
Drammer: Deterministic

RowhammerAttacks on Mobile

Platforms
Victor van der Veen§ Yanick FratantonioÀ Martina LindorferÀ

Daniel GrussĀ Clémentine MauriceĀ Giovanni VignaÀ

Herbert Bos§ Kaveh Razavi§ Cristiano Giuffrida§

§ Vrije Universiteit Amsterdam À UC Santa Barbara
Ā Graz University of Technology

Presentedat CCSô16, October 24ï28, 2016, Vienna, Austria

Presented by Kevin Thommen

28/05/2020

Outline

Â Background, Motivation & Goal

Â The Attack - DRAMMER

Ç Preparation

Ç Implementing the Primitives on Mobile Devices

Â Evaluation of Attack

Â Mitigation Techniques

Â Summary

Â Critique

Â Discussion

2

Executive Summary
Â Motivation: Current Rowhammer exploits are mostly

probabilistic and most studies only focus on x86.

Â Goal: Implement deterministic Rowhammer attack on ARM
devices.

Â Challenges:

Ç Fast uncached memory access

Ç Put page table into Rowhammer exploitable memory

Ç Find aggressor rows

Â Key Ideas:

Ç Use Androidôs DMA buffers to get uncached contiguous
memory

Ç Use predictability of memory allocator to put a page table into
exploitable memory

Â Result: Many ARMv7devices and one ARMv8device have been
successfully exploited using DRAMMER.

3

Background, Motivation

& Goals

4

The RowhammerHardware Vulnerability

5

A Software-Induced Hardware Fault

Â Repeatedly accessing (ñhammeringò) aggressor rows can
cause bit flips in neighboring rows. The example above
demonstrates a double-sided Rowhammer.

6

DRAM rows

Victim row11111111111111111111111111111111111

Aggressor row

Aggressor row

A Software-Induced Hardware Fault

Â Repeatedly accessing (ñhammeringò) aggressor rows can
cause bit flips in neighboring rows. The example above
demonstrates a double-sided Rowhammer.

7

DRAM rows

Victim row1111111011111111011101111110111111

Aggressor row

Aggressor row

Motivation

Â No previous study has been done on the impact of
Rowhammer on ARM devices.

Â All known techniques only target x86 architectures and
cannot be readily translated to ARM.

Â Prior to this paper it was unclear if the Rowhammer
vulnerability even occurs on ARM devices.

Â Exploitation techniques are either probabilistic or rely on
special memory management features.

Â These probabilistic Rowhammer attacks offer weak
reliability guarantees:

Á No guarantee that victim object is actually placed in vulnerable
physical memory location

Á No reliable prediction of outcome of corruption the victim
object.

8

Goals

Â Show that deterministic Rowhammer exploitation using only
commodity features on Android/ARM is possible.

Â Evaluate effectiveness of DRAMMER.

9

DRAMMER - Preparation

10

Rowhammerpossible on ARM?

Â ARM memory controllers are slower than the ones used in
x86.

Â Is the memory controller too slow to trigger the
Rowhammer vulnerability?

11

Rowhammerpossible on ARM?

Â Double-sided Rowhammer
on the same 5MB of
physical memory with
artificially increasing time
in between two read
operations. Performed on
LG Nexus 5 device running
Android 6.0.1.

Â The attack was performed
with full privileges.

Â This shows that the
Rowhammer vulnerability
can be induced.

12

Threat Model

Following assumptions are made:

Â We run an ARM-based device running Android 6.0.1 with:

Ç all updates installed

Ç all security measures activated

Ç and no special features enabled

Â The attacker has control over an unprivileged Android App
without any permissions.

Â The attacker aims to perform a privilege escalation attack
to acquire root privilege.

13

Rowhammer- The Three Exploitation Primitives

Â P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

Â P2. Physical memory massaging. Trick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

Â P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

How are these primitives handled by currently known
Rowhammer exploitation techniques?

14

Rowhammer- The Three Exploitation Primitives

Â P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

Â P2. Physical memory massaging. Trick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

Â P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

How are these primitives handled by currently known
Rowhammer exploitation techniques?

