Drammer: Deterministic
Rowhammer Attacks on Mobile
Platforms

Victor van der Veen$8 Yanick Fratantoniot Martina Lindorfer t
Daniel Grusst Clémentine Mauricet Giovanni Vignat
Herbert Bos$ Kaveh Razavi 8 Cristiano Giuffrida 8

§ Vrije Universiteit Amsterdam ' UC Santa Barbara
 Graz University of Technology
Presented at CCS'16, October 24-28, 2016, Vienna, Austria

Presented by Kevin Thommen
28/05/2020

Outline

Background, Motivation & Goal

The Attack - DRAMMER

o Preparation

o Implementing the Primitives on Mobile Devices
Evaluation of Attack

Mitigation Techniques

Summary

Critique

Discussion

Executive Summary

Motivation: Current Rowhammer exploits are mostly
probabilistic and most studies only focus on x86.

Goal: Implement deterministic Rowhammer attack on ARM
devices.

Challenges:

o Fast uncached memory access

o Put page table into Rowhammer exploitable memory
o Find aggressor rows

Key Ideas:

o Use Android’s DMA buffers to get uncached contiguous
memory

o Use predictability of memory allocator to put a page table into
exploitable memory

Result: Many ARMv7/ devices and one ARMv8 device have been
successfully exploited using DRAMMER.

Background, Motivation
& Goals

The Rowhammer Hardware Vulnerability

It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until
the vibrations open the door you were after

A Software-Induced Hardware Fault

ﬁ
P

DRAM rows

Aggressor row

11111111111111111111111111111111111 RS TaR@

Aggressor row

Repeatedly accessing (“hammering”) aggressor rows can
cause bit flips in neighboring rows. The example above
demonstrates a double-sided Rowhammer.

A Software-Induced Hardware Fault

ﬁ
P

DRAM rows

Aggressor row

1111111011111111011101111110111111 REluR@

Aggressor row

Repeatedly accessing (“hammering”) aggressor rows can
cause bit flips in neighboring rows. The example above
demonstrates a double-sided Rowhammer.

Motivation

No previous study has been done on the impact of
Rowhammer on ARM devices.

All known technigues only target x86 architectures and
cannot be readily translated to ARM.

Prior to this paper it was unclear if the Rowhammer
vulnerability even occurs on ARM devices.

Exploitation techniques are either probabilistic or rely on
special memory management features.

These probabilistic Rowhammer attacks offer weak
reliability guarantees:

No guarantee that victim object is actually placed in vulnerable
physical memory location

No reliable prediction of outcome of corruption the victim
object.

Goals

= Show that deterministic Rowhammer exploitation using only
commodity features on Android/ARM is possible.

= Evaluate effectiveness of DRAMMER.

DRAMMER - Preparation

Rowhammer possible on ARM?

= ARM memory controllers are slower than the ones used in
X86.

= Is the memory controller too slow to trigger the
Rowhammer vulnerability?

11

Rowhammer possible on ARM?

- 250

- 150 2

- 100

20

L
40 60 80 100
NOP instructions

bit flips time per rea

120

140

- 350

© 300

g
- 200 =
0]

_ 50 E

Double-sided Rowhammer
on the same 5MB of
physical memory with
artificially increasing time
in between two read
operations. Performed on
LG Nexus 5 device running
Android 6.0.1.

The attack was performed
with full privileges.

This shows that the
Rowhammer vulnerability
can be induced.

12

Threat Model

Following assumptions are made:

= We run an ARM-based device running Android 6.0.1 with:
o all updates installed
o all security measures activated
o and no special features enabled

= The attacker has control over an unprivileged Android App
without any permissions.

= The attacker aims to perform a privilege escalation attack
to acquire root privilege.

13

Rowhammer - The Three Exploitation Primitives

P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

P2. Physical memory massaging. [rick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

How are these primitives handled by
Rowhammer exploitation techniques?

