
Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

GRIM-Filter:
Fast seed location filtering in DNA read mapping

using processing-in-memory technologies
Published in BMC Genomics 2018

Presented by Alexander Frey

General Outline

Summary of the paper
Strength
Weaknesses
Discussion

2

 Genome Read Mapping is a very important problem and is the first
step in genome analysis

 Read Mapping is an approximate string matching problem
 Find the best fit of 100 character strings into a 3 billion character dictionary
 Alignment is currently the best method for determining the similarity between

two strings, but is very expensive

 We propose an algorithm called GRIM-Filter
 Accelerates read mapping by reducing the number of required

alignments
 GRIM-Filter can be accelerated using processing-in-memory

 Adds simple logic into 3D-Stacked memory
 Uses high internal memory bandwidth to perform parallel filtering

 GRIM-Filter with processing-in-memory delivers a 3.7x speedup

3

Executive Summary

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

1. Motivation and Goal

2. Background Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Motivation and Goal
 Sequencing: determine the [A,C,G,T] series in DNA strand

 Today’s machines sequence short strands (reads)
 Reads are on the order of 100 –2M base pairs (bp)
 The human genome is approximately 3 billion bp

 Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed
 Read mapping is the first step in analyzing someone’s genome to

detect predispositions to diseases, personalize medicine, etc.

 Goal: We want to accelerate end-to-end performance
of read mapping

6

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Background: Read Mappers
We now have sequenced reads and want a full genome

8

via Read Mapping

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in reads
perfectly match in the reference genome

… G A C T G T G T C G A …

G A C T G T G T C A A

✔✔✔✔✔✔✔✔✔✘✔✔✔✔✔✔✔✔✔✔✘✔

We can use a hash table to help quickly map the reads!

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Generating Hash Tables

10

To map any reads, generate a hash table per reference genome.

A A A A A 12 35 502 610 721 989

A A A A C 13 609 788

A A A A T 36 434

G G G G G 52 67 334 634 851

…

k-length sequences
(k-mers)

Location list where k-mer occurs
in the reference genome

@36: AAAAT

@434: AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations

Aligning...Mismatch

8943715641401203

1564

894 1203

37 140

Hash Tables in Read Mapping

11

Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203

1564

We want to filter these out
so we do not waste time

trying to align them

Aligning...Match! Aligning...Mismatch

Aligning...MismatchAligning...Mismatch

✘ ✘
✘✘

99.9% of locations
result in a mismatch

Location Filtering
 Alignment is expensive and requires the use of O(n2)

dynamic programming algorithm
 We need to align millions to billions of reads

 Modern read mappers reduce the time spent on alignment
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly

 Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]

12

Our goal is to accelerate read mapping
by improving the filtering step

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Filter

8943715641401203

1564

894 1203

37 140

Hash Tables in Read Mapping

14

Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203

1564

Aligning...Match! Aligning...Mismatch

✘✘
✘

False
Negative

✘

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

16

GRIM-Filter: Bins

17

 We partition the genome into large sequences (bins).

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector

AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in
bin x

CCCCT
doesn’t
exist in
bin x

 Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token) in
the bin

 To account for matches that straddle
bins, we employ overlapping bins
 A read will now always completely fall within

a single bin

GRIM-Filter: Bitvectors

18

… C G T G A G T C …

Bin x

0
…

…

…

…

…

B
in

 x
 B

it
ve

ct
o

r

AAAAA
…

CGTGA
…

TGAGT
…

GAGTC
…

GTGAG
…

C G T G AG T G A GT G A G TG A G T C

10

0

0

0

1

1

1

GRIM-Filter: Bitvectors

19

Storing all bitvectors
requires ௡ bits
in memory,
where t = number
of bins.

For bin size ~450,
and n = 5,
memory footprint
~3.8 GB

Reference
Genome

bin2

bin3

AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1
(a)

���

bin4

AAAAA
AAAAC
AAAAG
AAAAT

.
CCCCT

.

.

.

