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l Executive Summary

Motivation: High-throughput true random numbers enable system security and

various randomized algorithms.
- Many systems (e.g., loT, mobile, embedded) do not have dedicated True
Random Number Generator (TRNG) hardware, but have DRAM devices

Problem: Current TRNGs either

1) need dedicated hardware
2) do not sample a fundamentally non-deterministic entropy source or are

too slow for continuous high throughput operation
Goal: A novel and effective TRNG that uses existing commodity DRAM to provide
random values with 1) high-throughput, 2) low latency and 3) no adverse effect
on concurrently running applications



l Executive Summary (contd.)

* D-RaNGe: Reduce DRAM access latency below reliable values and exploit the

failure probability of DRAM cells to generate random numbers
« Evaluation:
1) Experimentally characterize 282 real LPDDR4 DRAM devices
2) D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)
3) D-RaNGe (100ns) has significantly lower latency (180x)
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l Motivation

High-throughput True Random Numbers are required for many real-world
applications (i.e., cryptography for encryption, randomized algorithms,
scientific simulation)
True random numbers can only be generated by sampling a physical process
— Most systems rely on dedicated TRNG hardware
— Smaller devices (e.g., loT, mobile, embedded) require, but often lack, a
high-throughput TRNG
DRAM devices are available on most systems



l Problem

e Inspite of widespread need for TRNGs, they are not widely used
— Dedicated hardware is costly and needs a lot of room
— TRNGs implemented in DRAM are either too slow or unable to provide
continuous high-throughput streams of true random numbers



l Goal

Implement an effective TRNG in commodity DRAM:
1) Fully non-deterministic
2) Continuous high-throughput stream of true random numbers
3) Low latency

)
)
4) Low system interference
5) Low energy overhead

)

6) Low implementation cost
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l True Random Number Generator

« Samples a non-deterministic physical phenomenon to construct a bitstream of
random data. It typically consists of
1) Entropy source: physical phenomenon (e.g., jitter, Brownian motion,
metastable circuit). Should not be visible nor be modifiable by an adversary.
2) Randomness extraction technique: harvests random data from the entropy
source. Should have high throughput and not disturb the entropy source.
3) Post-processing: de-bias bits and correct for correlations in the bitstream
* Quality of arandom bit is quantified by its entropy



l Shannon Entropy

Notion from Information Theory [Shannon, 1948]
 For arandom variable X&{0,1} we define
H(X) === ) Pr[X =x]log Pr[X = x].
x€{0,1}
* |t describes the amount of information in bits we gain (in expectation) by
looking at the value of X.

e For Xuniformly distributed over {0,1} (ideal random bit) we have
H(X) = —0.51og, 0.5 — 0.510g,0.5=10.5+ 0.5 = 1.
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l DRAM organization
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l DRAM Operation
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l DRAM Access and Failures
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l DRAM Accesses and Failures
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l Activation Failures

* Location dependence
— Activation failure only on first row access

- Aweaker local sense amplifier => cells on bitline with higher F_ |
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l Key Idea

Based on two key observations:

1) The latency failure probability of a cell is inherently related to random
process variation from manufacturing. Thus, we can extract true random
values.

2) An activation failure can be induced very quickly.

The key idea is to extract random values from

DRAM cells that fail truly randomly.
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l Testing environment

Experimental test setup:
e 282 2y-nm LPDDR4 DRAM devices with 2GB size from 3 major manufacturers
* Thermally controlled testing chamber
— Ambient temperature range: {40°C - 55°C} + 0.25°C
— DRAM temperature held at 15°C above ambient
* Fine grained control over DRAM command and timing parameters with
SoftMC

- t.., reduced from 18ns to 10ns
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l D-RaNGe: Identification of RNG cells

« Finding cells that fail randomly when accessed with reduced t.._ (RNG cell)

