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Abstract

In this paper, we propose a multithreaded

architecture which improves machine throughput. In

our processor architecture, instructions from different

threads (not a single thread) are issued simultaneously

to multiple functional units, and these instructions can

begin execution unless there are functional unit con-

flicts. This parallel execution scheme greatly improves

the utilization of the functional unit. Simulation results

show that by executing two and four threads in parallel

on a nine-functional-unit processor, a 2.02 and a 3.72

times speed-up, respectively, can be achieved over a

conventional RISC processor.

Our architecture is also applicable to the efficient ex-

ecution of a single loop. In order to control functional

unit conflicts bet ween loop iterations, we have devel-

oped a new static code scheduling technique. Another

loop execution scheme, by using the multiple control

flow mechanism of our architecture, makes it possible

to parallelize loops which are difficult to parallelize in

vector or VLIW machines.

1 Introduction

We are currently developing an integrated visualiza-

tion system which creates virtual worlds and represents

them through computer graphics. However, the gener-

ation of high quality images requires great processing

power. Furthermore, in order to model the real world as

faithfully as possible, intensive numerical computations

are also needed. In this paper, we present a processor
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architecture[l] used as the base processor in a parallel

machine which could run such a graphics system.

In the field of computer graphics, ray-tracing and ra-

diosity are very famous algorithms for generating re-

alistic images. In these algorithms, intersection tests

account for a large part of the processing time for the

whole program. This test has inherent coarse-grained

parallelism and can easily create many threads(parallel

processes) to be executed on multiprocessing systems.

Each thread, however, executes a number of data ac-

cesses and conditional branches. In the case of a dis-

tributed shared memory system, low processor utiliza-

tion can result from long latencies due to remote mem-

ory access. On the other hand, low utilization of func-

tional units within a processor can result from inter-

instruction dependencies and functional operation de-

lays. Another obstacle to the optimization of the single

thread execution arises if the past performance of a re-

peatedly executed conditional branch does not help in

predicting the target of future executions.

In order to overcome these problems, we introduced

two kinds of multithreading techniques into our proces-

sor architecture: concurrent multithreading and parallel

multithreading. The concurrent multithreading tech-

nique attempts to remain active during long latencies

due to remote memory access. When a thread encoun-

ters an absence of data, the processor rapidly switches

between threads. On the other hand, parallel multi-

threading within a processor is a latency-hiding tech-

nique at the instruction level. When an instruction

from a thread is not able to be issued because of ei-

ther a control or data dependency within the thread,

an independent instruction from another thread is exe-

cuted. This technique is especially effective in a deeply

pipelined processor.

Our goal is to achieve an efficient and cost-effective

processor design which is oriented specifically for use as

an elementary processor in a large scale multiprocessor

system rat her than for use in an uniprocessor syst em.

The idea of parallel multithreading arose from hard-

ware resource opt imizat ion where several processors are
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united and reorganized so that functional units could be

fully used. Figure l(a) shows a general multiprocessor

system organization. Multiple threads are executed on

each physical processor. For example, assume that the

utilization of the busiest functional unit of a processor

in Figure 1(a) is about 3070 because of the instruction

level dependency. The utilization of the functional unit

is defined as U = A?# x 100[Yo], where IV is the number

of invocations of the unit, L is an issue latency of the

unit, and T represents the total execution cycles of the

program. In this case, three processors could be united

into one as shown in Figure l(b), so that the utilization

of the busiest functional unit could be expected to be

improved nearly to 30x3= 90~0. Consequently, on the

united processor, multiple instructions from different

threads are issued simultaneously and executed unless

they conflict with one another to compete for the same

functional unit.

The programmer’s view of the logical processor in

Figure l(b) is almost as same as the view of physi-

cal processor in Figure 1(a), although the physical or-

ganization is different. In the field of numerical com-

putation, parallel loop execution techniques developed

for multiprocessor, such as doall or doacross techniques

which assign iterations to processors, are also applica-

ble to our processor.

