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Executive Summary
Â Motivation: Current Rowhammer exploits are mostly 

probabilistic and most studies only focus on x86. 

Â Goal: Implement deterministic Rowhammer attack on ARM 
devices.

Â Challenges: 

Ç Fast uncached memory access

Ç Put page table into Rowhammer exploitable memory

Ç Find aggressor rows

Â Key Ideas: 

Ç Use Androidôs DMA buffers to get uncached contiguous 
memory

Ç Use predictability of memory allocator to put a page table into 
exploitable memory

Â Result: Many ARMv7devices and one ARMv8device have been 
successfully exploited using DRAMMER.

3



Background, Motivation 

& Goals
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The RowhammerHardware Vulnerability
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A Software-Induced Hardware Fault

Â Repeatedly accessing (ñhammeringò) aggressor rows can 
cause bit flips in neighboring rows. The example above 
demonstrates a double-sided Rowhammer.
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Motivation

Â No previous study has been done on the impact of 
Rowhammer on ARM devices.

Â All known techniques only target x86 architectures and 
cannot be readily translated to ARM.

Â Prior to this paper it was unclear if the Rowhammer
vulnerability even occurs on ARM devices.

Â Exploitation techniques are either probabilistic or rely on 
special memory management features.

Â These probabilistic Rowhammer attacks offer weak 
reliability guarantees:

Á No guarantee that victim object is actually placed in vulnerable 
physical memory location

Á No reliable prediction of outcome of corruption the victim 
object.
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Goals

Â Show that deterministic Rowhammer exploitation using only 
commodity features on Android/ARM is possible.

Â Evaluate effectiveness of DRAMMER.
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DRAMMER - Preparation
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Rowhammerpossible on ARM?

Â ARM memory controllers are slower than the ones used in 
x86.

Â Is the memory controller too slow to trigger the 
Rowhammer vulnerability?
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Rowhammerpossible on ARM?

Â Double-sided Rowhammer
on the same 5MB of 
physical memory with 
artificially increasing time 
in between two read 
operations. Performed on 
LG Nexus 5 device running 
Android 6.0.1.

Â The attack was performed 
with full privileges.

Â This shows that the 
Rowhammer vulnerability 
can be induced.
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Threat Model

Following assumptions are made:

Â We run an ARM-based device running Android 6.0.1 with:

Ç all updates installed

Ç all security measures activated

Ç and no special features enabled

Â The attacker has control over an unprivileged Android App 
without any permissions.

Â The attacker aims to perform a privilege escalation attack 
to acquire root privilege.
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Rowhammer- The Three Exploitation Primitives

Â P1. Fast uncached memory access. The ability to 
activate rows fast enough to trigger the Rowhammer bug 
while bypassing cache.

Â P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

Â P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

How are these primitives handled by currently known 
Rowhammer exploitation techniques?
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The Three Exploitation Primitives ðP1

Â P1. Fast uncached memory access. The ability to activate rows fast 
enough to trigger the Rowhammer bug while bypassing cache.

Ç CPU memory might not be fast enough and read instructions are 
masked out by multiple layers of cache.

Â x86 techniques:

Ç Explicit cache flush using the clflush instruction.

Ç Repeatedly access addresses belonging to the same cache eviction 
set.

Ç Issue memory reads using non-temporal access instructions.
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The Three Exploitation Primitives ðP2

Â P2. Physical memory massaging. Trick the victim 
component to use a memory cell that is subject to the 
Rowhammer bug.

Ç ñMassagingò memory precisely enough to push the victim 
page to use the vulnerable cell to store security-sensitive data.

Â x86 techniques:

Ç Spray memory with page tables, hoping for one of them to 
land in a vulnerable physical memory page.

Ç Memory deduplication

Ç MMU paravirtualization.
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ÅSpraying memory is probabilistic and the other features 

are not enabled by default or donôt exist on stock Android.
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The Three Exploitation Primitives ðP3

Â P3. Physical memory addressing. Understand how 
physical memory addresses are used in the virtual address 
space of an unprivileged process.

Ç Find virtual addresses that map to aggressor rows.

Â x86 techniques:

Ç Access the pagemap interface file which contains complete 
information about the mapping of virtual to physical addresses

Ç Use huge virtual pages that are backed by physically 
contiguous physical pages.
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DRAMMER ðImplementing the 

Primitives on Mobile Devices

21



Attacks on Android

Â How do we implement these three primitives on Android?
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P2. Physical memory massaging. 

P3. Physical memory addressing. 



Support for P1 and P3

Â To support efficient memory sharing between different 
hardware components, the OS provides direct memory 
access (DMA) memory management mechanisms.

