
Drammer: Deterministic 

Rowhammer Attacks on Mobile 

Platforms

Presented by Manuel Meinen
ETH Zürich

07 November 2018



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

2



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

3



Summary

◼ ARM based devices can be vulnerable to Drammer as well.

◼ Drammer:

❑ Memory templating

◼ Scan memory for vulnerable bits

❑ Land sensitive data

❑ Reproduce the bit flip

◼ Root access exploitation possible with high reliability.

❑ By modifying entries in Page Table Pages (PTP)

◼ Severe consequences for numerous devices that are 
currently in use.

4



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

5



Problem

◼ Rowhammer failure mechanism only exploitable in a 
probabilistic way

❑ Can it be done deterministically?

◼ Not clear if Rowhammer attacks are possible on ARM

❑ Some researcher thought that it might be impossible on ARM

6



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

7



Rowhammer Failure Mechanism

◼ Access adjacent rows
at a high frequency 
(hammer)

◼ This causes voltage 
leakage in the victim 
row

◼ Bit flips are induced

8

RAM

Victim Row

Hammered Row

Hammered Row

Hammered Row

Hammered Row



Primitives to exploit Rowhammer Bug – x86

◼ P1: Fast uncached memory access

❑ Explicit cache flush (clflush instruction)

❑ Cache eviction sets

❑ Non-temporal access instructions 

◼ P2: Physical memory massaging

❑ Page-table spraying (probabilistic)

◼ P3: Physical memory addressing

❑ Pagemap interface

❑ Huge pages

9



Rowhammer Bug on x86

◼ Probabilistic

❑ Page-table spraying used because we don’t know exactly 
where bitflips will occur.

◼ Countermeasures

❑ Disable clflush

❑ Error Correcting Codes (ECC)

❑ Probabilistic Adjacent Row Activation (PARA)

❑ Many more

10



Primitives to exploit Rowhammer Bug – ARM

◼ P1: Fast uncached memory access

❑ Explicit cache flush (clflush instruction)

❑ Cache eviction sets

❑ Non-temporal access instructions

◼ P2: Physical memory massaging

❑ Page-table spraying (probabilistic)

◼ P3: Physical memory addressing

❑ Pagemap interface

❑ Huge pages

11

Privileged instruction

Too slow

Only suggests to not cache it

Can crash the system

No unprivileged access anymore

Disabled on stock Android



Rowhammer Failure Mechanism

◼ x86 Architectures are known to be vulnerable if the DRAM 
is modern enough.

❑ Are ARM architectures vulnerable as well?

◼ Before this paper:

❑ Probabilistic Rowhammer attacks on x86 based devices

◼ Low reliability

◼ Limited impact in practice

◼ After this paper:

❑ Deterministic Rowhammer attacks

◼ High reliability

◼ Allows to completely subvert any vulnerable system

◼ Requires to trick the OS to put a page table in a known and 
vulnerable memory location.

12



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

13



Goal

◼ “Deterministic Rowhammer Attack on Mobile Platforms”

❑ Deterministic:

◼ Memory templating

◼ Land sensitive Data → Phys Feng Shui

◼ Reproduce the bit flip

◼ Note: This approach is not completely deterministic but much 
more reliable than the probabilistic approach that we know from 
Rowhammer attacks on x86.

❑ Rowhammer Attack:

◼ Vulnerable system required

❑ Mobile Platforms:

◼ ARMv7, ARMv8 running Android

14



Primitives to exploit Rowhammer Bug - ARM

◼ P1: Fast uncached memory access

❑ Provided by DMA buffer management APIs (ION)

◼ P2: Physical memory massaging

❑ Memory Templating

❑ Physical Memory Allocator

◼ Buddy allocator

❑ Phys Feng Shui

◼ P3: Physical memory addressing

❑ Provided by DMA buffer management APIs (ION)

15



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

16



Phys Feng Shui

◼ Variant of Flip Feng Shui

❑ FFS was used to mount attacks against other guest OSes 
running on the same hypervisor. 

◼ Goal

❑ Force the OS to place a page-table in a vulnerable memory 
location such that we can modify an entry in a deterministic 
way.

◼ Some size definitions

❑ S chunk = chunk of the size of a page (typically 4KB)

❑ M chunk = chunk of the size of a row (has to be determined)

❑ L chunk = largest possible contiguous chunk

17



Determining Row Size

◼ Access time for page 
pairs

◼ If access time 
increases then the 
pages are on different 
rows

❑ Therefore we can 
determine the row size

18

(0,1) (0,2) (0,3) … (0,16)



Phys Feng Shui

◼ Step 1: Fill in as many 
L chunks as possible 
and create templates

◼ Step 2: Fill in as many 
M chunks as possible

◼ Step 3: Free one L 
chunk where we want 
to launch the attack

19

Uninitialized MemoryExhaust(L) + Template(L)Exhaust(M)Free(L*)



