
Drammer: Deterministic 

Rowhammer Attacks on Mobile 

Platforms
Victor van der Veen§ Yanick Fratantonio†          Martina Lindorfer †

Daniel Gruss ‡ Clémentine Maurice ‡     Giovanni Vigna †

Herbert Bos§ Kaveh Razavi§ Cristiano Giuffrida§

§ Vrije Universiteit Amsterdam† UC Santa Barbara
‡ Graz University of Technology

Presented at CCS’16, October 24–28, 2016, Vienna, Austria

Presented by Kevin Thommen

28/05/2020



Outline

◼ Background, Motivation & Goal

◼ The Attack - DRAMMER

❑ Preparation

❑ Implementing the Primitives on Mobile Devices

◼ Evaluation of Attack

◼ Mitigation Techniques

◼ Summary

◼ Critique

◼ Discussion

2



Executive Summary
◼ Motivation: Current Rowhammer exploits are mostly 

probabilistic and most studies only focus on x86. 

◼ Goal: Implement deterministic Rowhammer attack on ARM 
devices.

◼ Challenges: 

❑ Fast uncached memory access

❑ Put page table into Rowhammer exploitable memory

❑ Find aggressor rows

◼ Key Ideas: 

❑ Use Android’s DMA buffers to get uncached contiguous 
memory

❑ Use predictability of memory allocator to put a page table into 
exploitable memory

◼ Result: Many ARMv7 devices and one ARMv8 device have been 
successfully exploited using DRAMMER.

3



Background, Motivation 

& Goals

4



The Rowhammer Hardware Vulnerability

5



A Software-Induced Hardware Fault

◼ Repeatedly accessing (“hammering”) aggressor rows can 
cause bit flips in neighboring rows. The example above 
demonstrates a double-sided Rowhammer.

6

DRAM rows

Victim row11111111111111111111111111111111111

Aggressor row

Aggressor row



A Software-Induced Hardware Fault

◼ Repeatedly accessing (“hammering”) aggressor rows can 
cause bit flips in neighboring rows. The example above 
demonstrates a double-sided Rowhammer.

7

DRAM rows

Victim row1111111011111111011101111110111111

Aggressor row

Aggressor row



Motivation

◼ No previous study has been done on the impact of 
Rowhammer on ARM devices.

◼ All known techniques only target x86 architectures and 
cannot be readily translated to ARM.

◼ Prior to this paper it was unclear if the Rowhammer
vulnerability even occurs on ARM devices.

◼ Exploitation techniques are either probabilistic or rely on 
special memory management features.

◼ These probabilistic Rowhammer attacks offer weak 
reliability guarantees:

▪ No guarantee that victim object is actually placed in vulnerable 
physical memory location

▪ No reliable prediction of outcome of corruption the victim 
object.

8



Goals

◼ Show that deterministic Rowhammer exploitation using only 
commodity features on Android/ARM is possible.

◼ Evaluate effectiveness of DRAMMER.

9



DRAMMER - Preparation

10



Rowhammer possible on ARM?

◼ ARM memory controllers are slower than the ones used in 
x86.

◼ Is the memory controller too slow to trigger the 
Rowhammer vulnerability?

11



Rowhammer possible on ARM?

◼ Double-sided Rowhammer
on the same 5MB of 
physical memory with 
artificially increasing time 
in between two read 
operations. Performed on 
LG Nexus 5 device running 
Android 6.0.1.

◼ The attack was performed 
with full privileges.

◼ This shows that the 
Rowhammer vulnerability 
can be induced.

12



Threat Model

Following assumptions are made:

◼ We run an ARM-based device running Android 6.0.1 with:

❑ all updates installed

❑ all security measures activated

❑ and no special features enabled

◼ The attacker has control over an unprivileged Android App 
without any permissions.

◼ The attacker aims to perform a privilege escalation attack 
to acquire root privilege.

13



Rowhammer - The Three Exploitation Primitives

◼ P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

How are these primitives handled by currently known 
Rowhammer exploitation techniques?

14



Rowhammer - The Three Exploitation Primitives

◼ P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

How are these primitives handled by currently known 
Rowhammer exploitation techniques?