14

Rowhammer - The Three Exploitation Primitives

P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

P2. Physical memory massaging. [rick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

How are these primitives handled by
Rowhammer exploitation techniques?

15

The Three Exploitation Primitives — P1

P1. Fast uncached memory access. The ability to activate rows fast
enough to trigger the Rowhammer bug while bypassing cache.

o CPU memory might not be fast enough and read instructions are
masked out by multiple layers of cache.

x86 techniques:
o Explicit cache flush using the clflush instruction.

o Repeatedly access addresses belonging to the same cache eviction
set.

o Issue memory reads using non-temporal access instructions.

g The cache flush on Android is privileged. h

 Using cache eviction sets is too slow to trigger vulnerability.

k. ARM non-temporal instructions serve only as hints for CPU. y

16

The Three Exploitation Primitives

P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

P2. Physical memory massaging. [rick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

17

The Three Exploitation Primitives — P2

P2. Physical memory massaging. Irick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

a “"Massaging” memory precisely enough to push the victim
page to use the vulnerable cell to store security-sensitive data.

x86 techniques:

o Spray memory with page tables, hoping for one of them to
land in a vulnerable physical memory page.

o Memory deduplication
o MMU paravirtualization.

« Spraying memory is probabilistic and the other features
are not enabled by default or don’t exist on stock Android.

18

The Three Exploitation Primitives

P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

P2. Physical memory massaging. [rick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

19

The Three Exploitation Primitives — P3

P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

o Find virtual addresses that map to aggressor rows.

x86 techniques:

o Access the pagemap interface file which contains complete
information about the mapping of virtual to physical addresses

o Use huge virtual pages that are backed by physically
contiguous physical pages.

 The pagemap is not available in userland.
* Huge virtual pages are not enabled by default.

20

DRAMMER — Implementing the
Primitives on Mobile Devices

Attacks on Android

\

P1. Fast uncached memory access.
P2. Physical memory massaging.
P3. Physical memory addressing.

/

How do we implement these three primitives on Android?

22

Support for P1 and P3

To support efficient memory sharing between different
hardware components, the OS provides direct memory
access (DMA) memory management mechanisms.

Android provides DMA Buffer Management APIs through its
main memory manager called ION, giving userland apps
access to uncached, physically contiguous memory.

23

Support for P1 and P3

P1. Fast uncached memory access:

o Processing pipelines involving DMA buffers bypass the CPU
and its caches.

P3. Physical memory addressing:

o Most devices perform DMA operations to physically contiguous
memory pages only, so the OS provides allocators that
support this kind of memory.

24

P2. Physical Memory Massaging

To deterministically land security-sensitive data in a
vulnerable physical memory page following steps are taken:

Q

Determine DRAM chip’s row size to understand memory
model for later templating

Memory Templating to find memory locations susceptible to
Rowhammer

Land sensitive data in susceptible location

Reproduce the bit flip with security-sensitive data now in
susceptible location

25

P2. Physical Memory Massaging

o Determine DRAM chip’s row size to understand memory
model for later templating

o Memory Templating to find memory locations susceptible to
Rowhammer

o Land sensitive data in susceptible location

o Reproduce the bit flip with security-sensitive data now in
susceptible location

26

Determine DRAM chip’s row size

ARM does not document row size, nor does it provide a
instructions for fingerprinting DRAM modules.

Use a timing-based side channel:

/ Bank 1 \ / Bank 2 \ / Bank 3

Pages being accessed.:
(1,2)
Page 1 Page 2
- RN RN
\
I
Row size

Reading from same bank takes longer than reading from
two different banks.

Determine DRAM chip’s row size

ARM does not document row size, nor does it provide a

instructions for fingerprinting DRAM modules.
Use a timing-based side channel:

Pages being accessed.:

(1,3)

/

Bank 1

™

Page 1

U

/

\

/

A

Bank 2

N

/

Bank 3

Page 3

/

A

f

Row size

Reading from same bank takes longer than reading from
two different banks.