.
GCATG

.
TTGCA

.
TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

  

b1 b2

tokens

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

20

TTGGAGAACTAACTTACTTGCTTGG

INPUT: Read Sequence r
GAACTTGGAGTCTA CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens

Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare

20

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

22

GRIM-Filter: Error Tolerance

one substitution error
affects four tokens

when n = 4

Threshold = read_length – (n–1) –

n × read_length × e

number of errors
allowed per read

maximum
number of tokens

that could contain errors

total number of tokens in a read
single substitution error

More details in the paper

GRIM-Filter can support different error tolerances by
simply changing the threshold value

22

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

24

Integrating GRIM-Filter into a Read Mapper

GRIM-Filter:
Seed Location Checker

0001010 011010...

GAACTTGCGAG GTATT ...
INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask

0001010 011010...

020128 020131 414415...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference
segment

@ 020131

reference
segment

@ 414415
. . .

OUTPUT: Correct Mappings

1

2

4

3

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Key Properties of GRIM-Filter
1. Simple Operations:

 To check a given bin, find the sum of all bits corresponding to
each token in the read

 Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

27

3D-Stacked Memory

 3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing-in-Memory, offloading

computation to this layer and alleviating the memory bus
 Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

28

DRAM Layers

Logic Layer

TSVs

DRAM Layers

Logic Layer

TSVs

Bank

Vault

3D-Stacked Memory

 3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing in Memory, offloading

computation to this layer and alleviating the memory bus
 Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

29
http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

DRAM Layers

Logic Layer

TSVs

Bank

Vault

3D-Stacked Memory

 3D-stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing in Memory, offloading

computation to this layer and alleviating the memory bus
 Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

30
http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

GRIM-Filter in 3D-Stacked DRAM

 Each DRAM layer is organized as an array of banks
 A bank is an array of cells with a row buffer to transfer data

 The layout of bitvectors in a bank enables filtering many
bins in parallel

31

DRAM Layers

Logic Layer

TSVs

Bank

Row Buffer

Bank

. . .

Vault

...

DRAM Layers

Logic Layer

TSVs

Bank

Bi
tv
ec
to
r
fo
r b

in
 0

Bi
tv
ec
to
r
fo
r b

in
 1

Bi
tv
ec
to
r
fo
r b

in
 2

Bi
tv
ec
to
r
fo
r b

in
 t–

1

Row Buffer

Bank

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

.

.

.
Row R–1: TTTTT

. . .

Vault

GRIM-Filter in 3D-Stacked DRAM

 Customized logic for accumulation and comparison
per genome segment
 Low area overhead, simple implementation
 For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and

comparators in logic layer

32

DRAM Layers

Logic Layer

TSVs

Bank
Seed Location Filter Bitmask

Row Data Register

In
cr
.

Ac
cu
m
ul
at
or

Co
m
pa
ra
to
r

Pe
r-

Bi
n

Lo
gi

c
M

od
ul

e

.

Per-Vault
Custom GRIM-Filter Logic

Vault

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Methodology
 Performance simulated using an in-house 3D-Stacked DRAM

simulator

 Evaluate 10 real read data sets (From the 1000 Genomes
Project)
 Each data set consists of 4 million reads of length 100

 Evaluate two key metrics
 Performance

 False negative rate
 The fraction of locations that pass the filter but result in a mismatch

 Compare against a state-of-the-art filter, FastHASH [Xin+, BMC

Genomics 2013] when using mrFAST, but GRIM-Filter can be
used with ANY read mapper

34

GRIM-Filter Performance

35

2.1x average performance benefit

1.8x-3.7x performance benefit across real data sets

0
10
20
30
40
50
60
70

e = 0.05

Sequence Alignment
Error Tolerance (e)

T
im

e
(×

10
00

 s
ec

on
ds

)

FastHASH filter GRIM-Filter

Benchmarks and their Execution Times

GRIM-Filter gets performance due to its hardware-software co-design

GRIM-Filter False Negative Rate

36

6.0x average reduction in False Negative Rate

5.6x-6.4x False Negative reduction across real data sets

Fa
ls

e
N

eg
at

iv
e

R
at

e

e = 0.05

FastHASH filter GRIM-Filter

0,0

0,1

0,2

0,3

0,4

0,5

Benchmarks and their False Negative Rates

Sequence Alignment
Error Tolerance (e)

GRIM-Filter utilizes more information available in the read to filter

Other Results in the Paper

 Sensitivity of execution time and false negative rates to
error tolerance of string matching