15



The Three Exploitation Primitives – P1

◼ P1. Fast uncached memory access. The ability to activate rows fast 
enough to trigger the Rowhammer bug while bypassing cache.

❑ CPU memory might not be fast enough and read instructions are 
masked out by multiple layers of cache.

◼ x86 techniques:

❑ Explicit cache flush using the clflush instruction.

❑ Repeatedly access addresses belonging to the same cache eviction 
set.

❑ Issue memory reads using non-temporal access instructions.

16

• The cache flush on Android is privileged.
• Using cache eviction sets is too slow to trigger vulnerability.
• ARM non-temporal instructions serve only as hints for CPU.



The Three Exploitation Primitives

◼ P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

17



The Three Exploitation Primitives – P2

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

❑ “Massaging” memory precisely enough to push the victim 
page to use the vulnerable cell to store security-sensitive data.

◼ x86 techniques:

❑ Spray memory with page tables, hoping for one of them to 
land in a vulnerable physical memory page.

❑ Memory deduplication

❑ MMU paravirtualization.

18

• Spraying memory is probabilistic and the other features 

are not enabled by default or don’t exist on stock Android.



The Three Exploitation Primitives

◼ P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

19



The Three Exploitation Primitives – P3

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

❑ Find virtual addresses that map to aggressor rows.

◼ x86 techniques:

❑ Access the pagemap interface file which contains complete 
information about the mapping of virtual to physical addresses

❑ Use huge virtual pages that are backed by physically 
contiguous physical pages.

20

• The pagemap is not available in userland.

• Huge virtual pages are not enabled by default.



DRAMMER – Implementing the 

Primitives on Mobile Devices

21



Attacks on Android

◼ How do we implement these three primitives on Android?

22

P1. Fast uncached memory access.

P2. Physical memory massaging. 

P3. Physical memory addressing. 



Support for P1 and P3

◼ To support efficient memory sharing between different 
hardware components, the OS provides direct memory 
access (DMA) memory management mechanisms.

◼ Android provides DMA Buffer Management APIs through its 
main memory manager called ION, giving userland apps 
access to uncached, physically contiguous memory.

23



Support for P1 and P3

◼ P1. Fast uncached memory access:

❑ Processing pipelines involving DMA buffers bypass the CPU 
and its caches.

◼ P3. Physical memory addressing:

❑ Most devices perform DMA operations to physically contiguous 
memory pages only, so the OS provides allocators that 
support this kind of memory.

24



P2. Physical Memory Massaging

◼ To deterministically land security-sensitive data in a 
vulnerable physical memory page following steps are taken:

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location

25



P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location

26



Determine DRAM chip’s row size

◼ ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

◼ Use a timing-based side channel:

27

Bank 1 Bank 2 Bank 3

Row size

Page 1

◼ Reading from same bank takes longer than reading from 
two different banks.

Page 2

Pages being accessed:

(1,2)



Determine DRAM chip’s row size

◼ ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

◼ Use a timing-based side channel:

28

Bank 1 Bank 2 Bank 3

Row size

Page 1

◼ Reading from same bank takes longer than reading from 
two different banks.

Page 3

Pages being accessed:

(1,3)



Determine DRAM chip’s row size

◼ ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

◼ Use a timing-based side channel:

29

Bank 1 Bank 2 Bank 3

Row size

Page 1

◼ Reading from same bank takes longer than reading from 
two different banks.

Page 4

Pages being accessed:

(1,4)



Determine DRAM chip’s row size

◼ Allows us to create heatmap representing time 
required to access a given pair of edges. Here the 
row size is 16 pages = 64KB. 

◼ The x-axis and y-axis describe the page table that’s 
being accessed. 

30



P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location

31



Memory Templating on ARM

◼ Memory templating: Find cells vulnerable to bitflips.

◼ Remember: DMA memory allocator gives us physically 
contiguous memory. 

32



Memory Templating on ARM

◼ “Hammer” the victim row in between and check for bitflips.

33

Aggressor row

1111111111111111111111111111111111111111111111111111111111

Aggressor row



Memory Templating on ARM

◼ “Hammer” the victim row in between and check for bitflips.

34

1111111111111111111111111111111111111111111111111111111111



Memory Templating on ARM

◼ “Hammer” the victim row in between and check for bitflips.