Determine DRAM chip’s row size

ARM does not document row size, nor does it provide a
instructions for fingerprinting DRAM modules.

Use a timing-based side channel:

/ Bank 1 \ / Bank 2 \ / Bank 3

Pages being accessed.:
(1,4)

Page 1

Page 4

AU AR AR

\
I
Row size
Reading from same bank takes longer than reading from

two different banks.

Determine DRAM chip’s row size

64 175
48
32
16
0
0 16 32 48 64

= Allows us to create heatmap representing time
required to access a given pair of edges. Here the
row size is 16 pages = 64KB.

= The x-axis and y-axis describe the page table that's
being accessed.

150 &
o]
<

125 &
g

100

30

P2. Physical Memory Massaging

o Determine DRAM chip’s row size to understand memory
model for later templating

o Memory Templating to find memory locations susceptible to
Rowhammer

o Land sensitive data in susceptible location

o Reproduce the bit flip with security-sensitive data now in
susceptible location

31

Memory Templating on ARM

= Memory templating: Find cells vulnerable to bitflips.

= Remember: DMA memory allocator gives us physically
contiguous memory.

32

Memory Templating on ARM

11111111111111117111111111111111171111117111117171111111111121217

“Hammer” the victim row in between and check for bitflips.

33

Memory Templating on ARM

111111111111111111111711111111111717111117111117171111111111121217

= "Hammer” the victim row in between and check for bitflips.

34

Memory Templating on ARM

1111111111111111110112111111111171111171711117171111171111112111

= "Hammer” the victim row in between and check for bitflips.

35

P2. Physical Memory Massaging

o Determine DRAM chip’s row size to understand memory
model for later templating

o Memory Templating to find memory locations susceptible to
Rowhammer

o Land sensitive data in susceptible location

o Reproduce the bit flip with security-sensitive data now in
susceptible location

36

What 1s the Sensitive Data?

= We want to store a page table in the susceptible vulnerable
virtual page.

= Recall that page tables map virtual addresses to a physical
address.

37

Flipping Bits in Page Tables

Entry in the (2"d level) Page Table

0001|1011 0001(011 111111 |%x xx X|x X X X|xX X x x

Ox1bl7f << 12

* 12 bits of properties Y 0x1b17£000

* 20 bits for the page base address

mapped page

Flipping Bits in Page Tables

Entry in the (2"? level) Page Table

0001|1011 (0001(0111|1111)|x x xx|x ¥ X ¥ |%x xxx

Ox1bl7f << 12

. 12 bits Of properﬂes 0x1bl7e000 valbl?fOOO

* 20 bits for the page base address

mapped page mmappedpage

Ox1lbl7e << 12

00011 011(0001|]0111)1110|x = x x| x%x %x¥ X X |x xxX

A 1-to-0 flip moves the mapping ‘to the left’
* Flip offset 0: -1 page
* Flip offset 1: -2 pages
* Flip offset 2: -4 pages
* Flip offset n: -2" pages

Phys Feng Shuti

But how do we get a page table into a
vulnerable location in physical
memory?

Phys Feng Shui: New technique that lures the buddy
allocator into reusing and partitioning memory in a
predictable way.

40

Buddy Allocator

Allocated

16KB free

16KB free

Linux platforms minimize external fragmentation by splitting

and merging available memory in power-of-2 sized blocks
using the buddy allocator.

41

Buddy Allocator

Allocated

8 KB allocated

8 KB free

16 KB free

It iteratively splits larger blocks in half as necessary until it

finds matching block.

42

Buddy Allocator

16 KB free

= It always prioritizes the smallest fitting block when splitting.

43

Buddy Allocator

8 KB freed

16 KB free

= When freeing blocks again, it tries to merge free blocks of
same sizes.

