Fairness via Source Throttling:

A Configurable and High-Performance Fairness Substrate for
Multi-Core Memory Systems

Eiman Ebrahimi | Chang Joo Lee | Onur Mutlu | Yale N. Patt

ASPLOS 2010 HPS Research Group Computer Architecture Laboratory
The University of Texas at Austin Carnegie Mellon University

Executive Summary

Cores in a chip-multiprocessor system share multiple hardware
resources in the memory subsystem
= |nterference in the shared resources can lead to unfair slowdown for some applications

Problem: Existing fairness mechanisms focus on a single resource

= Multiple independently implemented mechanisms can make contradictory decisions, leading to
low fairness and loss of performance

Goal: provides fairness in the entire shared memory system without degrading

performance

Key Contributions: Fairness via Source Throttling(FST) provides two major
mechanisms

= 1) Runtime fairness evaluation

= 2) Dynamic request throttling

Major Results: improve performance by 25.6%/14.5% and reduce unfairness by
44%/36%

Felix Tockner | 28.11.2019 | 2

Outline

= Background, Problem & Goal
= Novelty

= Key Approach & ldeas

= Mechanism

= Methodology & Evaluation

= Conclusion

= Takeaways

= Strengths and Weaknesses
= Thoughts & Ideas

= Open Discussion

Felix Tockner | 28.11.2019 | 3

Outline

Background, Problem & Goal

Felix Tockner | 28.11.2019 | 4

System Layout

Felix Tockner | 28.11.2019 | 5

System Layout

Origin of inter-core
' interference

...

Felix Tockner | 28.11.2019 | 6

Interference and delays lead to slowdown

w5 L 6
- £
S S |

equal priority
same slowdown

zeusmp art bzip2 art
Disparity in slowdowns due to unfairness

Felix Tockner | 28.11.2019 | 7

Previous Approach

= Previous research focused on individual resources

Felix Tockner | 28.11.2019 | 8

Previous Approach

Access order: Al Bl Cache hit
Al, A2, A3, A4, A5, A6, A7 A2 : Wait for busy bank
ﬁi Memory access
A1[A2]A4]A7 " S
A7 :
Shared L2 cache B N
A’s stall time
(a) Initial State for (b) Application A’s
application A running alone alone memory-related stall time
""""""""""""""" Accessorder:
Bl1, B2, B3
Bl
B2
B1/B2[B3[B4 B3
Shared L2 cache B's stall time
(c) Initial State for (d) Application B’s
application B running alone alone memory-related stall time

Felix Tockner | 28.11.2019 | 9

Previous Approach

Il Cache hit
Wait for busy bank

Access order: Memory access

Al, A2, A3, A4, A5, A6, A7,B1, B2, B3

7
S I

S 7
A7
AlAZATE B2 R x<<‘§3§9>¥9352§&>§ﬂ‘<&517 77
Shared LL2 cache B3 R R RIELERRS '5&3‘ 3 ’i?"&ﬂ'/%j,;_i;;’/"%,/;,’;i
A’s stall time '

B’s stall time
(e) Initial state for no fairness control (f) Memory—related stall time of no fairness control

Al
Access order: A?.‘/
Al, A2, A3, A4, A5, A6, A7,B1,B2, B3 A3|
Ad| EZ V’>\>;\'
85
R Y ;
Al1|A2/B1|B2 AT T ,_4//4,,4/4
Bl
B2 .
Shared L2 cache B3 R RS RRH LA -Sfi‘.&;%&,cl&,”f»&’%x??%&‘g&?Tx%iﬁ&&éﬁ?&%’;i?ﬁ‘,dlif/' 700
: A’s stall time ! N
B’s stall time
(g) Initial state for fair cache (h) Memory-related time of fair cache

Felix Tockner | 28.11.2019 | 10

Previous Approach

= Previous research focused on individual resources

= |tis challenging to properly coordinate multiple fairness mechanisms
= Partitioning one resource may change demands on another shared resource

