
The Dirty-Block Index

1

Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons†, Michael A.
Kozuch†, Todd C. Mowry

Vivek Seshadri

Originally presented at ISCA 2014
Today’s presenter: Boris Bernegger

†

Executive Summary

◼ Key problem: Inefficient dirty bit queries for on-chip caches
inhibit several cache optimizations

◼ Key idea: Store dirty bits in an independent DRAM row-
oriented structure

◼ Key goal: Enable efficient implementation of three cache
optimizations proposed by previous work

◼ Key results: DBI with all three optimizations enabled
outperforms the best previous mechanism by 6% while
reducing cache area cost and memory energy consumption

2

Background, Problem & Goal

3

Current Approach: Metadata in Tag Entry

Cache Tag Store

Tag Entry

V D Tag ECC

Simple and scaleable

4

Is This Really The Best Organization?

Cache Tag Store

Tag Entry

V D Tag ECC

Potential queries:

Is block b valid

All dirty blocks of a

DRAM row

Mismatch between

metadata organization

and query

5

Focus of this Paper: The Dirty Bit

V D Tag ECC

What if we didn’t store the

dirty bit in the tag store?

6

◼ Current approach inhibits several cache optimizations due
to impractical dirty bit queries

Why the dirty bit?

Goals

◼ Allow for efficient dirty bit queries

❑ Quickly and efficiently identify spatially co-located dirty blocks

◼ Enable efficient implementation of (previous) cache
optimizations

❑ DRAM-aware aggressive writeback

❑ Cache-lookup bypass

❑ Heterogeneous ECC

◼ Also enable other optimizations and follow-up research

7

Novelty and Ideas

8

Key Mechanism

V D Tag ECC

Independent structure

for the dirty bits

Cache Tag Store

Tag Entry

V Tag ECC

Dirty-Block
Index

9

Key Properties of the DBI

◼ DBI only tracks necessary bits for the query

❑ Smaller size of DBI allows for low latency dirty bit query

◼ DBI allows for tailored organization of dirty bits

❑ Key Idea: Organize in a DRAM row-oriented manner

◼ DBI can be used to limit the number of the dirty blocks
present in cache

10

Mechanism of the Dirty-Block

Index

11

DBI Entry

V Row Tag Dirty Bit Vector

DBI

DBI Entry

log2 # rows

in DRAM
1 bit per block in

one DRAM row

12

DBI Semantics

◼ A block in the cache is dirty if and only if the DBI contains

❑ a valid entry for the DRAM row that contains the block and

❑ the bit corresponding to the block in the bit vector for that
DBI entry is set.

◼ Note: DBI changes physical as well as logical organization
of the dirty bit

13

DBI Examples

Valid Row Tag D D D D

1 23 0 0 0 1

1 4 1 0 1 0

0 3 0 1 0 0

◼ A block in the cache is dirty if and only if the DBI contains

❑ a valid entry for the DRAM row that contains the block and

❑ the bit corresponding to the block in the bit vector for that
DBI entry is set.

◼ All blocks in row 3 are
clean or not in cache

◼ Block 1 in row 4 is in the
cache and dirty

◼ Block 1 in row 23 is either
clean or not in cache

14

Optimizations Enabled by the

DBI

15

DRAM-aware Aggressive Writeback

◼ Key insight: Filling the write buffer with blocks from the
same DRAM row leads to a more efficient writeback phase

◼ Optimization: Proactively write back dirty blocks of a DRAM
row together

◼ Key challenge: Requires multiple tag store lookups resulting
in significant tag store contention

16

[C. J. Lee et al., “DRAM-aware last-level cache writeback: Reducing write-caused

interference in memory systems.”]

Aggressive Writeback (AWB)

1 Row Tag 1

DBI

DBI Entry

1 0 1

Only look up tag store for blocks that are dirty

Check DBI for evicted

block address

Issue writebacks for

evicted block and all

dirty blocks in the

same DRAM row

Check if dirty

Aggressive Writeback (AWB)

17

Single

query

Cache-Lookup Bypass

◼ Key insight: Bypassing the cache for accesses that are likely
to miss reduces latency and energy consumption of the
access

◼ Optimization: Predict whether an access will hit or miss in
the cache

◼ Key challenge: Cannot bypass the cache for dirty blocks

❑ Single dirty bit query currently requires full tag store lookup

18

[G. Memik et al., “Just Say No: Benefits of early cache miss determination.” In

HPCA, 2003.]

Cache-Lookup Bypass (CLB)Cache-Lookup Bypass (CLB)

Cache Tag
Store

Block in
Cache?Block is

dirty?

Miss in
cache?

Read

Access

(Any) Miss

Predictor

DBI

no

no

yes

yes

Forward to

next level

Decreased latency/power consumption per dirty bit

query allows for simple and/or aggressive predictors

19

[SkipCache, PACT 2012]

Heterogeneous Error-Correcting-Codes

◼ Key insight: Only dirty blocks require error correction while
clean blocks require only error detection

◼ Optimization: Use simple EDC for all blocks and stronger
ECC only for the dirty blocks

◼ Key challenge: Previously proposed implementations
require significant changes to the error correction logic

20

[G. Liu, “ECC-Cache: A novel low power scheme to protect large-capacity L2

caches from transient faults.” In IAS, 2009.]