1) Read cell 1000 times with reduced t, |

2) Approximate Shannon Entropy
3) Select good enough (Fprobzo.S) cells

RCD (

 Repeated access to RNG cells with reduced t_  yields a bitstream of true

random numbers
* Identification step needs to be repeated
- For different temperatures
— After some time
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l D-RaNGe Access Pattern

* To maximize the bits that are accessed immediately following activation, we
alternate accesses to distinct rows in each bank
- quickly generate t___ failures within cache lines in two rows

— maximizes the number of access failures per activation
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l D-RaNGe: Exclusive Access

* Inabank, find the two cache lines in distinct rows with the most RNG cells
* Reserve rows containing selected cache lines exclusively for D-RaNGe to
minimize interference
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l D-RaNGe: Exclusive Access (cont.)

* Write suitable data pattern in adjacent rows to maximize number of RNG cells
per cache line

* Alsoreserve adjacent rows exclusively for D-RaNGe to minimize pattern and
read interference
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D-RaNGe: Exclusive Access (cont.)

Write s ar of RNG cells
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l D-RaNGe: Implementation

* D-RaNGe can be fully implemented in the memory controller firmware

Fine-grained control over DRAM timing parameters needed (must be
provided by hardware)

* Provide a small queue (hardware or software) of harvested random data

* Expose an APl to the user

New ISA instruction (e.g. Intel RDRAND)

Request/Receive interface with memory mapped configuration status
registers

DMA-like access to queue of random data
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l Results: Non-Determinism

» Verified with NIST statistical test

NIST Test Name || P-value J§ Status
suite [Rukhin+, Tech report, 2001] o onobit 065 T pPAsS
_ frequency_within_block 0.096 PASS
Passes all tests o 0.501 pASS
e Provides unbiased output longest_run_ones_in_a_block 0.256 PASS
. binary_matrix_rank 0.914 PASS
— No post processing needed dft 0424 J| PASS
. . . non_overlapping template matchin >0.999 PASS
¢ Minimum cell entropy of 0.9507 bits overlappfrlljg_t?emplalze_matching : 0.624 PASS
maurers_universal 0.999 PASS
linear_complexity 0.663 PASS
serial 0.405 PASS
approximate_entropy 0.735 PASS
cumulative_sums 0.588 PASS
random_excursion 0.200 PASS
random_excursion_variant 0.066 PASS
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alue Status
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l Results: Latency
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* Latency directly related to density of available RNG cells per cache line
* Maxium latency: 960ns (1 RNG cell / cache line, 1 bank)
* Minimum empirical latency: 100ns (4 RNG cells /cache line, 32 banks) 31



l Resul

ts: Single channel throughput
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Number of Banks Utilized
e Rate simulated in Ramulator
 Minimum of 40Mb/s with all 8 banks
e Maximum for A/B/C: 179.4/179.4/134.5 Mb/s
e 4-channel max (avg) throughput: 717.4 (435.7) Mb/s



l Further Results

e System Interference:
— Capacity overhead: 6 DRAM rows per bank (~0.018%)
— Flexible level of interference
— Average throughput with SPEC CPU2006 workloads, issuing D-RaNGe
accesses only during idle times: 83.1 Mb/s
e Energy consumption:
- 4.4 nJ/bit
* Implementation cost:
— Can be implemented in software only
— Certain hardware prerequisites (control over DRAM timing parameters)
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Further Results

D-RaNGe implements an NGe
effective TRNG

Certain hardware prerequisites (control over DRAM timing parameters)
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Entropy True Streaming 64-bit TRNG Energy Peak
Proposal Year .
Source Random Capable Latency Consumption Throughput
| Pyo+[116] [ 2009 | CommandSchedule | x| «+ [  18us |  NA | 340Mb/s |

Keller+ [65] 2014 Data Retention v v 40s 6.8mJ/bit 0.05Mb/s

Tehranipoor+ [144] 2016 Startup Values v X > 60ns (optimistic) | > 245.9p7/bit (optimistic) N/A
Sutar+ [141] 2018 Data Retention v v 40s 6.8mJ/bit 0.05Mb/s
D-RaNGe 2018 | Activation Failures v v 100ns < x < 960ns 4.4n7/bit 717.4Mb/s