44

Buddy Allocator

Allocated

8 KB freed

8 KB freed

16 KB free

When freeing blocks again, it tries to merge free blocks of

same sizes.

45

Buddy Allocator

Allocated

Merged to 16 KB free space

16 KB free

When freeing blocks again, it tries to merge free blocks of
same sizes.

Phys Feng Shui — Tricking the Allocator

—
.

UNINITIALIZED MEMORY
B 2located

free

The goal is to land
a page table in the
yellow memory
chunk where we
have an exploitable
bit flip.

We're going to
exhaust and free
memory to get
page table in that
yellow location.

Memory chunk where we have exploitable bit flip (not allocated currently)

Phys Feng Shui — Exhaust(l.)+Template(L)
Vi

S

A/
A/

STEP 1

B alocated L chunk

[] free

VA L chunk: Largest possible contiguous chunk of memory

Exhaust chunks of size L and probe them for vulnerable

templates.

48

Phys Feng Shui — Exhaust(M)
L W oo

| B
S
SESHEI0N SERHeR

LI

] M chunk: Medium sized chunk with the site set to row size
Blocks of size M or larger are no longer available.

49

Phys Feng Shui — Free(L)

A/ /79

VL A s
S S A
B aeaaat BaaaBaane:

STEP 3
Release block of size L with exploitable template.

50

Phys Feng Shui — Exhaust(M)

STEP 4
After exhausting M chunks again, we have a M chunk that
holds exploitable template.

B alocated L chun
|:’ free M chun

Kk
K

51

Phys Feng Shuit —Free(M)+Free All(L)

B alocated L chunk
[] free M chunk

STEP 5
Release memory pressure due to lack of swap space in
mobile devices.

52

Phys Feng Shut — Land(S)

B alocated L chunk
[] free M chunk
@ S chunk

STEP 6

kXS chunk: Small sized chunk with the size fixed at page size

Repeatedly allocate S chunks until we land in M with
exploitable chunk.

53

Phys Feng Shui — Padding(S)

B alocated [/ L chunk

[] free M chunk

& S chunk

[P] padding

STEP 7
Add padding using S chunks

54

Phys Feng Shut — Map(M)

B alocated L chunk

[] free M chunk
@ S chunk
[P] padding
. page table

STEP 8
Force page table allocation

55

P2. Physical Memory Massaging

o Determine DRAM chip’s row size to understand memory
model for later templating

o Memory Templating to find memory locations susceptible to
Rowhammer

o Land sensitive data in susceptible location

o Reproduce the bit flip with security-sensitive data now in
susceptible location

56

Reproduce Bit Flip

Map the PTE with a bit flip at offset bit n to a location 2"
pages away from the PT.

The bit-flip in PT will cause the page table entry to point to
PT itself.

57

Phys Feng Shuti

/

x1bl17b000 941b1 7c000 0x1b17d000 0x1b17e000 0x1bl17£000

Page table entry vulnerable to bit flip

/

1bl7f

Page Table Mapped Page

Bit flip will occur here

Virtual address 0xb6a57000 maps to‘Page Table Entry:

00011 01100010111 l@ll X X X X | X X X X | X X x X

which translates to physical page 0x1b17£000

58

Phys Feng Shuti

x1bl17b000

Page table entry vulnerable to bit flip

1b17c000

0x1b17d000

0x1bl17e000

0x1b17£000

/

1bl7b

Mapped Page Table

Virtual address 0xb6a57000 maps to Page Table Entry:

0001

1 011

0001

0111

1

A X X X

A X X X

A X X X

which translates to physical page 0xIB517£000

59

Reproduce Bit Flip

Aggressor rows

iiiiiiiii
lllllllll

.........
.........

X
KX

0000000000
.........

!!!!!!!!!!
000000000

Using the two aggressor rows we start the double-sided
Rowhammer attack to reproduce the bit-flip in PT.