Â Android provides DMA Buffer Management APIs through its 
main memory manager called ION, giving userland apps 
access to uncached, physically contiguous memory.
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Support for P1 and P3

Â P1. Fast uncached memory access:

Ç Processing pipelines involving DMA buffers bypass the CPU 
and its caches.

Â P3. Physical memory addressing:

Ç Most devices perform DMA operations to physically contiguous 
memory pages only, so the OS provides allocators that 
support this kind of memory.
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P2. Physical Memory Massaging

Â To deterministically land security-sensitive data in a 
vulnerable physical memory page following steps are taken:

Ç Determine DRAM chipôs row size to understand memory 
model for later templating

Ç Memory Templating to find memory locations susceptible to 
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in 
susceptible location

25



P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory 
model for later templating

Ç Memory Templating to find memory locations susceptible to 
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in 
susceptible location

26



Determine DRAM chipõs row size

Â ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

Â Use a timing-based side channel:
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Determine DRAM chipõs row size

Â ARM does not document row size, nor does it provide a 
instructions for fingerprinting DRAM modules.

Â Use a timing-based side channel:
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Determine DRAM chipõs row size

Â Allows us to create heatmap representing time 
required to access a given pair of edges. Here the 
row size is 16 pages = 64KB. 

Â The x-axis and y-axis describe the page table thatôs 
being accessed. 
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P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory 
model for later templating

Ç Memory Templating to find memory locations susceptible to 
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in 
susceptible location
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Memory Templating on ARM

Â Memory templating: Find cells vulnerable to bitflips.

Â Remember: DMA memory allocator gives us physically 
contiguous memory. 
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Memory Templating on ARM

Â ñHammerò the victim row in between and check for bitflips.
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Â ñHammerò the victim row in between and check for bitflips.
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P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory 
model for later templating

Ç Memory Templating to find memory locations susceptible to 
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in 
susceptible location

36



What is the Sensitive Data?

Â We want to store a page table in the susceptible vulnerable 
virtual page. 

Â Recall that page tables map virtual addressesto a physical
address.
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Flipping Bits in Page Tables
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Flipping Bits in Page Tables
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Phys Feng Shui

Â Phys Feng Shui : New technique that lures the buddy 
allocator into reusing and partitioning memory in a 
predictable way.
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But how do we get a page table into a 

vulnerable location in physical 

memory?



Buddy Allocator

Â Linux platforms minimize external fragmentation by splitting 
and merging available memory in power-of-2 sized blocks 
using the buddy allocator.
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Buddy Allocator

Â It iteratively splits larger blocks in half as necessary until it 
finds matching block.
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Buddy Allocator

Â It always prioritizes the smallest fitting block when splitting.
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Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of 
same sizes.
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Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of 
same sizes.

45

Allocated

16 KB free

8 KB freed 8 KB freed



Buddy Allocator

Â When freeing blocks again, it tries to merge free blocks of 
same sizes.
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Phys Feng Shui ðTricking the Allocator  

Memory chunk where we have exploitable bit flip (not allocated currently)

Â The goal is to land 
a page table in the 
yellow memory 
chunk where we 
have an exploitable 
bit flip.

Â Weôre going to 
exhaust and free 
memory to get 
page table in that 
yellow location.



Phys Feng Shui ðExhaust(L)+Template(L) 

Â Exhaust chunks of size L and probe them for vulnerable 
templates.
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L chunk: Largest possible contiguous chunk of memory



Phys Feng Shui ðExhaust(M)  

Â Blocks of size M or larger are no longer available.
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M chunk: Medium sized chunk with the site set to row size



Phys Feng Shui ðFree(L) 

Â Release block of size L with exploitable template. 
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Phys Feng Shui ðExhaust(M) 

Â After exhausting M chunks again, we have a M chunk that 
holds exploitable template. 
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Phys Feng Shui ðFree(M)+FreeAll(L) 

Â Release memory pressure due to lack of swap space in 
mobile devices.
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Phys Feng Shui ðLand(S) 

Â Repeatedly allocate S chunks until we land in M with 
exploitable chunk.
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S chunk: Small sized chunk with the size fixed at page size



Phys Feng Shui ðPadding(S) 

Â Add padding using S chunks
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Phys Feng Shui ðMap(M) 

Â Force page table allocation
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P2. Physical Memory Massaging

Ç Determine DRAM chipôs row size to understand memory 
model for later templating

Ç Memory Templating to find memory locations susceptible to 
Rowhammer

Ç Land sensitive data in susceptible location

Ç Reproduce the bit flip with security-sensitive data now in 
susceptible location
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Reproduce Bit Flip

Â Map the PTEwith a bit flip at offset bit n to a location 2 n

pages away from the PT.

Â The bit-flip in PT will cause the page table entry to point to 
PT itself.
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Phys Feng Shui 
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Page table entry vulnerable to bit flip
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