35

1111111111111111110111111111111111111111111111111111111111



P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location

36



What is the Sensitive Data?

◼ We want to store a page table in the susceptible vulnerable 
virtual page. 

◼ Recall that page tables map virtual addresses to a physical
address.

37



Flipping Bits in Page Tables

38



Flipping Bits in Page Tables

39



Phys Feng Shui

◼ Phys Feng Shui: New technique that lures the buddy 
allocator into reusing and partitioning memory in a 
predictable way.

40

But how do we get a page table into a 

vulnerable location in physical 

memory?



Buddy Allocator

◼ Linux platforms minimize external fragmentation by splitting 
and merging available memory in power-of-2 sized blocks 
using the buddy allocator.

41

Allocated

16KB free

16KB free



Buddy Allocator

◼ It iteratively splits larger blocks in half as necessary until it 
finds matching block.

42

Allocated

16 KB free

8 KB allocated 8 KB free



Buddy Allocator

◼ It always prioritizes the smallest fitting block when splitting.

43

Allocated

16 KB free

8 KB allocated 8 KB allocated



Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.

44

Allocated

16 KB free

8 KB freed 8 KB allocated



Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.

45

Allocated

16 KB free

8 KB freed 8 KB freed



Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.

46

Allocated

16 KB free

Merged to 16 KB free space



Phys Feng Shui – Tricking the Allocator  

Memory chunk where we have exploitable bit flip (not allocated currently)

◼ The goal is to land 
a page table in the 
yellow memory 
chunk where we 
have an exploitable 
bit flip.

◼ We’re going to 
exhaust and free 
memory to get 
page table in that 
yellow location.



Phys Feng Shui – Exhaust(L)+Template(L) 

◼ Exhaust chunks of size L and probe them for vulnerable 
templates.

48

L chunk: Largest possible contiguous chunk of memory



Phys Feng Shui – Exhaust(M)  

◼ Blocks of size M or larger are no longer available.

49

M chunk: Medium sized chunk with the site set to row size



Phys Feng Shui – Free(L) 

◼ Release block of size L with exploitable template. 

50



Phys Feng Shui – Exhaust(M) 

◼ After exhausting M chunks again, we have a M chunk that 
holds exploitable template. 

51



Phys Feng Shui –Free(M)+FreeAll(L) 

◼ Release memory pressure due to lack of swap space in 
mobile devices.

52



Phys Feng Shui – Land(S) 

◼ Repeatedly allocate S chunks until we land in M with 
exploitable chunk.

53

S chunk: Small sized chunk with the size fixed at page size



Phys Feng Shui – Padding(S) 

◼ Add padding using S chunks

54



Phys Feng Shui – Map(M) 

◼ Force page table allocation

55



P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location

56



Reproduce Bit Flip

◼ Map the PTE with a bit flip at offset bit n to a location 2n

pages away from the PT.

◼ The bit-flip in PT will cause the page table entry to point to 
PT itself.

57



Phys Feng Shui 

58

Page table entry vulnerable to bit flip

Bit flip will occur here



Phys Feng Shui 

59

Page table entry vulnerable to bit flip

0



Reproduce Bit Flip

◼ Using the two aggressor rows we start the double-sided 
Rowhammer attack to reproduce the bit-flip in PT.

60

Aggressor rows



Reproduce Bit Flip

◼ Now the page table entry in PT points to the physical 
address of the virtual page table.

61



Root Privilege Escalation

◼ Having control over our own PTP allows us to repeatedly 
map different physical pages to scan kernel memory. 

◼ With that, we can find our own “struct cred” structure 
(representing a process’ security context) on our UID.

◼ With access to the struct cred, we can give our process root 
privilege.

62



Evaluation of Attack

63



Empirical Analysis Results

◼ Number of flips varies a
lot even when comparing 
the same devices.

◼ 1-to-0 and 0-to-1 flips not 
symmetric.

◼ ARMv8 seems somewhat 
more resilient to flips.

64



Empirical Analysis Results

◼ Around 6% of all 
observed flips are 
exploitable.

◼ “1st “ describes the time it 
takes until first exploitable 
bit is found. The longest 
measured time is over 
15min. After that,
escalating privilege only 
takes around 22s on 
average.