60

Reproduce Bit Flip

Now the page table entry in PT points to the p
address of the virtual page table.

nysical

01

Root Privilege Escalation

éxlbl 70000

0x1bl17c000 0x1b17d000 0x1bl7e000 0x1b17£000

3ac90

3ac9l

3ac92

3a

93

3ac94

3ac95

3ac96

1bl7b

3ac97

3ac98

3ac99

3ac9a

3ac9

3ac9c

3ac9d

3ac9e

Mapped Page Table

= Having control over our own PTP allows us to repeatedly
map different physical pages to scan kernel memory.

= With that, we can find our own “struct cred” structure
(representing a process’ security context) on our UID.

= With access to the struct cred, we can give our process root

privilege.

62

Evaluation of Attack

63

Empirical Analysis Results

Device

ARMvT

Nexus 5;
Nexus 5q
Nexus b3
Nexus 5y
Nexus 55
Nexus 5g
Nexus bg
Nexus Hg
Nexus 519
Nexus 511
Nexus 512
Nexus 513
Nexus 514
Nexus 515
Nexus H17
Galaxy S5
OnePlus One:
OnePlus One,
Moto Gao13
Moto Gagi4
Nexus 4

ARMVS

Nexus bx
Galaxy S6
K3 Note
Mi 4i
Desire 510
G4

DRAM #flips # 1-to-0 +# 0-to-1
2GB 1,058 1,011 47
2GB 284,428 261,232 23,196
2GB 547,949 534,695 13,254
2GB 0 - —
2GB 747,013 704,824 42,189
2GB 215,233 207,856 7,377
2GB 32,328 28,500 3,828
2GB 476,170 434,086 42,084
2GB 160,245 150,485 9,760
2GB 0 - -
2GB 17,384 16,767 617
2GB 161,514 160,473 1,041
2GB 295,537 277,708 17,829
2GB 38,969 35,5615 3,454
2GB 0 - -
2GB 0 - -
3GB 3,981 2,924 1,057
3GB 1,992 942 1,050
1GB 429 419 10
1GB 1,577 1,523 54
2GB” 1,328 1,061 267
2GB 0 — _
3GB° 0 - -
2GB 0 - -
2GB 0 - -
1GB 0 - -
3GB 117,496 117,260 236

*LPDDR2 °LPDDR4

Number of flips varies a
lot even when comparing
the same devices.

1-to-0 and 0-to-1 flips not
symmetric.

ARMv8 seems somewhat
more resilient to flips.

04

Empirical Analysis Results

Device

ARMvT

Nexus 5;
Nexus 5q
Nexus H3
Nexus 5,4
Nexus 55
Nexus 5g
Nexus bg
Nexus Hg
Nexus 519
Nexus 511
Nexus 512
Nexus 513
Nexus 514
Nexus 515
Nexus H17
Galaxy S5
OnePlus One;
OnePlus One,
Moto Gao13
Moto Gag1a
Nexus 4

ARMVS

Nexus bx
Galaxy S6
K3 Note
Mi 4i
Desire 510
G4

DRAM #flips # exploitable 1%
2GB 1,058 62 (5.86%) 116s
2GB 284428 14,852 (5.22%) s
2GB 547,949 32,715 (5.97%) 1s
2GB 0 - —
2GB 747,013 46,609 (6.24%) 1s
2GB 215,233 13,365 (6.21%) 3s
2GB 32,328 1,894 (5.86%) 4s
2GB 476,170 30,190 (6.34%) 0s
2GB 160,245 8,701 (5.43%) 1s
2GB 0 - —
2GB 17,384 1,241 (7.14%) 165
2GB 161,514 10,378 (6.43%) 355s
2GB 295,537 18,900 (6.40%) 1s
2GB 38,969 2,775 (7,12%) 1ls
2GB 0 - -
2GB 0 - -
3GB 3081 242 (6.08%) 942
3GB 1,992 094 (4.72%) 326s
1GB 429 30 (6.99%) 441s
1GB 1,577 71 (4.66%) 92s
2GB” 1,328 104 (7.83%) 7s
2GB 0 - —
3GB° 0 - —
2GB 0 - —
2GB 0 - —
1GB 0 - —
3GB 117,496 6,560 (5.58%) 5s

*LPDDR2 °LPDDR4

Around 6% of all
observed flips are
exploitable.