In this paper, we will concentrate most of our ar-

chitectural interest upon parallel multithreading and

restrict ourselves to simply outlining concurrent multi-

threading. The rest of this paper is organized as follows.

In section 2, our multithreaded processor architecture

is addressed. Section 3 demonstrates the effectiveness

of our architecture via simulation results. In section

4, preceding works on multithreaded architectures are

presented to be compared with our architecture. Con-

cluding remarks are made in section 5.

2 Processor Architecture

2.1 Machine Model

2.1.1 Hardware Organization

As shown in Figure 2, the processor is provided with

several instruction queue unit and decode unit pairs,

called thread slots. Each thread slot, associated with

a program counter, makes up a logical processor, while

an instruction fetch unit and all functional units are

physically shared among logical processors.

An instruction queue unit has a buffer which saves

some instructions succeeding the instruction indicated

by the program counter. The buffer size needs to be at

least B= S x C words, where S is the number of thread

slots, and C is the number of cycles required to access

the instruction cache.
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Figure 1: Multiprocessor system organization

An instruction fetch unit fetches at most B instruc-

tions for one thread every C cycles from t,he instruc-

tion cache, and attempts to fill the buffer in the in-

struction queue unit. This fetching operation is done

in an interleaved fashion for multiple threads. So, on

the average, the buffer in one instruction queue unit

is filled once in B cycles. When one of the threads en-

count ers a branch instruction, however, that t bread can

preempt the fetching operation. The instruction cache

and fetch unit might become bottleneck for a processor

wit h many t bread slots. In such a case, snot her cache

and fetch unit would be needed.

A decode unit gets an instruction from an instruc-

tion queue unit and decodes it. The instruction set is

based on a RISC type, and a load/store architecture is

assumed. Branch instructions are executed within the

decode unit. The data dependencies of an instruction

are checked using the scoreboarding technique, and is-

sued if it is free of dependencies. Otherwise, issuing is

interlocked.

Issued instructions are dynamically scheduled by in-

struction schedule units and delivered to functional

units. Unless an instruction conflicts with other in-

structions issued from other decode units over the same
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functional unit, the instruction is sent immediately to

the functional unit and executed. Otherwise, the in-

struction is arbitrated by the instruction schedule unit.

When an instruction is not selected by an instruction

schedule unit, it is stored in a standby station and re-

mains there until it is selected. Standby stations can al-

low decode units to proceed with their operations even

if previously issued instructions cause resource conflicts.

For example, while a shift instruction stays in a standby

station, a succeeding add instruction from the same

thread could be sent to the ALU. Consequently, instruc-

tions from a thread are executed out of order, though

they are issued from a decode unit in order. A standby

station is a simple latch whose depth is one, and differs

from a reservation station in Tomasulo’s algorithm[2]

because issued instructions are guaranteed to be free of

dependencies in our architecture.

A large general-purpose register file, as well as

floating-point one, is divided into banks, each of which

is used as a full register set private to a thread. Each

bank has two read ports and one write port. More

read ports are unnecessary because operand data can be

stored in standby stations. In order to support concur-

rent multithreading, the physical processor is provided

with more register banks than thread slots. When a

thread is executed, the bank allocated for the thread

is logically bound to the logical processor. The exclu-

sive one-to-one binding between a logical processor and

a register bank guarantees that the logical processor

does not access any register banks other than the bank

bound to it. In contrast, queue registers are special

registers which enable communications between logical

processors at the register-transfer level.

Some disadvantages with our machine model include

the hardware cost of register files, multiple thread slots,

and dynamic instruction scheduling facilities. The in-

creased complexity in the network between functional

units and register banks is also a disadvantage.