DBI with Heterogeneous ECC

Cache Tag
Store

DBI

Only store ECC when necessary without significant

additional complexity

ECC

Cache Tag
Store

EDC ECC

21

Key Results:

Methodology and Evaluation

22

Methodology

◼ In-house x86 Out-of-order multicore simulator

◼ SPEC CPU2006, STREAM

◼ All optimizations applied to the last level cache

◼ Single- and multi-core evaluation

◼ 102 2-core, 259 4-core and 120 8-core workloads

23

Evaluated Mechanisms

◼ Baseline: Baseline cache using LRU replacement policy

◼ TA-DIP: Thread-aware dynamic insertion policy

◼ DAWB: Employs DRAM-aware aggressive writeback

◼ VWQ: Uses set of blocks around LRU position as a virtual
write queue/buffer to produce proactive writebacks

◼ DBI: DBI applied to last level cache with TA-DIP insertion
policy

❑ DBI, DBI+AWB, DBI+CLB, DBI+AWB+CLB

24

Single Core Performance

25

13%

◼ DBI+AWB+CLB outperforms TA-DIP by about 13%

◼ Similar to best previous mechanisms (DAWB/VWQ)

Significant Reduction of Tag Lookups

26

◼ AWB significantly reduces number of tag-store lookups
compared to DAWB/VWQ

◼ CLB significantly reduces number of tag-store lookups
compared to TA-DIP (14% on average)

Increased Read and Write Row Hit Rate

27

◼ All DBI mechanisms achieve a higher write row hit rate of
around 80% (compared to 35% with TA-DIP)

◼ All DBI mechanisms achieve a higher read row hit rate
compared to TA-DIP

Improved System Performance

28

◼ DBI+AWB+CLB outperforms the baseline by 31%

◼ DBI+AWB+CLB outperforms the best pervious mechanism
by 6%

Reduced Chip Area/Power Consumption

◼ DBI with heterogeneous ECC reduces the tag store cost by
44% and overall cache cost by 7% (in terms of number of
bits) compared to a cache with ECC for all blocks

◼ Slight increase of power consumption of cache

◼ 14% decrease of overall memory energy consumption

29

Results Summary

◼ System performance: DBI+AWB+CLB outperforms the
baseline by 31% and the best previous mechanism by 6%

◼ Chip area: DBI augmented with heterogeneous ECC
reduces overall cache area by 7%

◼ Power consumption: DBI reduces overall memory energy
consumption of a single-core system by 14%

30

Summary

31

Summary

◼ Key problem: Inefficient dirty bit queries for on-chip caches
inhibit several cache optimizations

◼ Key idea: Store dirty bits in an independent DRAM row-
oriented structure

◼ Key goal: Enable efficient implementation of three cache
optimizations proposed by previous work

◼ Key results: DBI with all three optimizations enabled
outperforms the best previous mechanism by 6% while
reducing cache area cost and memory energy consumption

32

Questions

33

Critique

34

Strengths

◼ Novel yet simple key mechanism

◼ Increase in performance over best previous mechanism
while reducing cache area and energy consumption

◼ Enables optimization techniques (three shown in the paper
but potentially more)

◼ Solid simulation-based single- and multi-core evaluation of
performance, area and power consumption

◼ Flexible key idea that can be applied to many situations

◼ Well written and structured paper

❑ Talks about design choices of the DBI

❑ Mentions other possible applications of the DBI

35

Weaknesses

◼ Requires substantial hardware changes

◼ No measurements of DBI accesses/contention

◼ Decreased size of set of dirty blocks can force premature
writebacks

◼ No substantial effect on single-core performance

◼ Dirty bit organization tailored to fit these optimizations

◼ Only simulation-based evaluation

◼ Multi-core evaluation is quite short

◼ Graphs can be hard to read and exact numbers are
sometimes missing

36

Thoughts and Ideas

37

Extensions and Follow-Up Work

◼ Enhance different caches with the DBI

❑ For example GPU caches

◼ Mechanism to predict last writes to cache blocks

❑ Eliminate premature writebacks

◼ Optimizations enabled by DBI (from the paper)

❑ Load Balancing Memory Accesses

❑ Fast Lookup for Dirty Status

❑ Cache Flushing

❑ DMA

❑ Metadata about dirty blocks
38

For example GPU caches

Mechanism to predict last writes to cache blocks

DMA

DBI+AWB applied to GPU Cache

◼ Johnathan Alsop et al.,
"Optimizing GPU Cache Policies for MI Workloads"
In IISWC, 2019.

◼ Evaluates GPU caching policies for different machine
intelligence workloads in tightly coupled CPU-GPU systems

◼ Applies the DBI+AWB mechanism to the GPU L2 Cache

◼ DBI counteracts DRAM row locality overhead of caching
offering higher DRAM row hit rates than best static
configuration

39

Predicting Last-Write Blocks

◼ Z. Wang et al.,
"Improving writeback efficiency with decoupled last-write
prediction"
In ISCA, 2012.