“1st* describes the time it
takes until first exploitable
bit is found. The longest
measured time is over
15min. After that,
escalating privilege only
takes around 22s on
average.

65

Mitigation Techniques

66

Existing Rowhammer Defenses

= Software-based:

o Instruction “blacklisting”: disallowing instructions such as
CLFLUSH.

o Restrict access to pagemap interface

o Detection of Rowhammer attacks by monitoring cache miss
rate

/Because of DMA, DRAMMER does not:

* Rely on comparable instructions

* Need access to pagemap

N Use cache, therefore not cause any misses

67

Existing Rowhammer Defenses

= Hardware-based:
o Memory with Error Correcting Codes (ECC)
o Doubling DRAM refresh rates

o Detection of Activation Patterns to refresh targeted rows (e.g.
Probabilistic Adjacent Row Activation)

. I
/- ECCs have not been reliable.

« Doubling refresh rates has severe consequences for power
consumption and performance y

068

Countermeasures Against DRAMMER

Restriction of userland interface:

o Rethink how DMA-support should be implemented, maybe
with a restricted interface

o Possible improvement is to adopt constraint-based allocations
Memory isolation and integrity:

o Isolate ION regions controlled by userland from kernel
memory

o Treat cells with security-critical data differently, e.g. have
regions with higher refresh rates.

Prevention of memory exhaustion:
o Per-process memory limits

09

Executive Summary

70

Executive Summary

Motivation: Current Rowhammer exploits are mostly
probabilistic and most studies only focus on x86.

Goal: Implement deterministic Rowhammer attack on ARM
devices.

Challenges:

o Fast uncached memory access

o Put page table into Rowhammer exploitable memory
o Find aggressor rows

Key Ideas:

o Use Android’s DMA buffers to get uncached contiguous
memory

o Use predictability of memory allocator to put page table into
exploitable memory

Result: Many ARMv7 and one ARMv8 device have been
successfully exploited using DRAMMER.

71

Strengths

Strengths

Novel solution to make use of the buddy allocator and DMA
for physical memory massaging.

First Rowhammer exploit on Android/ARM.

Potentially motivates the research for much needed
mitigation strategies for the billions of vulnerable mobile
devices.

Releasing their codebase as open source project and
building a public database of known vulnerable devices
further enables future research.

The demonstrated techniques for deterministic Rowhammer
are generic enough to be applicable to other devices.

73

Weaknesses

74

Weaknesses

The results of the empirical analysis are barely analyzed.

Very few ARMvS testing and results. Especially the existing
results are conspicuous and demand more testing.

The paper covers a wide range of topics. Certain topics and
discussion points are poorly explained.

The choice of Android devices seems a bit random.

The structure and writing of the paper is confusing.

75

Thoughts and Ideas

Thoughts and Ideas

How does introducing a per-process limit memory mitigate
the exhaustion of memory?

How do external conditions and DRAM wearing affect the
number of bit flips induced by Rowhammer on ARM
devices?

Have these issues been addressed in LPDDR47?
Have these issues been addressed in ARMv8 and newer?

Could DRAMMER be used to create an App to “root” an
Android device?

77

Takeaways

Takeaways

Implementing DMA efficiently while assuring security is
difficult.

Memory allocators such as the Linux buddy allocator lack
security measurements.

System design has to be done with security precautions in
mind.

79

Open Discussion

80

Open Discussion

Why do the results of the empirical analysis vary so much
between different and even same devices?

Could an attack similar to DRAMMER also be possible for an
IOS device?