2.1.2 Instruction Pipeline

Figure 3(a) shows the instruction pipeline of the logical

processor, which is a modification of a superpipelined

RISC processor as shown in Figure 3(b). In the logi-

cal processor pipeline, two instruct ion fet ch(IF) stages

are followed by two decode(D) stages, followed by a

schedule(S) stage, followed by multiple execution

stages, followed by a write(W) stage.

The IF stages are shown for convenience, and, in fact,

an instruction is read from a buffer of an instruction

queue unit in one cycle. In stage DI, the format or type

of the instruction is tested. In stage D2, the instruction

is checked if it is issuable or not. Stage S is inserted for

the dynamic scheduling in instruction schedule units.
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(a) Instruction pipeline of multithreaded processor

(b) Instruction pipeline of base RISC processor

Table 1: Functional unit and issue/result IIatencies of

instructions

functional category of

a

latency (cycle)

unit instructions issue result

Integer add fsubt ract 1

n

2

ALU logical 1 2

compare 1

H

2

Barrel Shifter shift 1 2

Integer multiply 1 6

Multiplier divide 1 6

FP Adder add/subtract 1 4

compare 1 4

absolute/negate 1 2

I I store 121[4)1

Figure 3: Instruction pipeline

The number of EX stages is dependent on the kind of

instruction. For example, in our simulation (section 3),

we assumed each operation had latencies as listed in Ta-

ble 1. The result latency means the number of cycles

before the instruction finishes execution (i.e. the num-

ber of EX stages), and the issue latency is the number

of stages before another instruction of the same type

may be issued. Since two cycles are assumed to be

required to access the data cache aa well as the instruc-

tion cache, the issue latency of load/store instructions

is two cycles. Other instructions can be accepted in ev-

ery cycle. So, the issue latency of these instructions is

one cycle. In stage W, the result value is written back

to a register.

Required operands are read from registers in stage

S. A scoreboarding bit corresponding to a destination

register is flaged on in stage S and off in the last of

the EX stages. This can avoid additional delay on the

initiation of data-dependent instructions. That is, as-

suming instruction 12 uses the result of instruction 11 as

a source, at least three cycles are required between 11

and 12 in Figure 3(a). The same cycles are also required

in the base RISC pipeline in Figure 3(b).

In the case of branch instructions, an instruction

fetch request is sent to the instruction fetch unit at the

end of stage D1, even if a conditional branch outcome

is still unknown at that point. Assume 11 is a branch

instruction and 13 is an instruction executed immedi-

ately after 11. In Figure 3(b), the delay between 11

and 13 is four cycles. But the delay in Figure 3(a) is

five. What is worse, it could become more than five if

some threads encounter branches at the same time. It

is obvious that the single thread performance is dam-

aged. In our architecture, however, while some threads

are blocked because of branches, other types of instruc-

tions from other threads are executed. Consequently,

the parallel multithreading scheme has a potential to

hide the delay of branches as well as other arithmetical

operation delays, and enhance machine throughput.

2.1.3 Support of Concurrent Multithreading

Each pair of general purpose and floating-point register

sets, together with an instruction address save register

and a thread status register, is conceptually grouped

into a single entity called a context frame, and allocated

to a thread. An instruction address save register and

a thread status register are used as save areas for the

program counter and program status words (which hold

various pieces of thread-specific state), respectively.

Since the processor has more context frames than

thread slots, context switching is achieved rapidly by

changing the logical binding between a logical proces-

sor and a context frame. As long as the number of

threads to be scheduled does not exceed the number

of physical context frames, threads can be resident on

the physical processor, reducing the overhead to save

or restore contexts to/from memory.

Another important element of the context frame is

the access requirement buffer, which contains outstand-

ing memory access requirements. When a thread in

running state issues load/store instructions, these ins-

tructions are copied and recorded in the access require-

ment buffer, and deleted when they are performed.

The processor is pipelined and standby stations en-

able out-of-order execution of instructions. This makes
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the restart mechanism of programs somewhat complex.

