
Drammer: Deterministic 

Rowhammer Attacks on Mobile 

Platforms
Victor van der Veen§ Yanick Fratantonio†          Martina Lindorfer †

Daniel Gruss ‡ Clémentine Maurice ‡     Giovanni Vigna †

Herbert Bos§ Kaveh Razavi§ Cristiano Giuffrida§

§ Vrije Universiteit Amsterdam† UC Santa Barbara
‡ Graz University of Technology

Presented at CCS’16, October 24–28, 2016, Vienna, Austria

Presented by Kevin Thommen

28/05/2020



Outline

◼ Background, Motivation & Goal

◼ The Attack - DRAMMER

❑ Preparation

❑ Implementing the Primitives on Mobile Devices

◼ Evaluation of Attack

◼ Mitigation Techniques

◼ Summary

◼ Critique

◼ Discussion

2



Executive Summary
◼ Motivation: Current Rowhammer exploits are mostly 

probabilistic and most studies only focus on x86. 

◼ Goal: Implement deterministic Rowhammer attack on ARM 
devices.

◼ Challenges: 

❑ Fast uncached memory access

❑ Put page table into Rowhammer exploitable memory

❑ Find aggressor rows

◼ Key Ideas: 

❑ Use Android’s DMA buffers to get uncached contiguous 
memory

❑ Use predictability of memory allocator to put a page table into 
exploitable memory

◼ Result: Many ARMv7 devices and one ARMv8 device have been 
successfully exploited using DRAMMER.
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Background, Motivation 

& Goals
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The Rowhammer Hardware Vulnerability

5



A Software-Induced Hardware Fault

◼ Repeatedly accessing (“hammering”) aggressor rows can 
cause bit flips in neighboring rows. The example above 
demonstrates a double-sided Rowhammer.
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Motivation

◼ No previous study has been done on the impact of 
Rowhammer on ARM devices.

◼ All known techniques only target x86 architectures and 
cannot be readily translated to ARM.

◼ Prior to this paper it was unclear if the Rowhammer
vulnerability even occurs on ARM devices.

◼ Exploitation techniques are either probabilistic or rely on 
special memory management features.

◼ These probabilistic Rowhammer attacks offer weak 
reliability guarantees:

▪ No guarantee that victim object is actually placed in vulnerable 
physical memory location

▪ No reliable prediction of outcome of corruption the victim 
object.
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Goals

◼ Show that deterministic Rowhammer exploitation using only 
commodity features on Android/ARM is possible.

◼ Evaluate effectiveness of DRAMMER.
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DRAMMER - Preparation
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Rowhammer possible on ARM?

◼ ARM memory controllers are slower than the ones used in 
x86.

◼ Is the memory controller too slow to trigger the 
Rowhammer vulnerability?
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Rowhammer possible on ARM?

◼ Double-sided Rowhammer
on the same 5MB of 
physical memory with 
artificially increasing time 
in between two read 
operations. Performed on 
LG Nexus 5 device running 
Android 6.0.1.

◼ The attack was performed 
with full privileges.

◼ This shows that the 
Rowhammer vulnerability 
can be induced.
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Threat Model

Following assumptions are made:

◼ We run an ARM-based device running Android 6.0.1 with:

❑ all updates installed

❑ all security measures activated

❑ and no special features enabled

◼ The attacker has control over an unprivileged Android App 
without any permissions.

◼ The attacker aims to perform a privilege escalation attack 
to acquire root privilege.
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Rowhammer - The Three Exploitation Primitives

◼ P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

How are these primitives handled by currently known 
Rowhammer exploitation techniques?
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The Three Exploitation Primitives – P1

◼ P1. Fast uncached memory access. The ability to activate rows fast 
enough to trigger the Rowhammer bug while bypassing cache.

❑ CPU memory might not be fast enough and read instructions are 
masked out by multiple layers of cache.

◼ x86 techniques:

❑ Explicit cache flush using the clflush instruction.

❑ Repeatedly access addresses belonging to the same cache eviction 
set.

❑ Issue memory reads using non-temporal access instructions.
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• The cache flush on Android is privileged.
• Using cache eviction sets is too slow to trigger vulnerability.
• ARM non-temporal instructions serve only as hints for CPU.
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The Three Exploitation Primitives – P2

◼ P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

❑ “Massaging” memory precisely enough to push the victim 
page to use the vulnerable cell to store security-sensitive data.

◼ x86 techniques:

❑ Spray memory with page tables, hoping for one of them to 
land in a vulnerable physical memory page.

❑ Memory deduplication

❑ MMU paravirtualization.
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• Spraying memory is probabilistic and the other features 

are not enabled by default or don’t exist on stock Android.



The Three Exploitation Primitives
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The Three Exploitation Primitives – P3

◼ P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

❑ Find virtual addresses that map to aggressor rows.