Felix Tockner | 28.11.2019 | 11

Outline

= Novelty

Felix Tockner | 28.11.2019 | 12

System-Wide Fairness

= Tackle unfairness in the entire shared memory system
= Eliminate the need for multiple fairness mechanisms

= Control fairness by orchestrating memory requests
= Rate of memory request injections
= Number of memory request injections

Access order: _.,_T__.‘_‘.!'_?FFIEF?.E?_‘_I'.-.'.‘?S@ Al
Al1,B1,B2,B3,;A2, A3, A4, A5, A6, AT Bl 7

... 2
Al[A2[A7[B2 N
A4
A5

Shared L2 cache A6 7

A7 T

| . A’s stall time g

(1) Initial state for B’s stall time
fair source throttling (FST) (j) Memory-related stall time of FST

Felix Tockner | 28.11.2019 | 13

Outline

= Key Approach & ldeas

Felix Tockner | 28.11.2019 | 14

Interval based Estimation and Throttling

Interval 1 Interval 2 Interval 3

| - - - -

| Calculate Unfairness &

Slowdown .
Determine request rates

. Estimation for Interval 2 using feedback
Time from Interval 1

Outline

= Mechanism

Felix Tockner | 28.11.2019 | 16

Runtime Fairness Evaluation

= Goal: dynamically estimate system unfairness

= Slowdown: Tgared! Taione
" Tshareq: NUMber of cycles to execute simultaneously with other applications
" T.one: NUMDber of cycles to execute alone

= Estimating T, While running multiple applications
" Tecess: NUMber of excess execution cycles induced by inter-core interference

- Talone — lshared - Texcess
Tshared , MAX{ISo,ISq,....,]1SN_1}
. , Unfairness =

MIN{ISp,ISy,....,ISN_1}

1S; =
Tglone

Felix Tockner | 28.11.2019 | 17

Tracking Inter-Core Interference

= Three sources of inter-core interference:
= Shared cache
= DRAM bus and bank
= DRAM row-buffer

* |nterferencePerCore bit-vector
= |ndicate whether a core is delayed due to inter-core interference

= Bit-vector for each source Cache

= Update main copy by taking union of the source bit-vectors = s%°2"
Row-Buffer

Felix Tockner | 28.11.2019 | 18

Cache Interference

= Goal: Estimating inter-core interference on the cache by tracking cache misses
caused by another core

= Pollution filter for each core

= Bit-vector is indexed by the lower order bits of the accessed cache line address

= A set entry in the bit-vector indicates that a cache line belonging to this core was evicted by
another core

= Three steps in case of cache miss:
= 1) on cache miss access pollution filter with the missing address and check wether bit is set
= 2) set the bit in the InterferencePerCore vector and reset the bit in the pollution filter
= 3) when the interfered-with memory request is serviced reset the InterferencePerCore bit

Felix Tockner | 28.11.2019 | 19

DRAM Bus & Bank Interference

= (Goal: Estimate inter-core interference caused by an inability to access DRAM
due to another core using the bus or requesting service from the bank

= This situation is easily detectable
= |f detected the corresponding InterferencePerCore bit is set

= The InterferencePerCore bit is reset when no request from this core is being
prevented access to DRAM by another cores requests

Felix Tockner | 28.11.2019 | 20

DRAM Row-Buffer Interference

= Goal: Estimate interference caused by the conversion of row-buffer hits to a
miss/conflict due to another cores memory request

= Shadow Row-Buffer Address Register for each core and for each bank
= Whenever memory request accesses some row X, the SRAR is updated to X

= Three Steps in case of Row-Buffer miss:
= 1) on row-buffer miss consult SRAR
= 2)if the SRAR bit is set, interference is present, hence InterferencePerCore bit is set
= 3) once the memory request is serviced the InterferencePerCore bit is reset

Felix Tockner | 28.11.2019 | 21

Interval 1 Interval 2 Interval 3

- » - - - o

| Calculate Unfairness &

Slowdown .
Determine request rates

. Estimation for Interval 2 using feedback
Time from Interval 1

Felix Tockner | 28.11.2019 | 22

Estimation of T, ... for Core i

= Every cycle:
= Check whether core i experiences interference
= |ncrement T, css DY 1