Before the thread is switched out, the logical processor

should wait until all issued instructions but load/store

instructions are performed. A load/store instruction is

not always performed in short latency, and this is the

main source of context swit thing in our architecture.

Therefore, the load/store instructions in the execution

pipeline could be flushed. But the restarting of threads

is possible because such outstanding memory access re-

quests are also saved as a piece of the context. When

the thread is resumed, instructions in the access re-

quirement buffer are decoded again and re-executed,

being followed by the instruction indicated by the in-

struction address save register. This mechanism also

ensures imprecise but restartable interrupts on page

fault. Mechanisms similar to this can be applied to

floating-point exception handling.

Context switching is triggered by a data absence trap.

Detailed conditions concerning such traps must be con-

sidered with care, because incorrect choices can crest e

starvation and thrashing problems. We will report our

solution including cache/memory architecture in an-

other paper in the future.

2.2 Instruction Scheduling Strategy

In this section, we present the dynamic instruction se-

lection policy in the instruction schedule unit. Simple

selection policy is preferable, so as not to enlarge the

instruction pipeline pitch.

Figure 4 illustrates an example of the policy with

multi-level priorities. A unique priority is assigned to

each thread slot. Unless an issued instruction conflicts

with other instructions from other thread slots to which

higher priorities are assigned, it is selected by the in-

struction schedule unit. In order to avoid starvation,

the priorities are rotated. The lowest priority is as-

signed to the thread slot which had the highest priority

before the rotation.

The instruction schedule unit works in one of two

modes: implicit-rotation mode and explicit-rotation

mode. The mode is switched to the alternative mode

through a privileged instruction. In the implicit-

rot ation mode, priority rotation occurs at a given num-

ber of cycles( rotation interval), as shown in Figure 4.

On the other hand, in the explicit-rotation mode, the

rot ation of priority is controlled by software. The rota-

tion is done when a change-priority instruction is exe-

cuted on the logical processor with the highest priority.

There are two reasons why our architecture supports

the explicit-rotation mode. One is to aid the compiler

to schedule the code of threads executed in parallel

when it is possible. The other is to parallelize loops

which are difficult to parallelize using other architec-

tures. These features are discussed in section 2.3.2 and

2.3.3, respectively.

2.3 Parallel Execution of a Single Loop

2.3.1 Overview

Parallel execution of a single loop is available on our

multithreaded machine, by assigning iterations to log-

ical processors. For example, in the case of a physical

processor with n thread slots, the kth logical processor

executes the ni+ kth(i = O, 1,. . .) iteration respectively.

The explicit-rotation mode presented in section 2.2

is one of the facilities supporting parallel execution of

a loop. In this mode, a context switch due to data ab-

sence is suppressed and a physical processor is occupied

entirely by the threads from a loop. In the usual case,

a change-priority instruction is inserted at the end of

each iteration by the compiler.

A fast-fork instruction generates the same number

of threads as logical processors by setting its own next

instruction address to program counters of other thread

slots and activating them. It also sets unique logical

pro cessor identifiers to special registers corresponding

to each logical processor. Each thread, therefore, can

be informed which iterations it executes.

In the case of doall type of loops, it is unneces-

sary for logical processors to communicate with one

another. But the execution of doacross type of loops re-

quires communicant ion between logical processors. One

solution would be communication through memory.

But in order to reduce the communication overhead,

we provide the processor with queue registers. They

are queue-structured registers connected to functional

units.

The connection topology among logical processors

through queue registers is important when considering

the trade-offs between hardware cost and its effect. One

simple and effective connection topology is a ring net-
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work, as shown in Figure 5. Many doacross type of

loops’ encountered in p~actice have &e iteration-differ-

ence. When a loop has more than one iteration differ-

ence, data should be relayed through several logical pro-

cessors. This could create overhead. Some techniques,

however, are available to convert loops so that the it-

eration difference is reduced to one. Loop unrolling is

one such technique[3].