15

The Three Exploitation Primitives ðP1

Â P1. Fast uncached memory access. The ability to activate rows fast
enough to trigger the Rowhammer bug while bypassing cache.

Ç CPU memory might not be fast enough and read instructions are
masked out by multiple layers of cache.

Â x86 techniques:

Ç Explicit cache flush using the clflush instruction.

Ç Repeatedly access addresses belonging to the same cache eviction
set.

Ç Issue memory reads using non-temporal access instructions.

16

ÅThe cache flush on Android is privileged.
ÅUsing cache eviction sets is too slow to trigger vulnerability.
ÅARM non-temporal instructions serve only as hints for CPU.

The Three Exploitation Primitives

Â P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

Â P2. Physical memory massaging. Trick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

Â P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

17

The Three Exploitation Primitives ðP2

Â P2. Physical memory massaging. Trick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

Ç ñMassagingò memory precisely enough to push the victim
page to use the vulnerable cell to store security-sensitive data.

Â x86 techniques:

Ç Spray memory with page tables, hoping for one of them to
land in a vulnerable physical memory page.

Ç Memory deduplication

Ç MMU paravirtualization.

18

ÅSpraying memory is probabilistic and the other features

are not enabled by default or donôt exist on stock Android.

The Three Exploitation Primitives

Â P1. Fast uncached memory access. The ability to
activate rows fast enough to trigger the Rowhammer bug
while bypassing cache.

Â P2. Physical memory massaging. Trick the victim
component to use a memory cell that is subject to the
Rowhammer bug.

Â P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

19

The Three Exploitation Primitives ðP3

Â P3. Physical memory addressing. Understand how
physical memory addresses are used in the virtual address
space of an unprivileged process.

Ç Find virtual addresses that map to aggressor rows.

Â x86 techniques:

Ç Access the pagemap interface file which contains complete
information about the mapping of virtual to physical addresses

Ç Use huge virtual pages that are backed by physically
contiguous physical pages.

20

ÅThe pagemap is not available in userland.

ÅHuge virtual pages are not enabled by default.

DRAMMER ðImplementing the

Primitives on Mobile Devices

21

Attacks on Android

Â How do we implement these three primitives on Android?

22

P1. Fast uncached memory access.

P2. Physical memory massaging.

P3. Physical memory addressing.

Support for P1 and P3

Â To support efficient memory sharing between different
hardware components, the OS provides direct memory
access (DMA) memory management mechanisms.

Â Android provides DMA Buffer Management APIs through its
main memory manager called ION, giving userland apps
access to uncached, physically contiguous memory.

23

Support for P1 and P3

Â P1. Fast uncached memory access:

Ç Processing pipelines involving DMA buffers bypass the CPU
and its caches.

Â P3. Physical memory addressing:

Ç Most devices perform DMA operations to physically contiguous
memory pages only, so the OS provides allocators that
support this kind of memory.

24

P2. Physical Memory Massaging

Â To deterministically land security-sensitive data in a
vulnerable physical memory page following steps are taken:

Ç Determine DRAM chipôs row size to understand memory
model for later templating

Ç Memory Templating to find memory locations susceptible to
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in
susceptible location

25

P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory
model for later templating

Ç Memory Templating to find memory locations susceptible to
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in
susceptible location

26

Determine DRAM chipõs row size

Â ARM does not document row size, nor does it provide a
instructions for fingerprinting DRAM modules.

Â Use a timing-based side channel:

27

Bank 1 Bank 2 Bank 3

Row size

Page 1

Â Reading from same bank takes longer than reading from
two different banks.

Page 2

Pages being accessed:

(1,2)

Determine DRAM chipõs row size

Â ARM does not document row size, nor does it provide a
instructions for fingerprinting DRAM modules.

Â Use a timing-based side channel:

28

Bank 1 Bank 2 Bank 3

Row size

Page 1

Â Reading from same bank takes longer than reading from
two different banks.

Page 3

Pages being accessed:

(1,3)

Determine DRAM chipõs row size

Â ARM does not document row size, nor does it provide a
instructions for fingerprinting DRAM modules.

