
Hardware Support for Bulk Data Movement in Server Platforms

Li Zhao†, Ravi Iyer‡ Srihari Makineni‡, Laxmi Bhuyan† and Don Newell‡

†Department of Computer Science and Engineering, University of California, Riverside, CA 92521
Email: �zhao, bhuyan�@cs.ucr.edu

‡Communications Technology Lab, Intel Corporation, Hillsboro, OR 97124
Email: �ravishankar.iyer, srihari.makineni, donald.newell�@intel.com

Abstract

Bulk data movement occurs commonly in server work-
loads and their performance is rather poor on today’s mi-
croprocessors. We propose the use of small dedicated copy
engines, and present a detailed analysis of a bulk data copy
engine architecture. We describe the hardware support re-
quired to implement the copy engine and to tightly integrate
it into server platforms. Our evaluation is based on an ex-
ecution driven simulator that was extended with detailed
models of bulk data movement engines. The simulation re-
sults show that dedicated engines are quite effective in elim-
inating the data movement overhead and are an attractive
choice for handling bulk data in future high performance
server platforms.

1 Introduction

Bulk data movement includes data initialization and data
copies. Initialization of data is a very common opera-
tion that occurs frequently during memory management.
Memory copy is another important overhead that affects
I/O processing. Most networking stacks undergo at least
one memory-to-memory copy when moving data between
the application and kernel space, especially when receiving
data. Recent TCP/IP performance results on today’s micro-
processors have shown that bulk data movement is a sig-
nificant performance bottleneck [1]. Alleviating this mem-
ory copy overhead is important in order to allow 10Gbps
processing and beyond required by many network-intensive
server workloads [2].

Bulk data movement incurs a large overhead on general-
purpose microprocessors because of the following reasons:
(1) microprocessors move data at register (small) granular-
ity, (2) several long-latency memory accesses are involved
because source and/or destination are typically in memory
(not in cache), (3) the memory accesses clog up all the pro-

cessor resources (load/store queues, cache line fill buffers
and re-order buffer entries), and end up stalling the CPU for
a long time and (4) latency hiding techniques such as out-
of-order execution [3], multi-threading techniques [4] [5],
prefetching [6] [7] can tolerate a few simultaneous memory
accesses, but are not very effective to address the bulk data
movement overhead.

Our main contribution in this paper is the detailed explo-
ration of design and implementation choices for bulk data
copy engines. Focusing on a bus-based centralized-memory
(UMA) system, we cover trade-offs and point out issues
along the following dimensions: (1) proximity to memory,
(2) access to cache, (3) interconnect design modifications,
(4) coherence protocol changes and (5) adherence to con-
sistency models. For the operation modes, we have con-
sidered synchronous and asynchronous execution of copies
by the copy engine. We discuss instruction-based triggering
of copy execution and evaluate whether the copy execution
in the copy engine should be synchronous or asynchronous
with respect to the CPU.

Based on our analysis, we focus on the implementation
options and describe the changes required in the platform
to integrate the copy engine solution. We model the im-
plementation in an execution-driven simulator and evaluate
the performance benefits. Based on a detailed case study of
the TCP/IP processing, our evaluation shows that use of a
copy engine can speed up TCP/IP processing by 15 to 50%
depending on the packet sizes.

The rest of this paper is organized as follows. Section
2 describes motivation for a copy engine to solve the bulk
data movement problem. In Section 3, we describe the ar-
chitectural design and implementation for integrating copy
engines in server platforms. Section 4 presents the evalua-
tion methodology and analyzes the performance benefits of
copy engines. Section 5 describes related work and Section
6 summarizes the paper and presents future research direc-
tions.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



2 Motivation for Copy Engine for Bulk Data
Movement in Servers

Figure 1 illustrates the basic characteristics of copy ex-
ecution on CPUs versus copy engines (CEs). Performance
improvement can be realized by employing copy engines
due to the following benefits.

CPU Cache Memory

CE

Block granularity,
Cache pollution

Resources used
(LSQs, ROBs, etc)

Regester−based,
Stalled on Mem

Block granularity,
Reduced pollution

CPU−critical
resources untouched

CPU not stalled,
Compute overlap

Copy on CPU

Copy on CE

Figure 1. Copy execution on CPU vs. CEs

(1) Potential for faster copies and reducing CPU resource
occupancy: The memory copy function is usually imple-
mented as a series of load and store operations (memory to
register and vice-versa). Even though the CPU reads data
into cache at cache line granularity (64 bytes or higher in
most modern processors) it performs copy by reading data
into registers which are either 32 or 64 bit long. Copy en-
gines can be used to speed up this copy operation since it
can perform copies at higher (cache line) granularity. In
addition, since the series of load/store instructions end up
occupying load/store queues, re-order buffer and cache line
fill-buffers, even if the CPU were able to look far ahead
in the instruction window and execute other instructions, it
would not be able to do so due to lack of resources. Copy
engine can improve this by freeing up CPU resources so that
other instructions can be executed.