 Read mapper execution time breakdown

 Sensitivity studies on the filter
 Token Size
 Bin Size
 Error Tolerance

37

1. Motivation and Goal

2. Background: Read Mappers

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

3. Our Proposal: GRIM-Filter

GRIM-Filter Outline

6. Conclusion

a. Hash Table Based
b. Hash Table Based with Filter

Conclusion
We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Key ideas:
 Introduce a new representation of coarse-grained segments of the

reference genome
 Use massively-parallel in-memory operations to identify read

presence within each coarse-grained segment

Key contributions and results:
 Customized filtering algorithm for 3D-Stacked DRAM
 Compared to the previous best filter

 We observed 1.8x-3.7x read mapping speedup
 We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper

39

General Outline

 Summary of the paper
 Strength
 Weaknesses
 Discussion

40

Strength

 We have a novel idea to improve DNA read mapping
 Could be used if PIM was possible today
 Sensitivity is changeable if needed (different applications

possible)
 Good for high error
 Giving background information and future research ideas
 The evaluation of GRIM is clearly defined and explained
 open-source

41

General Outline

 Summary of the paper
 Strength
 Weaknesses
 Discussion

42

Weaknesses

 GRIM is evaluated on a Hashing-based read mapper
 How do we input/output data while computing
 In the runtime results we do not count the transformation

from reference genome to bit-vector.

43

General Outline

 Summary of the paper
 Strength
 Weaknesses
 Discussion

44

Discussion

 Is there a possibility to have a smaller memory footprint?

45

Discussion

 Is there a possibility to have a smaller memory footprint?
 Yes, we can take every n token in the reference Genome and multiply the

length of the bin span by n.
 This move could impact our false positive rate of our filter. We can do this

since the bit-vector density remains unchanged.

45

Discussion

 How could we mitigate the problems of slightly longer input parameters
or inconsistent lengths?

46

Discussion

 How could we mitigate the problems of slightly longer input parameters
or inconsistent lengths?
 A small change in the length of the read would not impact Grim since we

simply change the threshold.
 Another possibility ,if the read gets long, is to change the bit-vector span.
 If the length of the read is to long for all other changes we can cut it in half

46

Discussion

 Is there a possibility of implementing GRIM efficiently in
GPU/FPGA?

47

Discussion

 Is there a possibility of implementing GRIM efficiently in GPU/FPGA?
 It is highly unlikely that GRIM would work in a reasonable amount of time

since we need a high bandwidth which the FPGA / GPU cannot support.
 Be 400 GB/s bandwidth(bus bandwidth not internal bandwidth, I assume

the bandwidth similar and that we run on 4 Mherz)
 =>838 bits per cycle
 how do we store the bits efficiently in the GPU?

47

Discussion

 With long reads is Grim a good option in this configuration? If not could
we change it?

48

Discussion

 With long reads is Grim a good option in this configuration? If not could
we change it?
 No it is not we would need around 70 Banks to hold 1 read (286 720 Banks

required if we want to use the 4096 bandwidth).
 What could we change? we could change the interconnection between bins,

change the span of bins, and allow for other filtering possibilities

48

Discussion

 Can we change the fundamental working procedure to accommodate for
long reads?

49

Discussion

 Can we change the fundamental working procedure to accommodate for
long reads?

• We could change the filtering system of Grim, we know that our DNA has a
specific order of garbage and useful DNA sequences.
• If we know these in the reference Genome and our genome with the locations

we found we could filter some of our locations out since their pattern of useful
and garbage DNA is not the one of our read

• In conjunction with the first 1,000 -10,000 bp we could find reasonable amount
locations.

• Another possibility is the cut the reads
• save their location in relation to each other and use smaller reads combined

with CKS/AF we could filter more thoroughly

• Another possibility is to allow long reads to be cut in multiple pieces and to
use Grim filter on those shorter reads. We could allow for independent or
dependent thresholds.

• => we would need 4 GRIM filters for a cut which results in 4 smaller read

49

Discussion

 Can we speedup GRIM?

50

Discussion

 Can we speedup GRIM?
 Since GRIM speed is dependent on the bandwidth of 3D-stacked memory it

would be possible to speed up Grim by increasing the bandwidth of the 3D-
stacked memory

 Another possibility could be to check every n token from the input read(token)
 Another possibility would be the balancing of the runtimes of GRIM and of

read alignment since currently the bottleneck is GRIM.

50