Queue registers are enabled and disabled by spe-

cial instructions. When enabled, two queue regis-

ters, for reading from the previous and writing to the

next logical processor respectively are mapped into two

general-purpose or floating-point registers. The refer-

ence to such registers is interpreted as the reference

to queue registers, reducing data move overheads be-

tween queue registers and general/floating-point regis-

ters. Full/empty bits attached to queue registers are

available as scoreb oar ding bits.

2.3.2 Static Code Scheduling

As mentioned in section 1, in the case of computer

graphics programs, it is often difficult to predict the

control sequence of a thread before execution, be-

cause the sequence is determined dynamically by data-

dependent branches. In such cases, in order to obtain

high throughput, the compiler could employ no other

techniques than a simple list scheduling algorithm[4].

The compiler reorders the code without consideration

of other threads, and concentrates on shortening the

processing time for each thread. Short processing time

of a single thread means a high issuing rate of instruc-

tions because the number of instructions is constant

whether scheduled or not. Though this scheduling ap-

proach does not have control over resource conflicts, it

aims at flooding functional units with sufficient instruc-

tions by parallel execution of such scheduled code.

On the other hand, in the caee of numerical com-

putation programs, it is often possible to predict the

execution-time behavior of a loop. Therefore, the

compiler employs more judicious code scheduling tech-

niques.

For example, software pipelining[5, 6], which is an

effective code scheduling technique for VLIW architec-

tures, employs a resource reservation table to avoid re-

source conflicts. Such a technique is also i~pplicable to

our architecture. But it might postpone the issue of

instructions which would cause a resource conflict. So,

straight use of the algorithm could miss c}pportunities

to issue instructions. Consequently, we have developed

a new algorithm which makes the most of the function

of standby stations and instruction schedule units.

Our algorithm employs not only a resource reserva-

tion table but also a standby table whose entry corre-

sponds to a standby station. Our algorithm differs from

software pipelining in the point described below. When

all of the instructions without dependencies at an issu-

ing cycle have resource conflicts, a softwiwe pipeliner

would generate a NOP code. Our code scheduler, how-

ever, checks entries of the standby table for those in-

st ruct ions. If an entry is not marked, the instruction

is determined to be issued and the entry is marked.

This means the instruction is stored in a standby sta-

tion. The explicit-rot ation mode enables the compiler

to know which instruction is selected. The resource

reservation table is not used only to determine if there

is a resource conflict, but also to tell the compiler when

the instruction in the standby station is executed.

2.3.3 Eager Execution of Sequential Loop Iter-

at ions

Using an example, this section shows that our architec-

ture can parallelize loops which are difficult to paral-

lelize using vector or VLIW architectures.

The source code fragment of a sample program is

shown in Figure 6. This program traverses a linear

linked list. Although it is a simple example, it demon-

strates the application of our execution scheme using a

loop structu~e” that is fundamental to

programs.

ptr = header;

while ( ptr ! = NULL ) {

tmp = a * ( (plm->point:

nany application

-> X:)

+ b * ( (ptr->point )-->y) + c;

if(tmp <O)

break;

ptr = ptr -> next;

>

Figure 6: A sample program (written in C)

Each iteration is executed on a logical processor, and

the value of ptr is passed through queue registers. The
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compiler generates multiple versions for a variable ptr

so that iterations can be initiated without having to

wait for preceding iterations to complete. Such opti-

mization with respect to a variable is a variation of the

use of variables in dataflow machines. Figure 7 illus-

trates the parallel execution scheme. Each thread re-

ceives the value of ptr from the thread executed in the

immediately preceding iteration, and passes the next

value to the thread executed in the immediately suc-

ceeding iteration. After that, the thread continues to

execute the rest of the loop body.

A thread can initiate an iteration which might not

have been executed in the sequential execution. So, we

call this scheme eager execution.