Talone= shared 'Texcess
Tshared MAX{ISy,1Sy,....,ISN_
IS; = — , Unfairness = 115 ! N1}

Talone MIN{ISo,IS1,....,1SN_1}

Felix Tockner | 28.11.2019 | 23

Interval 1 Interval 2 Interval 3

- » - - - o

| Calculate Unfairness &

Slowdown .
Determine request rates

. Estimation for Interval 2 using feedback
Time from Interval 1

Felix Tockner | 28.11.2019 | 24

Dynamic Request Throttling

= Check whether the estimated unfairness is bigger than a certain unfairness
threshold

= Throttle down application with the smallest slowdown
= Throttle up application with the largest slowdown

= After fairness was achieved for a certain number of successive intervals:
= Throttle up all applications

Felix Tockner | 28.11.2019 | 25

Throttling Mechanisms

= 1) Adjust MSHR quota
= MSHR quota determines the max. number of outstanding misses for each core
= Reduce the pressure by decreasing the number of concurrent request contending for service

= 2) Adjust the rate of issuing requests to the shared cache
= Reduce number of memory requests per unit time
= This allows requests from other applications to be prioritized

Felix Tockner | 28.11.2019 | 26

System Software Support

= Different Fairness Objectives:
= The goal to be achieved by FST can be configured by system software (trigger condition)

= Thread Weights:
= Adjust priority of different applications by applying weights

= Thread Migration and Context Switches:
= On context switch or thread migration the corresponding interference state is cleared
= On restart of execution, the thread starts with max. throttle and then FST dynamically adapts

Felix Tockner | 28.11.2019 | 27

Scalability to more Cores

= Each core maintains a set of N-1 counters, with N being the number of cores,
which keep track of the inter-core interference caused by each other core

= This can be used to identify which core experiences the most slowdown
(AppPsiow) and who of the other cores is the main contributor (App;ntertering)

= Once identified, the main contributor will be throttled down and Appg,,, Will be
throttled up

= Cores other than the Appg,, and AppPinerering are throttled up every threshold
intervals to optimize performance

Felix Tockner | 28.11.2019 | 28

Preventing Bank Service Denial due to FR-FCFS

= FR-FCFS has the potential to starve application with no row-buffer locality
= Even if the interfering application gets throttled down the problem can still exist
= This denial of service can happen continuously

= Stop prioritizing row-buffer hits

Felix Tockner | 28.11.2019 | 29

Outline

= Methodology & Evaluation

Felix Tockner | 28.11.2019 | 30

System Specification

6.6 GHz out of order processor, 15 stages,

Decode/retire up to 4 instructions

Issue/execute up to 8 micro instructions

256-entry reorder buffer

= In-house cycle-accurate x86 CMP simulator Front End Fetch up to 2 branches; 4K-entry BTB
64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line

L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

m i i i On-chip Caches Shared unified L2: IMB (2MB for 4-core), 8-way (16-way
Fa|tth”y mOdel a” port Contentlon’ quel'“ng for 4-core), 16-bank, 15-cycle (20-cycle for 4-core), 1 port,

Execution Core

effects, bank conflicts, and other major 64B line size
. On-chip, FR-FCES scheduli licy [27
D D R3 D RAM SyStem ConStraI ntS DRAM Controller 12118-Cer1$ry MSHR arfc? rflellllli)rll‘i f:q:lceyst[bu]ffer

667MHz bus cycle, DDR3 1333MHz [20]
8B-wide data bus

DRAM and Bus Latency: 15-15-15ns (*RP-*RCD-CL)
8 DRAM banks, 16KB row buffer per bank
Round-trip L2 miss latency:

Row-buffer hit: 36ns, conflict: 66ns

Felix Tockner | 28.11.2019 | 31

Workloads

= 18 two-application workloads from the SPEC CPU 2000/2006 benchmark

= Two-application workloads were chosen such that at least one of them is highly
memory-intensive

