperforms TA-DIP by about 13%

S Similar to best previous mechanisms(DAWB/VWQ)

gmean

25

Significant Reduction of Tag Lookups

pip Opaws EvwQ M DBl [DBl:AWB [JDB:CLB M DBI+AWB+CLB |

Emy=oT S

AWSB significantly reduces number of tag-store lookups
compared to DAWB/VWQ

CLB significantly reduces number oftag-store lookups
compared to TA-DIP (14% on average)
- J

1ZH3 08

gmean

26

Increased Read and Write Row Hit Rat:

ElTa-pip O pAawB ElvwQ B DpBI [DBI+AWB [DBI+CLB [l DBI+AWB+CLB

All DBI mechanismsachieve a higher write row hit rate of
around 80% (compared to 35% with TA -DIP)

All DBI mechanismsachieve a higher read row hit rate
compared to TA-DIP

gmean

27

Improved System Performance

[] DBI+AWRB [1DBI+CLB I DBI:AWB+CLB

E-] Baseline [] TA-DIP DAWB B DBI

-

o

DBI+AWB+CLB outperforms the baseline by 31%

~

DBI+AWB+CLB outperforms the best pervious mechanism

by 6%

J

.. NN . e NN g NN
05_....no| ke | P 1l 1] Bl .
. . NN .. NN .. NN
o+ o JEIE ..
.. NN L NN LR NN
s+ o JE ..
. NN . NN .. NN

2-Core 4-Core 8-Core

28

Reduced Chip Area/Power Consumptic

DBI with heterogeneous ECC reduces thetag store cost by
44% and overall cache cost by 7% (in terms of number of
bits) compared to a cache with ECC for all blocks

Slight increase of power consumption of cache

14% decrease of overall memory energy consumption

29

Results Summary

System performance: DBI+AWB+CLB outperforms the
baseline by 31% and the best previous mechanism by 6%

Chip area: DBl augmented with heterogeneous ECC
reduces overall cache area by 7%

Power consumption: DBI reduces overall memory energy
consumption of a single-core system by 14%

30

Summary

31

Summary

Key problem: Inefficient dirty bit queries for on -chip caches
Inhibit several cache optimizations

Key idea: Store dirty bits in an independent DRAM row-
oriented structure

Key goal: Enable efficient implementation of three cache
optimizations proposed by previous work

Key results: DBI with all three optimizations enabled
outperforms the best previous mechanism by 6% while
reducing cache area cost and memory energy consumption

32

Questions

Critique

Strengths

Novel yet simple key mechanism

Increase in performance over best previous mechanism
while reducing cache area and energy consumption

Enables optimization techniques (three shown in the paper
but potentially more)

Solid simulation-based single- and multi-core evaluation of
performance, area and power consumption

Flexible key idea that can be applied to many situations

Well written and structured paper
¢ Talks about design choices of the DBI
¢ Mentions other possible applications of the DBI

35

Weaknesses

Requires substantial hardware changes
No measurements of DBI accesses/contention

Decreased size of set of dirty blocks can force premature
writebacks

No substantial effect on single-core performance
Dirty bit organization tailored to fit these optimizations
Only simulation-based evaluation

Multi-core evaluation is quite short

Graphs can be hard to read and exact numbers are
sometimes missing

36

Thoughts and Ideas

Extensions and Follelp Work

Enhance different caches with the DBI
¢ For example GPU caches

Mechanism to predict last writes to cache blocks
¢ Eliminate premature writebacks

Optimizations enabled by DBI (from the paper)
Load Balancing Memory Accesses

Fast Lookup for Dirty Status

Cache Flushing

DMA

Metadata about dirty blocks

O 0O 0O 0O O

38

DBI+AWB applied to GPU Cache

Johnathan Alsop et al.,
"Optimizing GPU Cache Policies for Ml Workloads"
In IISWC, 2019.

Evaluates GPU caching policies for different machine
Intelligence workloads in tightly coupled CPU-GPU systems

Applies the DBI+AWB mechanism to the GPU L2 Cache

DBI counteracts DRAM row locality overhead of caching
offering higher DRAM row hit rates than best static
configuration

39

Predictind-astWrite Blocks

Z. Wang et al.,

"Improving writeback efficiency with decoupled last -write
prediction”
In ISCA, 2012.

Low overhead last-write predictor for LLC

Schedules predicted lastwrite blocks early and shows
significant performance yield

Predictor could be incorporated into the DBI replacement
policy to avoid premature writebacks of blocks

40

DMA Optimizations

Vivek Seshadri et al.,

"RowClone : Fast and Energy -EfficientIn -DRAM Bulk Data
Copy and Initialization"
In MICRO, 2013.

Vivek Seshadri et al.,

"Ambit: In -Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology"
In MICRO, 2018.

Performs In-DRAM operations per rowand therefore needs
to flush dirty data from cache

DBI can speed up flushing

41

Other Related Work

G. H. Loh and M. D. Hill,

"Efficiently enabling conventional block sizes for very large
die -stacked DRAM caches. "

In MICRO, 2011.

S. M. Khan et al.,
"Improving multi -core performance using mixed -cell cache
architecture."

In HPCA, 20135.

Mainak Chaudhuri, Jayesh Gaur, Sreenivassubramoney,
"Bandwidth -Aware Last -Level Caching: Efficiently
Coordinating Off -Chip Read and Write Bandwidth"

In ICCD, 2019.

42

Takeaways

Key Takeaways

New way of tracking dirty bits : The Dirty -Block Index

The DBI simultaneously enables efficient implementation of
three cache optimizations using a single structure

Good potential for follow-up research

¢ Apply the DBI to other caches

¢ Apply the key idea to other pieces of metadata
¢ Other optimizations enabled by the DBI

44

Open Discussion

Discussion Starters

How relevant is this solution in 2020 (paper was published
In 2014) and how important is this topic today?

Do you see a possible application of the DBI in the
mechanism proposed by the paper you presented?

Is the DBI a practical solution?
Where else could a DBFHlike structure be applied?

What do you think are the main drawbacks of the DBI?
What are the most interesting benefits?

46

Backup Slides

Cache Coherence Protocols

_ Shared
Exclusive (unmodified)

Invalid

B Owned (shared
Modified @modified) @
I I

|
\4

\ \

Use a single bit stored in the DBI to distinguish
between the two states for each pair

48

DBI Operation

Look up tag Cache
Read store for hit/miss Eviction
________ - - ==
Access | Check DBI
| and write
Cache Tag I back if dirty
Store
Insert/update
writeback Plock in ag store Dirty - Block
eques
’ I Index
|
|
| I | Write back
I I 1 all dirty
L _ _ _ Insert/update metadatain DBl | | blocks from
v entry
DBI
Eviction

49

DBl Key Parameters

DBI size
¢ # of blocks tracked by all the entries in the DBI

¢ Trade-off between size of write working set and area, latency
and power consumption of the DBI

DBI granularity
¢ # of blocks tracked by a single DBI entry

¢ Trade-off between locality extraction and size of write working
set

DBI replacement policy
¢ Replacement policy used for DBI eviction

50

Sensitivity to DBI Design Parameters

Granularity 16 32 64 128

a=111 10% 12% 12% 13%
a=12 10% 12% 13% 14%

Size

Table 6: Sensitivity of AWB to DBI size and granularity. Values
show the average IPC improvement of DBI+AWB compared to
baseline for our single-core system.

51

Detailed Results: Singlere

52