Â Use a timing-based side channel:

29

Bank 1 Bank 2 Bank 3

Row size

Page 1

Â Reading from same bank takes longer than reading from
two different banks.

Page 4

Pages being accessed:

(1,4)

Determine DRAM chipõs row size

Â Allows us to create heatmap representing time
required to access a given pair of edges. Here the
row size is 16 pages = 64KB.

Â The x-axis and y-axis describe the page table thatôs
being accessed.

30

P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory
model for later templating

Ç Memory Templating to find memory locations susceptible to
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in
susceptible location

31

Memory Templating on ARM

Â Memory templating: Find cells vulnerable to bitflips.

Â Remember: DMA memory allocator gives us physically
contiguous memory.

32

Memory Templating on ARM

Â ñHammerò the victim row in between and check for bitflips.

33

Aggressor row

11

Aggressor row

Memory Templating on ARM

Â ñHammerò the victim row in between and check for bitflips.

34

11

Memory Templating on ARM

Â ñHammerò the victim row in between and check for bitflips.

35

1111111111111111110111111111111111111111111111111111111111

P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory
model for later templating

Ç Memory Templating to find memory locations susceptible to
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in
susceptible location

36

What is the Sensitive Data?

Â We want to store a page table in the susceptible vulnerable
virtual page.

Â Recall that page tables map virtual addressesto a physical
address.

37

Flipping Bits in Page Tables

38

Flipping Bits in Page Tables

39

Phys Feng Shui

Â Phys Feng Shui : New technique that lures the buddy
allocator into reusing and partitioning memory in a
predictable way.

40

But how do we get a page table into a

vulnerable location in physical

memory?

Buddy Allocator

Â Linux platforms minimize external fragmentation by splitting
and merging available memory in power-of-2 sized blocks
using the buddy allocator.

41

Allocated

16KB free

16KB free

Buddy Allocator

Â It iteratively splits larger blocks in half as necessary until it
finds matching block.

42

Allocated

16 KB free

8 KB allocated 8 KB free

Buddy Allocator

Â It always prioritizes the smallest fitting block when splitting.

43

Allocated

16 KB free

8 KB allocated 8 KB allocated

Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of
same sizes.

44

Allocated

16 KB free

8 KB freed 8 KB allocated

Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of
same sizes.

45

Allocated

16 KB free

8 KB freed 8 KB freed

Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of
same sizes.

46

Allocated

16 KB free

Merged to 16 KB free space

Phys Feng Shui ðTricking the Allocator

Memory chunk where we have exploitable bit flip (not allocated currently)

Â The goal is to land
a page table in the
yellow memory
chunk where we
have an exploitable
bit flip.

Â Weôre going to
exhaust and free
memory to get
page table in that
yellow location.

Phys Feng Shui ðExhaust(L)+Template(L)

Â Exhaust chunks of size L and probe them for vulnerable
templates.

48

L chunk: Largest possible contiguous chunk of memory

Phys Feng Shui ðExhaust(M)

Â Blocks of size M or larger are no longer available.

49

M chunk: Medium sized chunk with the site set to row size

Phys Feng Shui ðFree(L)

Â Release block of size L with exploitable template.

50

Phys Feng Shui ðExhaust(M)

Â After exhausting M chunks again, we have a M chunk that
holds exploitable template.

51

Phys Feng Shui ðFree(M)+FreeAll(L)

Â Release memory pressure due to lack of swap space in
mobile devices.

52

Phys Feng Shui ðLand(S)

Â Repeatedly allocate S chunks until we land in M with
exploitable chunk.

53

S chunk: Small sized chunk with the size fixed at page size

Phys Feng Shui ðPadding(S)

Â Add padding using S chunks

54

Phys Feng Shui ðMap(M)

Â Force page table allocation

55

P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory
model for later templating

Ç Memory Templating to find memory locations susceptible to
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in
susceptible location

56

Reproduce Bit Flip

Â Map the PTEwith a bit flip at offset bit n to a location 2 n

pages away from the PT.

Â The bit-flip in PT will cause the page table entry to point to
PT itself.

57

Phys Feng Shui

58

Page table entry vulnerable to bit flip

Bit flip will occur here