◼ x86 techniques:

❑ Access the pagemap interface file which contains complete 
information about the mapping of virtual to physical addresses

❑ Use huge virtual pages that are backed by physically 
contiguous physical pages.
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• The pagemap is not available in userland.

• Huge virtual pages are not enabled by default.



DRAMMER – Implementing the 

Primitives on Mobile Devices
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Attacks on Android

◼ How do we implement these three primitives on Android?
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P1. Fast uncached memory access.

P2. Physical memory massaging. 

P3. Physical memory addressing. 



Support for P1 and P3

◼ To support efficient memory sharing between different 
hardware components, the OS provides direct memory 
access (DMA) memory management mechanisms.

◼ Android provides DMA Buffer Management APIs through its 
main memory manager called ION, giving userland apps 
access to uncached, physically contiguous memory.

23



Support for P1 and P3

◼ P1. Fast uncached memory access:

❑ Processing pipelines involving DMA buffers bypass the CPU 
and its caches.

◼ P3. Physical memory addressing:

❑ Most devices perform DMA operations to physically contiguous 
memory pages only, so the OS provides allocators that 
support this kind of memory.
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P2. Physical Memory Massaging

◼ To deterministically land security-sensitive data in a 
vulnerable physical memory page following steps are taken:

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location
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Determine DRAM chip’s row size

◼ ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

◼ Use a timing-based side channel:
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Determine DRAM chip’s row size

◼ ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

◼ Use a timing-based side channel:
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Determine DRAM chip’s row size

◼ Allows us to create heatmap representing time 
required to access a given pair of edges. Here the 
row size is 16 pages = 64KB. 

◼ The x-axis and y-axis describe the page table that’s 
being accessed. 
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P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location
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Memory Templating on ARM

◼ Memory templating: Find cells vulnerable to bitflips.

◼ Remember: DMA memory allocator gives us physically 
contiguous memory. 
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Memory Templating on ARM

◼ “Hammer” the victim row in between and check for bitflips.
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Memory Templating on ARM
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P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location
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What is the Sensitive Data?

◼ We want to store a page table in the susceptible vulnerable 
virtual page. 

◼ Recall that page tables map virtual addresses to a physical
address.
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Flipping Bits in Page Tables
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Flipping Bits in Page Tables
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Phys Feng Shui

◼ Phys Feng Shui: New technique that lures the buddy 
allocator into reusing and partitioning memory in a 
predictable way.
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But how do we get a page table into a 

vulnerable location in physical 

memory?



Buddy Allocator

◼ Linux platforms minimize external fragmentation by splitting 
and merging available memory in power-of-2 sized blocks 
using the buddy allocator.
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Buddy Allocator

◼ It iteratively splits larger blocks in half as necessary until it 
finds matching block.
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Buddy Allocator

◼ It always prioritizes the smallest fitting block when splitting.
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Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.
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Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.
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Buddy Allocator

◼ When freeing blocks again, it tries to merge free blocks of 
same sizes.
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Phys Feng Shui – Tricking the Allocator  

Memory chunk where we have exploitable bit flip (not allocated currently)

◼ The goal is to land 
a page table in the 
yellow memory 
chunk where we 
have an exploitable 
bit flip.

◼ We’re going to 
exhaust and free 
memory to get 
page table in that 
yellow location.



Phys Feng Shui – Exhaust(L)+Template(L) 

◼ Exhaust chunks of size L and probe them for vulnerable 
templates.
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L chunk: Largest possible contiguous chunk of memory



Phys Feng Shui – Exhaust(M)  

◼ Blocks of size M or larger are no longer available.
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M chunk: Medium sized chunk with the site set to row size



Phys Feng Shui – Free(L) 

◼ Release block of size L with exploitable template. 

50



Phys Feng Shui – Exhaust(M) 

◼ After exhausting M chunks again, we have a M chunk that 
holds exploitable template. 
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Phys Feng Shui –Free(M)+FreeAll(L) 

◼ Release memory pressure due to lack of swap space in 
mobile devices.
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Phys Feng Shui – Land(S) 

◼ Repeatedly allocate S chunks until we land in M with 
exploitable chunk.
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S chunk: Small sized chunk with the size fixed at page size



Phys Feng Shui – Padding(S) 

◼ Add padding using S chunks
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Phys Feng Shui – Map(M) 

◼ Force page table allocation
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P2. Physical Memory Massaging

❑ Determine DRAM chip’s row size to understand memory 
model for later templating

❑ Memory Templating to find memory locations susceptible to 
Rowhammer

❑ Land sensitive data in susceptible location

❑ Reproduce the bit flip with security-sensitive data now in 
susceptible location
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Reproduce Bit Flip

◼ Map the PTE with a bit flip at offset bit n to a location 2n

pages away from the PT.