65



Mitigation Techniques

66



Existing Rowhammer Defenses

◼ Software-based:

❑ Instruction “blacklisting”: disallowing instructions such as 
CLFLUSH.

❑ Restrict access to pagemap interface

❑ Detection of Rowhammer attacks by monitoring cache miss 
rate

67

Because of DMA, DRAMMER does not:

• Rely on comparable instructions

• Need access to pagemap

• Use cache, therefore not cause any misses



Existing Rowhammer Defenses

◼ Hardware-based:

❑ Memory with Error Correcting Codes (ECC)

❑ Doubling DRAM refresh rates

❑ Detection of Activation Patterns to refresh targeted rows (e.g. 
Probabilistic Adjacent Row Activation)

68

• ECCs have not been reliable.

• Doubling refresh rates has severe consequences for power 

consumption and performance



Countermeasures Against DRAMMER

◼ Restriction of userland interface:

❑ Rethink how DMA-support should be implemented, maybe 
with a restricted interface

❑ Possible improvement is to adopt constraint-based allocations

◼ Memory isolation and integrity:

❑ Isolate ION regions controlled by userland from kernel 
memory

❑ Treat cells with security-critical data differently, e.g. have 
regions with higher refresh rates.

◼ Prevention of memory exhaustion:

❑ Per-process memory limits

69



Executive Summary

70



Executive Summary
◼ Motivation: Current Rowhammer exploits are mostly 

probabilistic and most studies only focus on x86. 

◼ Goal: Implement deterministic Rowhammer attack on ARM 
devices.

◼ Challenges: 

❑ Fast uncached memory access

❑ Put page table into Rowhammer exploitable memory

❑ Find aggressor rows

◼ Key Ideas: 

❑ Use Android’s DMA buffers to get uncached contiguous 
memory

❑ Use predictability of memory allocator to put page table into 
exploitable memory

◼ Result: Many ARMv7 and one ARMv8 device have been 
successfully exploited using DRAMMER.

71



Strengths

72



Strengths

◼ Novel solution to make use of the buddy allocator and DMA
for physical memory massaging.

◼ First Rowhammer exploit on Android/ARM.

◼ Potentially motivates the research for much needed 
mitigation strategies for the billions of vulnerable mobile 
devices.

◼ Releasing their codebase as open source project and 
building a public database of known vulnerable devices 
further enables future research.

◼ The demonstrated techniques for deterministic Rowhammer
are generic enough to be applicable to other devices.

73



Weaknesses

74



Weaknesses

◼ The results of the empirical analysis are barely analyzed.

◼ Very few ARMv8 testing and results. Especially the existing 
results are conspicuous and demand more testing.

◼ The paper covers a wide range of topics. Certain topics and 
discussion points are poorly explained.

◼ The choice of Android devices seems a bit random.

◼ The structure and writing of the paper is confusing.

75



Thoughts and Ideas

76



Thoughts and Ideas

◼ How does introducing a per-process limit memory mitigate
the exhaustion of memory?

◼ How do external conditions and DRAM wearing affect the 
number of bit flips induced by Rowhammer on ARM 
devices?

◼ Have these issues been addressed in LPDDR4?

◼ Have these issues been addressed in ARMv8 and newer?

◼ Could DRAMMER be used to create an App to “root” an 
Android device?

77



Takeaways

78



Takeaways

◼ Implementing DMA efficiently while assuring security is 
difficult.

◼ Memory allocators such as the Linux buddy allocator lack 
security measurements.

◼ System design has to be done with security precautions in 
mind.

79



Open Discussion

80



Open Discussion

◼ Why do the results of the empirical analysis vary so much 
between different and even same devices?

◼ Could an attack similar to DRAMMER also be possible for an 
iOS device?

◼ Can you think of any other means to mitigate Rowhammer
exploits on Android/ARM?

◼ Should hardware vulnerabilities have the same disclosure 
deadline as software vulnerabilities? For example, Google 
Project Zero has a 90-day deadline.

◼ Do you think Rowhammer is still a problem in 2020?
❑ Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi, Lois Orosa, Onur Mutlu, 

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

◼ Have these issues been addressed in LPDDR4?

81

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf


Backup Slides

82



83