The instruction selection policy in instruction sched-

ule units plays an important part in preserving the se-

mant ics oft he sequential program. The execution of an

iteration is not acknowledged until the thread gets the

highest priority. It is the thread with the highest pri-

ority who executes the earliest iteration remaining at

that point. By using multilevel priority, the instruction

selection policy guarantees the execution of succeeding

iterations does not hinder the execution of preceding

iterations.

When a thread has exited from the loop, it tries to

stop the operation of other thread slots and to kill other

running threads. Such a special instruction is valid only

for the thread with the highest priority. When a thread

without the highest priority tries to execute this in-

struction, it is put into an interlocked state until it is

given the highest priority.

If the variable tmp is global and alive after the loop,

the compiler should use the special store instruction

which is performed only by the thread with the highest

priority. This guarantees that writes to the memory

location of tmp are performed in order with respect to

the source code. Some instructions are also provided to

ensure consistency between contexts of threads before

and after the execution of the loop.

3.1 Simulation Model and Assumptions

In the following four sections, we present simulation re-

sults of our parallel multithreading architecture. Since

cache simulation has not yet been implemented in our

simulator, we assumed that attempts to access caches

were all hit.

We used two kinds of functional unit configurations

(see Figure 2). One consists of seven heterogeneous

units. The other consists of those units with another

load/store unit. In practice, a data cache might consist

of several banks in order to be accessed simultaneously

by two load/store units. But our simulation assumed

there wm no bank conflict. Latencies of each instruc-

tion are listed in Table 1. All machines simulated in

this paper are not equipped with delayed branch mech-

anisms, branch prediction facilities, or overlapped reg-

ist er windows.

In order to estimate our architecture, we use the

speed-up ratio as a criterion. It is defined as the pro-

portion of total cycles required by multithreaded exe-

cution to those by sequential execution. Sequential ex-

ecution means the execution of the sequential version of

program on a RISC based processor whose instruction

pipeline is shown in Figure 3(b).

3.2 Speed-up by Parallel Multithread-

ing

This section presents simulation results of our multi-

threaded machine. As an application program, we have

chosen a ray-tracing program, which can be easily par-

allelized at every pixel. The program written in C was

compiled by a commercial RISC compiler with an op-

timization option. The object code was executed on

a workstation, and traced instruction sequences were

translated to be used for our simulator.

Table 2 lists speed-up ratios when the rotation in-

terval in the instruction schedule unit is eight cycles.

In the case of a processor with one load/store unit,

an 1.83 times speed-up is gained by parallel execution

of two instruction streams, although all of the hard-

ware of a single-threaded processor is not duplicated in

the pro cessor. A performance improvement of a factor

of 2.89 is still possible with four thread slots, though

it is less effective (2.89/1.83=1.58) than the improve-

ment attained by increasing from one to two thread

slots (1.83). When eight thread slots are provided, the

utilization of the busiest functional unit, the load/store

unit, becomes 9970. This is the reason why the speed-

up ratio is saturated at only 3.22 times. Addition of

another load/store unit improves speed-up ratios by

10.4w79.8%.
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Table 2: Speed-up ratio by parallel multitthreading

with one with two

no. of load/store unit load/store units

thread without with without with

slots standby standby standby standby

stat ion stat ion stat ion station

2 1.79 1.83 2.01 2.02

4 2.84 2.89 3.68 3.72

8 3.22 3.22 5.68 5.79

Standby stations improve the speed-up ratio by

0N2.2%. This low improvement is due to poor paral-

lelism within an instruction stream. In the case of ap-

plication programs whose thread is rich in fine-grained

parallelism, greater improvement can be achieved.

We also simulated a machine whose thread slots are

provided with private instruction caches and instruc-

tion fetch units. Such organization does provide a slight

speed-up. Achieved speed-up ratios are the same as

those in Table 2, except that 1.79 and 5.79 is respec-

tively replaced by 1.80 and 5.80. This shows that the

delay due to instruction fetch conflicts is hidden and

sharing an instruction cache between thread slots is

possible.