◼ The bit-flip in PT will cause the page table entry to point to 
PT itself.
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Phys Feng Shui 
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Phys Feng Shui 
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Reproduce Bit Flip

◼ Using the two aggressor rows we start the double-sided 
Rowhammer attack to reproduce the bit-flip in PT.
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Reproduce Bit Flip

◼ Now the page table entry in PT points to the physical 
address of the virtual page table.
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Root Privilege Escalation

◼ Having control over our own PTP allows us to repeatedly 
map different physical pages to scan kernel memory. 

◼ With that, we can find our own “struct cred” structure 
(representing a process’ security context) on our UID.

◼ With access to the struct cred, we can give our process root 
privilege.

62



Evaluation of Attack
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Empirical Analysis Results

◼ Number of flips varies a
lot even when comparing 
the same devices.

◼ 1-to-0 and 0-to-1 flips not 
symmetric.

◼ ARMv8 seems somewhat 
more resilient to flips.
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Empirical Analysis Results

◼ Around 6% of all 
observed flips are 
exploitable.

◼ “1st “ describes the time it 
takes until first exploitable 
bit is found. The longest 
measured time is over 
15min. After that,
escalating privilege only 
takes around 22s on 
average.
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Mitigation Techniques
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Existing Rowhammer Defenses

◼ Software-based:

❑ Instruction “blacklisting”: disallowing instructions such as 
CLFLUSH.

❑ Restrict access to pagemap interface

❑ Detection of Rowhammer attacks by monitoring cache miss 
rate
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Because of DMA, DRAMMER does not:

• Rely on comparable instructions

• Need access to pagemap

• Use cache, therefore not cause any misses



Existing Rowhammer Defenses

◼ Hardware-based:

❑ Memory with Error Correcting Codes (ECC)

❑ Doubling DRAM refresh rates

❑ Detection of Activation Patterns to refresh targeted rows (e.g. 
Probabilistic Adjacent Row Activation)
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• ECCs have not been reliable.

• Doubling refresh rates has severe consequences for power 

consumption and performance



Countermeasures Against DRAMMER

◼ Restriction of userland interface:

❑ Rethink how DMA-support should be implemented, maybe 
with a restricted interface

❑ Possible improvement is to adopt constraint-based allocations

◼ Memory isolation and integrity:

❑ Isolate ION regions controlled by userland from kernel 
memory

❑ Treat cells with security-critical data differently, e.g. have 
regions with higher refresh rates.

◼ Prevention of memory exhaustion:

❑ Per-process memory limits
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Executive Summary
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Executive Summary
◼ Motivation: Current Rowhammer exploits are mostly 

probabilistic and most studies only focus on x86. 
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successfully exploited using DRAMMER.
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Strengths
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Strengths

◼ Novel solution to make use of the buddy allocator and DMA
for physical memory massaging.

◼ First Rowhammer exploit on Android/ARM.

◼ Potentially motivates the research for much needed 
mitigation strategies for the billions of vulnerable mobile 
devices.

◼ Releasing their codebase as open source project and 
building a public database of known vulnerable devices 
further enables future research.

◼ The demonstrated techniques for deterministic Rowhammer
are generic enough to be applicable to other devices.

73



Weaknesses
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Weaknesses

◼ The results of the empirical analysis are barely analyzed.

◼ Very few ARMv8 testing and results. Especially the existing 
results are conspicuous and demand more testing.

◼ The paper covers a wide range of topics. Certain topics and 
discussion points are poorly explained.

◼ The choice of Android devices seems a bit random.

◼ The structure and writing of the paper is confusing.
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Thoughts and Ideas
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Thoughts and Ideas

◼ How does introducing a per-process limit memory mitigate
the exhaustion of memory?

◼ How do external conditions and DRAM wearing affect the 
number of bit flips induced by Rowhammer on ARM 
devices?

◼ Have these issues been addressed in LPDDR4?

◼ Have these issues been addressed in ARMv8 and newer?

◼ Could DRAMMER be used to create an App to “root” an 
Android device?
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Takeaways
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Takeaways

◼ Implementing DMA efficiently while assuring security is 
difficult.

◼ Memory allocators such as the Linux buddy allocator lack 
security measurements.

◼ System design has to be done with security precautions in 
mind.
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Open Discussion
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Open Discussion

◼ Why do the results of the empirical analysis vary so much 
between different and even same devices?

◼ Could an attack similar to DRAMMER also be possible for an 
iOS device?

◼ Can you think of any other means to mitigate Rowhammer
exploits on Android/ARM?

◼ Should hardware vulnerabilities have the same disclosure 
deadline as software vulnerabilities? For example, Google 
Project Zero has a 90-day deadline.

◼ Do you think Rowhammer is still a problem in 2020?
❑ Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi, Lois Orosa, Onur Mutlu, 

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

◼ Have these issues been addressed in LPDDR4?
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