◼ Low overhead last-write predictor for LLC

◼ Schedules predicted last-write blocks early and shows
significant performance yield

◼ Predictor could be incorporated into the DBI replacement
policy to avoid premature writebacks of blocks

40

DMA Optimizations

◼ Vivek Seshadri et al.,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data
Copy and Initialization"
In MICRO, 2013.

◼ Vivek Seshadri et al.,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology"
In MICRO, 2018.

◼ Performs In-DRAM operations per row and therefore needs
to flush dirty data from cache

◼ DBI can speed up flushing

41

Other Related Work

◼ G. H. Loh and M. D. Hill,
"Efficiently enabling conventional block sizes for very large
die-stacked DRAM caches. "
In MICRO, 2011.

◼ S. M. Khan et al.,
"Improving multi-core performance using mixed-cell cache
architecture."
In HPCA, 2013.

◼ Mainak Chaudhuri, Jayesh Gaur, Sreenivas Subramoney,
"Bandwidth-Aware Last-Level Caching: Efficiently
Coordinating Off-Chip Read and Write Bandwidth"
In ICCD, 2019.

42

Takeaways

43

Key Takeaways

◼ New way of tracking dirty bits: The Dirty-Block Index

◼ The DBI simultaneously enables efficient implementation of
three cache optimizations using a single structure

◼ Good potential for follow-up research

❑ Apply the DBI to other caches

❑ Apply the key idea to other pieces of metadata

❑ Other optimizations enabled by the DBI

44

Open Discussion

45

Discussion Starters

◼ How relevant is this solution in 2020 (paper was published
in 2014) and how important is this topic today?

◼ Do you see a possible application of the DBI in the
mechanism proposed by the paper you presented?

◼ Is the DBI a practical solution?

◼ Where else could a DBI-like structure be applied?

◼ What do you think are the main drawbacks of the DBI?
What are the most interesting benefits?

46

Backup Slides

47

Cache Coherence Protocols

E/M S/O I

E

M

S

O I

Exclusive

Modified

Shared

(unmodified)

Owned (shared

modified)

Invalid

Use a single bit stored in the DBI to distinguish

between the two states for each pair

48

DBI Operation

Cache Tag
Store

Dirty-Block
Index

Look up tag

store for hit/miss

Insert/update

block in tag store

Insert/update metadata in DBI

Check DBI

and write

back if dirty

Write back

all dirty

blocks from

entry

Read

Access

Writeback

Request

Cache

Eviction

DBI

Eviction

49

DBI Key Parameters

◼ DBI size

❑ # of blocks tracked by all the entries in the DBI

❑ Trade-off between size of write working set and area, latency
and power consumption of the DBI

◼ DBI granularity

❑ # of blocks tracked by a single DBI entry

❑ Trade-off between locality extraction and size of write working
set

◼ DBI replacement policy

❑ Replacement policy used for DBI eviction

50

Sensitivity to DBI Design Parameters

51

Detailed Results: Single-Core

52

Detailed Results: Multi-Core

53

Detailed Results: Fairness

54

Detailed Results: Chip Area

55

Detailed Results: Power Analysis

56

Detailed Results: Sensitivity to Parameters

57

Background

Typical DRAM hierarchy:

• Up to two ranks

• Rank has 8 chips

• Chip has 8 banks

• Bank is split into sub-arrays

ComputeDRAM SEMINAR IN COMPUTER ARCHITECTURE 58

DRAM Sub-array

Columns connected by the bit-line

Rows connected by the word-line

Logical 1 at 𝑉𝑑𝑑

Logical 0 at 𝑉 = 0, (𝐺𝑁𝐷)

Charge of bit-lines in idle state Τ𝑉𝑑𝑑 2

Differential Sense Amplifier
◦ SA pulls Charge (of bit-line) up if 𝑉 > Τ𝑉𝑑𝑑 2

◦ SA pulls Charge (of bit-line) down if 𝑉 < Τ𝑉𝑑𝑑 2
Sense Amplifier/
Local Row Buffer

ComputeDRAM SEMINAR IN COMPUTER ARCHITECTURE 59

SA SA SA SA

Word-line

Bit-line

Accessing DRAM (I)
To access DRAM (read or write) the memory
controller issues three main commands:
1) ACTIVATE

2) READ/WRITE

3) PRECHARGE

1) ACTIVATE:
◦ Applies to row

◦ Activates word-line connecting it to the bit-line

◦ Sense amplifiers are enabled and amplify charge to
𝑉𝑑𝑑 or 𝐺𝑁𝐷

◦ Value of the cell is preserved
SA SA SA SA

ComputeDRAM SEMINAR IN COMPUTER ARCHITECTURE 60

Accessing DRAM (II)
2) READ/WRITE:
◦ Follows ACTIVATE

◦ Reading/writing process is based on
ACTIVATE and PRECHARGE commands

3) PRECHARGE:
◦ Applies to bank

◦ Closes currently (all) opened row(s)

◦ Pull bit-lines to Τ𝑉𝑑𝑑 2

SA SA SA SA

ComputeDRAM SEMINAR IN COMPUTER ARCHITECTURE 61