= 10 four-application workloads from the SPEC CPU 2000/2006 benchmark

= Four-applications workloads were chosen such that at least one of them has high intensity
and one has at least medium or high intensity

Felix Tockner | 28.11.2019 | 32

Metrics

= Weighted Speedup(Wspeedup):

= |PCalore js the IPC(instructions per cycle) measured when running alone
= |PCshared js measured while running in tandem with other applications

= Harmonic mean of Speedups(Hspeedup):
= Balanced measure between fairness and system throughput

N—1
IPC§hared N
W speedup = E IP(;alone Hspeedup = ~ 1
. i Z Ipcytone
1=0 7
Ipcffha"r'ed

1=0

Felix Tockner | 28.11.2019 | 33

Methodology

= NoFairness:

= Employs no fairness techniques in the shared memory subsystem
= Uses LRU cache replacement and FR-FCFS

= FairCache:
= Uses Virtual private caches technique for fair capacity management

= NFQ+FairCache:

= Uses a network fair queuing(NFQ) fair memory scheduler combined with FairCache

= PAR-BS+FairCache:

= Use parallelism-aware batch scheduling fair memory scheduler and FairCache

Felix Tockner | 28.11.2019 | 34

2-Core System Results

= All Fairness techniques degrade Wspeedup

to some extent Average performance on the 2 core system
2.5 0.7 1.4
= Unsophisticated fairness mechanisms can 0.6 1.21
have a negative effect on system j:_f 0] 0.5 1.0
performance £ 15 04 0.8]
= === No Fairness Technique
D 1.0 0.34 0.6 9| == Fair Cache
= FST provides a significantly better balance § 0.2 044 NFH LA ke
between system fairness and performance 0> 0.1 0.2==FST
| N
0.0- 0.0 0.0

(a) Unfairness (b) Hspeedup (c) Wspeedup

Felix Tockner | 28.11.2019 | 35

4-Core System Results

= Previous fairness mechanisms fail to

improve system fairness significantly Average performance on the 4 core system
= Prioritize nonintensive applications regardless

. 0.5 2.2
of whether or not those experience slowdown ;”: 2.0
o 0.4 183
= 3.0- — 1.6+
= FST is the best technique for system fairness £ 25 031 e
and Hspeedup, while not falling behind in S 207 0 1.0 = No Fairness Technique
215 2 0.8 == Fair Cache
Wspeedup = o 0.6 4 ==NFQ + Fair Cache
- 0.1 0.4 4 =PAR-BS + Fair Cache
0.5‘ 0.2_ _FST
0.0- 0.0 sl B
(a) Unfairness (b) Hspeedup (c) Wspeedup

Felix Tockner | 28.11.2019 | 36

Case Study

g 1.0 w— 0TOMACS T
v 0.8 = astar —
o7 —h264ref |
: . < 0.6 _— ——
= Art and Astar are memory intensive: = 05 - B
>
= These are slowed down too much by gg-;‘: B
NFQ+FairCache and PAR-BS+FairCache, causing 2 0ol B
: . S 0.
high unfairness 2 0.1 -
- . @ - |
= |nability to detect when slowdown is caused 00 No Faimess NFQ+ PAR-BS+ roT
— 100 Technique Fair Cache Fair Cache
<%}
! 5.0 0.5 2.0
fo N
5 80 o 40 0.4 —
& 70 woooes [evel 100 ‘L 55 1.51
< " k —=1Level 50 2 30) 03] B ‘ |
g —].evel 25 i D5 1.0- = No Falme..ss Technique
2 50 ——1evel 10 ot 20, 0] B == NFQ + Fair Cache
= ¢ 22 : = PAR-BS + Fair Cache
qE; 40 === [eve] 5 ;3 1.51 0.5]==FST
= 30 \ [evel 4 1.0- 0.1 -
= 0.0 0.0 — 0.0 L
8 m— | cvel 2 _
E 10 (a) Unfairness (b) Hspeedup (c) Wspeedup
0 l"']"i