We also examined the execution cycles with various

rotation intervals (2n cycles, where n is 0w8). But, in

this application program, rotation interval did not have

much influence on the performance, though using eight

or sixteen cycles seems slightly superior.

3.3 Multithreading with Superscalar

Design

In our simulator, each thread slot can support multi-

ple instruction issuing from a single instruction stream

similar to superscalar architectures. In this section, us-

ing the same program as in section 3.2, we discuss hy-

brid architectures which employ both coarse- and fine-

grained parallelism.

A hybrid processor is represented here by (Zl,S)-

processor, where D is the maximum number of instruc-

tions which a thread slot issues each cycle, and S is

the number of thread slots. For a fair comparison, the

hardware cost of (d,s)-processor is almost as same as

that of (1 ,dx s-)-processor. For example, the instruction

fetch bandwidth is dxs words per cycle in both proces-

sors. Although (d x 2,s/2)-processor is provided with a

half register set of (d,s)-processor, it requires double the

number of register ports. Each thread slot checks the

dependencies of instructions in the instruction window

of size D, and issues instructions without dependencies

every cycle. The instruction window is filled every cy-

Table 3: Tradeoff between speed-up and employed par-

allelism (speed-up ratio)

-E
2 2.02

R

1.31 ] — —

4 3.72 2.43 1.52 —
la , 1

8 5.79 4.37 2.79 ml

cle. Some techniques [7, 8] are proposed to boost the

superscalar performance, but they are not provided for

the thread slot because they requires additional hard-

ware.

Table 3 lists the simulation resirlts. Values in the ta-

ble are speed-up ratios. Simulated processors are com-

posed of eight functional units. We used the instruction

pipeline shown in Figure 3(b) for a (d, 1)-processor, and

the pipeline shown in Figure 3(a) for others. This tablle

demonstrates that the increase of S produces a more

significant speed-up than the increase of D.

The main objective of multithreading is to enhance

the machine throughput. On the other hand, the main

objective of superscalar architecture is to improve the

single t bread performance. This difference of obj ect ives

makes a simple comparison of the two architectures im-

possible. But, from the viewpoint of cost-effectiveness,

it is clear that D= 1 is the best choice if parallel multi-

threading is introduced into a processor architecture.

3.4 Effect of Static Code Scheduling

We will compare static code scheduling strategies dis-

cussed in section 2.3.2. The sample program is the Liv-

ermore Kernel 1. The source code is shown in Figure

8.

DO IK=l, N

1 X(K) = Q+Y(K)*(R*Z(K+IO) +T*Z(K+II))

Figure 8: Livermore Kernel 1 (written in FORTRAN)

Table 4 lists average execution cycles fcm one itera-

tion. The source code was compiled by a commercial

compiler, and the generated object code was scheduled

by our code schedulers. The simulated machine has

one load/store unit. Strategy A represents a simple list

scheduling approach, and strategy B represents the list

scheduling approach with a resource reservation tab [e

and a standby table.

Strategy B is overall superior to other strategies.

It achieves the performance improvement by 0N19.3%
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Table 4: Comparison of static code scheduling

no. of optimization strategy

thread non- strategy strategy

slots optimized A B

1 50 42 .
1 11 , ,

E=EEREl
6 8.83 8 8
7 8.125 8 8

8- 8 8
(unit: 8cycle)

over non-optimized code. The differences between ef-

fectiveness of strategy A and strategy B, however, are

small in this program. Although strategy A achieves

nearly the same effectiveness at a lower cost, strategy

B should be employed in order to optimize the program.

The object code contains three load instructions and

one store instruction, so at least (3+1)x2=8 cycles are

required for one iteration. This is the reason of perfor-

mance saturation.