Can you think of any other means to mitigate Rowhammer
exploits on Android/ARM?

Should hardware vulnerabilities have the same disclosure
deadline as software vulnerabilities? For example, Google
Project Zero has a 90-day deadline.

Do you think Rowhammer is still a problem in 20207?

o Jeremie S. Kim, Minesh Patel, A. Giray Yaglik¢l, Hasan Hassan, Roknoddin Azizi, Lois Orosa, Onur Mutlu,
Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Have these issues been addressed in LPDDR4?

81

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf

Backup Slides

Hardware Details

Analysis Results

Device SoC' DRAM RS | MB ns #flips KB #1-to-0 #0-to-1 # exploitable 1%t
Nexus 5 MsSMs974t 2GB 64 | 441 70 1,058 426 1,011 47 62 (5.86%) 116s
Nexus 5o MsMs974T 2GB 64 | 472 69 284,428 2 261,232 23,196 14,852 (5.22%) 1s
Nexus 53 MsMs974T 2GB 64 | 461 69 547,949 1 534,695 13,254 32,715 (5.97% 1s
Nexus 54 MsMmg97at 2GB 64 | 616 71 0 - - - - -
Nexus 55 MsMs974T 2GB 64 | 630 69 747,013 1 704,824 42,189 46,609 (6.24%) 1s
Nexus 5g MsMsa74f 2GB 64 | 512 69 215,233 3 207,856 7,377 13,365 (6.21%) 3s
Nexus 5y MsMsa74f 2GB 64 | 485 70 32,328 15 28,500 3,828 1,894 (5.86%) 4s
Nexus 59 MsMsa74f 2GB 64 | 569 69 476,170 2 434,086 42,084 30,190 (6.34%) 0s
- Nexus 519 MsMs974f 2GB 64 | 406 69 160,245 3 150,485 9,760 8,701 (5.43%) 1s
> Nexus 511 MsMmg97at 2GB 64 613 70 0 - - - - -
= Nexus 519 MsMs974f 2GB 64 | 600 70 17,384 35 16,767 617 1,241 (7.14%) 16s
E: Nexus 513 MsMs974f 2GB 64 | 575 69 161,514 4 160,473 1,041 10,378 (6.43%) 355s
Nexus 514 MsMs974f 2GB 64 | 576 69 295,537 2 277,708 17,829 18,900 (6.40%) 1s
Nexus 515 MsMs974f 2GB 64 | 573 69 38,969 15 35,515 3454 2,775 (7,12% 11s
Nexus 517 MsMg97at 2GB 64 | 621 70 0 - - - - -
Galaxy S5 MSMs974* 2GB 64 | 207 82 0 - - - - -
OnePlus One; | MsMs974f 3GDB 64 | 292 71 3,981 75 2,924 1,057 242 (6.08%) 942s
OnePlus One; | MsMs974f 3 GB 64 | 1189 69 1,992 611 942 1,050 94 (4.72%) 326s
Moto Gzo13 MSMB226 1GB 32 134 127 429 275 419 10 30 (6.99%) 441s
Moto Gag1a MSMB226 1GB 32 151 127 1,577 98 1,523 54 71 (4.66%) 92s
Nexus 4 APQB8064 2GB* 64 82 18 1,328 64 1,061 267 104 (7.83%) 7s
Nexus bHx MSM8992 2GB 64 271 63 0 — - - - -
G>3 Galaxy S6 Exynos7420 3GB° 128 234 82 0 - - - - -
K3 Note MT6752 2GB 64 423 218 0 - - - - -
E Mi 4i MSM8939 2GB 64 | 327 159 0 - - - - -
< Desire 510 MSMS8916 1GB 32 186 122 0 - - - - —
G4 MSM8992 3GB 64 | 833 64 117,496 8 117,260 236 6,560 (5.58%) 5s

TMSMB89T4AA TMSM8974AC *LPDDR2 °LPDDR4