gromz;cs_06 art_00 astar_ 06 h264ref 06
Felix Tockner | 28.11.2019 | 37

Hardware Cost

Cost for N cores

CostforN=4

FExcessCycles counters N X N X 16 bits/counter 256 bits
- 2048 entries X N X 24,576 bits
Interference pollution filter per core (1 pollution bit + (log2 N) bit processor id)/entry
Inter feringCoreld per MSHR entry 32 entries/core X N X 2 interference sources X (logs N) bits/entry 512 bits
Inter ference PerCore bit-vector 3 interference sources X N X N x 1 bit 48 bits
Shadow row-buffer address register N x # of DRAM banks (B) x 32 bits/address 1024 bits
Successive Flairness Achieved Intervals counter
Intervals T'o Wait To T hrottle U p counter per core (2 x N+ 1) x 16 bits/counter 144 bits
Inst Count Fach Interval per core
Core id per tag store entry in K MB L2 cache 16384 blocks/Megabyte X K X (loga N) bit/block 65,536 bits

Total hardware cost for N-core system

Sum of the above

92092 =11.24 KB

Percentage area overhead
(as fraction of the baseline K MB L2 cache)

Sum (KB) x 100/ (K x 1024)

11.24KB/2048KB
=0.55%

Hardware cost of FST on a 4-core CMP system

Felix Tockner | 28.11.2019 | 38

Outline

= Conclusion

Felix Tockner | 28.11.2019 | 39

Executive Summary & Conclusion

Cores in a chip-multiprocessor system share multiple hardware
resources in the memory subsystem
= |nterference in the shared resources can lead to unfair slowdown for some applications

Problem: Existing fairness mechanisms focus on a single resource

= Multiple independently implemented mechanisms can make contradictory decisions, leading to
low fairness and loss of performance

Goal: provides fairness in the entire shared memory system without degrading

performance

Key Contributions: Fairness via Source Throttling(FST) provides two major
mechanisms

= 1) Runtime fairness evaluation

= 2) Dynamic request throttling

Major Results: improve performance by 25.6%/14.5% and reduce unfairness by
44%/36%

Felix Tockner | 28.11.2019 | 40

Outline

= Takeaways

Felix Tockner | 28.11.2019 | 41

Takeaways

= |n order to ensure good performance for multiple applications in a shared
system, controlling system-wide fairness is necessary

= By implementing FST one can decrease system complexity, due to the fact that
no more coordination between multiple fairness techniques is needed

Felix Tockner | 28.11.2019 | 42

Outline

= Strengths and Weaknesses

Felix Tockner | 28.11.2019 | 43

Strengths

= A new approach to an old problem, which will only get worse with
rising core counts

= |n addition to improving system-wide fairness it also provides comparable or
superior performance compared to prior fairness mechanisms

= Reduce system complexity by replacing multiple resource-based mechanisms
with FST

= FST can accomplish multiple different fairness objectives

= The evaluation provides a good overview, while the case study provides more
insight

= |tis well written

Felix Tockner | 28.11.2019 | 44

Weaknesses/Limitations

= False positive and negative in the pollution filter

= |Implementation cost of FST may scale poorly since the number of cores directly
determines the cost

= Diminishing returns on a system with a lot of thread migration and context
switches

= The optimal unfairness threshold mentioned in the paper might be hard to find

Felix Tockner | 28.11.2019 | 45

Outline

Thoughts & Ideas

Felix Tockner | 28.11.2019 | 46

Thoughts and Ideas

* |nterval-based estimation and throttling
= What impact will an application with rapidly and randomly changing memory intensity have?

= Aggressiveness levels
= \Would it make sense to have throttle function based on slowdown instead of fixed levels?

= Security aspects are not evaluated
= Could a single or a group of bad actors attack FST?

Felix Tockner | 28.11.2019 | 47

Outline

= Open Discussion

Felix Tockner | 28.11.2019 | 48

Discussion starters

Will the problem become more important over time?
= Are there situations where FST might not work??

= Do you think the increase in cost due to higher bank and core counts will be
overshadowed by the increase in performance?