3.5 Effect of Eager Execution

In section 2.3.3, the eager execution scheme of sequen-

tial loop iterations is addressed. This section reports

simulation results of the execution of the sample pro-

gram shown in Figure 6. The simulated machine has

one load/store unit.

The execution of the sequential version of the object

code requires 56 cycles for one iteration. Table 5 lists

the average execution cycles of the parallel version for

one iteration. With a small number of thread slots,

when a new value of ptr is passed to the next thread

through a queue register, the thread is still executing

a preceding iteration. An increase in the number of

thread slots enables a thread to initiate an iteration as

soon as the data is available, but the speed-up ratio is

limited by the inter-loop dependency of ptr.

Since parallel code includes more overhead in loop

headers and footers than sequential code, sequential ex-

ecution performs better than parallel execution when

the number of iterations is small. As the number of

iterations increases, the maximum speed-up ratio be-

comes closer to 56/17=3.29 times.

4 Related Works

The concept of concurrent multithreading is discussed

in HEP[9], MASA[1O], Horizon[l 1], and P-RISC [12].

Table 5: Evaluation of eager execution of sequential

loop iterations

no. of execution cycle

thread slots for one iteration

2 32.5

3 21.67

4- 1 17

These processors support cycle-by-cycle interleaving of

instructions from multiple instruction streams. In or-

der to improve poor performance of single thread ex-

ecution in these machines, APRIL [13], and [14] sup-

port block interleaving in which a thread keeps control

until it encounters a remote memory access. The hy-

brid data-flow/von Neumann machine[15] also employs

the latter type of interleaving. Our concurrent multi-

threading scheme builds on such a block interleaving

architecture. In our architecture, however, combina-

tion with parallel multithreading enables other threads

to continue working during context switches.

Farrens and Pleszkun[16] take a multithreading ap-

proach to increase instruction issuing rate. This idea

is closely allied to the basic one of our parallel multi-

threading. In their architecture, two instructions from

two threads compete with each other to be issued, but

the total number of issued instructions each cycle is still

at most one. On the other hand, in our architecture,

multiple instructions can be issued unless there are re-

source conflicts.

Daddis and Torng[17] propose a superscalar archi-

tecture which uses multiple threads to increase func-

tional unit utilization. Prasadh and WU[18] present

a VLIW architecture which does the same. In our

opinion, such hybrid architectures are not as cost-

effective as a multithreaded non-superscalar architec-

ture as mentioned in section 3.3. Functional unit uti-

lization is an important factor, but the instruction

fetch bandwidth sufficient to sustain multiple functional

units must also be considered. For example, although

Prasadh’s four-threaded, eight-functional-unit proces-

sor achieves about eight times speed-up, it requires an

instruction fetch bandwidth of thirty-two words per cy-

cle.

5 Concluding Comments

In this paper, we proposed a multithreaded archi-

tecture oriented for use as a base processor of mul-

tiprocessor systems. Through the simulation using

a ray-tracing program, we ascertained that a two-

threaded, two-load/store-unit processor achieves a fac-

tor of 2.02 speed-up over a sequential machine, and
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a four-threaded processor achieves a factor of 3.72

speed-up. We also examined the performance of multi-

threaded architecture combined with superscalar tech-

nique. This evaluation, however, shows the best cost-

effectiveness is achieved when a processor employs only

coarse-grained parallelism and ignores fine-grained par-

allelism.

We developed a static code scheduling algorithm ap-

plicable for our architecture, which is derived from idea

of software pipelining. We also investigate possibilities

for broadened use of parallel multithreading scheme.

One instance of such intention is presented as an eager

loop execution scheme. It parallelizes loops which are

difficult to be parallelized with other architectures.

One weak point of this paper is the poor variety of

tested programs. We should confirm the effectiveness of

our architecture by using many other application pro-

grams. We are currently working on evaluating finite

cache effects and the detailed design of the processor.
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