Phys Feng Shui

◼ Step 4: Fill L* with M chunks

◼ Step 5: Free M* and all L chunks 
(M* is where we launch the 
attack)

◼ Step 6: Fill in S chunks until the 
first one falls into M*

◼ Step 7: Add padding to align 
victim page table

◼ Step 8: Launch attack on the 
victim page table that then 
points to a page table which we 
created in L*

20

P PP P PT

Exhaust(M)Free(M*) + FreeAll(L)Land(S)Padding(S)Map(M)



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

21



Empirical Results

22

17

1

4

5
0

5

10

15

20

25

ARMv7 ARMv8

Vulnerable Resilient



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

23



Threat Model

◼ Set up: 

❑ Attacker has control over an unprivileged app running on a 
ARM based Android device.

❑ No permissions at all.

❑ Latest stock version of Android with all the latest security 
updates installed.

❑ No special features enabled.

◼ Goal of the attacker: 

❑ To mount an privilege escalation attack to acquire root 
privileges.

24



Threat Model

25

Attacker

Application

+unprivileged

Device

+ARM based

+Latest stock Android

+No special features enabled

wants root privileges

controls

runs on



Novelty, Key Approach and Ideas

◼ First deterministic Rowhammer attack on ARM architecture

◼ Generalization of deterministic Rowhammer attacks on x86 
architecture

◼ Mounting a Drammer attack using Direct Memory Access 
(DMA) bypasses existing defenses (i.e. disabling clflush) 

on x86 architectures

26



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

27



Strengths

◼ Shows a severe problem current mobile devices have.

❑ First paper that shows a Rowhammer attack on ARM 
architecture based devices.

◼ The attack is deterministic.

❑ Much more serious consequences in practice.

◼ Very detailed description of the work that was done

28



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

29



Weaknesses

◼ All countermeasures have an overhead

◼ ARMv8 sample size too small

❑ No representative conclusion possible

❑ No explanation why they seem more resilient

◼ Tested only Android smartphones (i.e. no Smartwatches, no 
IPhones, etc.)

◼ Considering that the occurrence of bitflips also depends on 
environmental aspects, the sample size is clearly too small.

◼ Not so easy to understand (Phys Feng Shui)

30



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

31



Thoughts and Ideas

◼ Future research needs to test the influence factors like 
temperature, age of the components, etc. have on the 
number of vulnerable bits.

◼ A broader range of devices needs to be tested (also 
running other OSes than Android).

◼ More effective and efficient countermeasures need to be 
found.

32



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

33



Takeaways

◼ Rowhammer on ARM

◼ Deterministic exploitation

◼ Practical impact

34



Outline

◼ Summary

◼ Problem

◼ Background

◼ Goal

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Novelty, Key Approach and Ideas

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Questions/Open Discussion

35



QUESTIONS?

36



Discussion Question

◼ What do you consider being more valuable regarding 
security?

❑ Opensource Android

◼ Known that Drammer is possible 

◼ Countermeasures proposed by third parties

❑ Proprietary iOS

◼ Unsure if Drammer is possible

◼ If possible then there are not yet any countermeasures

37



Discussion Question

Opensource Android

◼ Positive:

❑ Huge research community 
doing research on Android

❑ More vulnerabilities get 
found and can be patched

◼ Negative:

❑ Attacker can learn more 
about the OS

❑ Practical attacks happen 
faster

Proprietary iOS

◼ Positive:

❑ Attackers have it harder to 
mount a practical attack 
since they know less about 
the OS

◼ Negative:

❑ Once an attacker is 
successful, he can be active 
for a very long time

❑ Fewer security researchers

38



Discussion Question

◼ Do you think it is okay that the researchers published the 
paper before Google was able to patch it’s devices?

39



Discussion Question

◼ Researchers reported the attack to Google 91 days before 
the release of the paper at CCS 2016

❑ Including some mitigation techniques

◼ Google asked them to delay the release of the paper

◼ The researchers refused

◼ Google asked them to obfuscate parts of the paper

◼ The researchers refused again

◼ → Did the researchers act responsibly? 

40



Discussion Question

◼ Can you think of countermeasures that have little to no 
overhead?

41



Discussion Question

◼ Hardware based:

❑ Probabilistic Adjacent Row Activation (PARA) looks promising

❑ Better isolation between rows in DRAM?

◼ Software based:

❑ Disallow features that can be used to satisfy the primitives P1-
P3

❑ Detect access patterns that could imply that an attack is 
happening

42



Supplementary Material

◼ [Video] CCS 2016 – Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms

❑ https://www.youtube.com/watch?v=lTaMvBN1PoA

◼ [Video] Computer Architecture – Lecture 2: RowHammer
and Beyond (ETH Zürich, Fall 2018)

❑ https://www.youtube.com/watch?v=560JzQ-oeLE

43

https://www.youtube.com/watch?v=lTaMvBN1PoA
https://www.youtube.com/watch?v=560JzQ-oeLE