Table 2: Comparison to previous DRAM-based TRNG proposals.
Command Schedule:

* Does not sample inherently random phenomenon (lower bits of cylcle timer)
* Best performing proposal before D-RaNGe
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Entropy True Streaming 64-bit TRNG Energy Peak
Proposal Year .
Source Random Capable Latency Consumption Throughput

Pyo+ [116] 2009 | Command Schedule X v 18 N/A 3.40Mb/s
Keller+ [65] 2014 Data Retention v v 40s 6.8m7/bit 0.05Mb/s

Tehranipoor+ [144] 2016 Startup Values v X > 60ns (optimistic) > 245.9p7/bit (optimistic) N/A
Sutar+ [141] 2018 Data Retention v v 40s 6.8m7/bit 0.05Mb/s
D-RaNGe 2018 | Activation Failures v v 100ns < x < 960ns 4.4n7/bit 717.4Mb/s

Table 2: Comparison to previous DRAM-based TRNG proposals.

Data Retention:
* Inherently too slow (latency of 40s)
* Low throughput even at high DRAM capacity overhead (0.05 Mb/s at 32GB)
e High energy consumption due long idle periods
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Entropy True Streaming 64-bit TRNG Energy Peak
Proposal Year .
Source Random Capable Latency Consumption Throughput
Pyo+ [116] 2009 | Command Schedule X v 18us N/A 3.40Mb/s
Keller+ [65 2014 Data Retention v v 40s 6.8m7/bit 0.05Mb/s
Tehranipoor+ [144 > 245.9p7/bit (optimistic
Sutar+ [141] 2018 Data Retention v v 40s 6.8mJ/bit 0.05Mb/s
D-RaNGe 2018 | Activation Failures v v 100ns < x < 960ns 4.4n7/bit 717.4Mb/s

Table 2: Comparison to previous DRAM-based TRNG proposals.
Startup Values:

* DRAM startup values are random due to interaction between precharge and
row decoder logic and column select lines
e Requires a DRAM power cycle to extract the random values
— Unsuitable for continuous high-throughput operation
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l Key Contributions

Novel approach for extracting true random numbers from commodity
DRAM devices at hight throughput and low latency.

D-RaNGe uses DRAM cells as entropy sources to generate true random
numbers by accessing them with an access latency lower than
manufacturer recommendations.

Using experimental data from state of the art LPDDR4 DRAM modules a
rigorous characterization of randomness in errors induced by accessing
DRAM with low activation latency is presented.

The quality of D-RaNGe’s bitstream is evaluated using the NIST statistical
suite and is found to pass every test.

The performance of D-RaNGe is compared to other DRAM based TRNG’s.
40



l Outline

Motivation, Problem, Goal
Background

Key Idea

Methodology

D-RaNGe

Results

Comparison to Prior Work
Key Contributions
Strengths, Weaknesses
Related Work

Discussion

41



l Strengths

* Novel mechanism to extract high quality true random data at high
performance

e Can be applied to many real world applications

* Very flexible mechanism with respect to system integration and system
interference

* Repurposing of widely available hardware to completely different use

« Step towards processing in memory

e  Well written paper, good background provided
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l Weaknesses

* Profiling at different temperatures is necessary

* No consideration of security implications

* Only one DRAM failure mode considered as entropy source

* Profiling overhead is not considered

* Implementation is only easy if hardware supports control over DRAM timing
parameters and the firmware of the memory controller can be modified

» Testing only done at temperatures of 40°C to 55°C
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l Related Work
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l Discussion

» Canyou think of an improvement for D-RaNGe (i.e., for higher throughput)
— Combination with other proposals

* Will this problem become more relevant in the future? Is the proposed

solution future proof?

* What are possible security implications?
— Temperature attack
- RNG implemented in software (potentially modifiable by an adversary)
— Separate module (channels trusted)
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