= (Can you think of some disadvantages that | missed or even some way of
improving FST?

Felix Tockner | 28.11.2019 | 49

Backup Slides

Felix Tockner | 28.11.2019 | 50

Algorithm 2 Estimation of Teycess for core i

Every cycle
if inter-core cache or DRAM bus or DRAM bank or

DRAM row-buf fer inter ference then

1: check wether some sort of inter-core

set Inter ferencePerCore bit i — interference is present
set Inter feringCoreld in delayed memory request 2: if increment the ExcessCycles counter
end if

if Inter ference PerCore bit i is set then
Increment FxcessCycles for core i

end if

)\

Every L2 cache fill for a miss due to interference OR
Every tim.e a memory request which is a row-buffer miss due to inter- 1: whenever a interfered with memory request
ference is serviced . . is serviced reset InterferencePerCore bit and

reset Inter ferencePerCore bit of core i t InterferinaCoreld of it i
Inter feringCoreld of core i =i (no interference) _ Setinterteringlorela ot core | O_I
2: whenever a memory request is scheduled

Every time a memory request is scheduled to DRAM and also has no other request waiting on any
if Core i has no requests waiting on any bank which is busy servicing bank busy servicing another core
another core j (j != i) then

reset Inter ferencePerCore bit of core i
end if

Felix Tockner | 28.11.2019 | 51

Dynamic request throttling

Algorithm 1 Dynamic Request Throttling

if E'stimated Un fairness > Unfairness T hreshold then
Throttle down application with the smallest slowdown

Throttle up application with the largest slowdown = Thisis a Slmpllfled version for dual cores

Reset Successive Fairness Achieved Intervals

else

if Successive Fairness Achieved Intervals = threshold then = After a certain number of fair intervals both
Throttle all applications up

Reset Successive Fairness Achieved Intervals cores are allowed to throttle up
else

Increment Successive Fairness Achieved Intervals
end if
end if

Felix Tockner | 28.11.2019 | 52

Algorithm 3 Dynamic Request Throttling - General Form

if Estimated Un fairness > Un fairness Threshold then
Throttle down application that causes most interference
(Appinter fering) for application with largest slowdown
Throttle up application with the largest slowdown (Appsiow)
Reset Successive Fairness Achieved Intervals
Reset Intervals T'o Wait T'o T'hrottle Up for Appinter fering-

/I Preventing bank service denial
il Appinterfering throttled lower than Switchyp, AND causes
greater than Inter ference;y,- amount of Appg,q,°s total interference
then
Temporarily stop prionitizing Appinierfering due (0 row hits in
memory controller
end if
if Appliow”itNoLPrioriLize.d has not been Appinl,e.rfe.ring for
SwitchBack;p, intervals then
Allow it to be prioritized in memory controller based on row-buffer
hit status of its requests
end if

for all applications except Appinier fering and Appgiow do
if Intervals To Wait To Throttle Up = thresholdl then
throttle up
Reset Intervals To Wait T'o T hrottle Up for this app.
else
Increment Intervals T'o Wait T'o Throttle Up for this app.
end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then
Throttle up application with the smallest slowdown
Reset Successive Fairness Achieved Intervals
else
Increment Successive Fairness Achieved Intervals
end if
end if

-

_—

- 1) Responsible for throttling down the most interfering application

- 2) Solving bank service denial due to FR-FCFS

3) Throttling up all applications that are neither Appgjow NOr
ADPPinterfering €VEry threshold1 intervals

- 4) Throttling up ??7? application after number of threshold2
intervals

Felix Tockner | 28.11.2019 | 53

FST Parameter used in the evaluation

= We use 8 different aggressiveness levels:
= 2%, 3%, 4%, 5%, 10%, 25%, 50% and 100%

Fairness |Successive Fairness|Intervals Waztrt|Interval
Threshold| Achieved Intervals |To T hrottle Up| Length
Threshold
1.4 4 2 25Kinsts

Switchip, | Inter ferencesn, |SwitchBacky,

5% 70% 3 intervals

Felix Tockner | 28.11.2019 | 54