(2) Copies can be done in parallel with CPU computa-
tion: Just like individual memory accesses are overlapped
by computation, memory copies can be performed in par-
allel with CPU computation as well. If asynchronous
memory-to-memory copy operations can be enabled using
CEs, CPU is free to perform other operations. This is simi-
lar to a Direct Memory Access (DMA) operation where data
is transferred between the memory and the device directly.

(3) Potential to avoid cache pollution and reduce inter-
connect traffic: Memory copy is a streaming workload from
a caching point of view. Unless the source or the destina-
tion is needed by the application after the copy, allocating
this data in the cache can result in pollution as it may kick
out other valuable data from the cache. For many workloads
like TCP/IP processing, the source of the memory copy is
rarely touched by the workload after the copy, and the des-
tination is touched by the application since it is the recip-
ient of the incoming network data. However, most of the
applications like a web server employ multiple processing
threads, which may not touch the data immediately or even

on the same processor. Thus, allocating the destination may
also pollute the cache. Use of a copy engine allows for bet-
ter control of this pollution, i.e. the copy engine can be de-
signed to be configurable so as to allow for various options
by the applications running on the server. Similarly, the
copy engine can also reduce the interconnect traffic in the
platform. For instance, in a system with centralized mem-
ory, embedding the copy engine next to the memory con-
troller can potentially reduce the traffic that is placed on the
interconnect (like a shared bus). This has the potential to
reduce the queuing delays on the bus and thereby provide
additional improvement to the application performance.

Researchers in the past have attempted to use DMA en-
gines (exposed as peripheral devices) to accelerate bulk data
movement. However, DMA engines have not entirely suc-
ceeded due to the following shortcomings:

(1) Descriptor setup entails setting up the [src, dest,
length] parameters into shared memory descriptors and
adding them to a list accessible to DMA engine. This re-
quires at least one memory access which costs 300 to 500
clock cycles.

(2) Uncacheable triggers that trigger the DMA engine
(also referred to as a doorbell) require the use of an un-
cacheable write to a DMA engine register. Such an un-
cacheable access typically is a very long latency operation
(� 500 clock cycles).

(3) Notification of the copy completion is either through
polling or through interrupts; both are expensive with inter-
rupts being far worse.

(4) DMA engines operate in physical address space to
prevent the use of the DMA engine by user-level stacks and
applications. An alternative is to lock down pages (con-
taining source and destination buffers) in memory, which is
prohibitive specifically for use in application space.

Our goal in this study is to find a solution that avoids
all of the above overheads and thereby achieve an efficient
low-cost asynchronous copy. The copy engine in a server
platform is designed to meet the following requirements:
(1) low-overhead communication between the host proces-
sor and the engine, (2) hardware support for allowing the
engines to operate asynchronously with respect to proces-
sors, (3) hardware support for sharing the virtual address
space between the processor and the engine, and (4) low-
overhead signaling of completion. The detailed design is
presented in the next section.

3 Architecture and Design of Server Plat-
forms with Integrated Copy Engines

In this section, we discuss the hardware support to inte-
grate copy engines into a server platform. We describe the
details of our design and implementation.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



3.1 Server Architectures & CE Placement

We focus on a dominant architecture for server plat-
forms: a bus-based centralized architecture with ex-
ternal memory controllers and uniform memory access
(UMA/EMC [8]). Figure 2 illustrates basic components of a
UMA architecture and also points out the potential choices
of CE placement.

CPU

L2

CE

CPU

L2

CE

CE

Memory Controller
Hub Memory

Figure 2. Copy engine placement in server
platforms

Proximity to memory: Ideally, a CE should be integrated
into the memory controller so that it can perform DRAM-
aware sequences of reads and writes directly without occu-
pying any other resources in the platform. In order to be
close to memory controller, the CE must be integrated into
the memory controller hub (MCH). However, note that as
the number of cores increase on each processor socket (in
CMP architectures), it may be also be desirable to provide
replicated CEs on each socket.

Proximity to cache: Since copy is initiated by CPU, it
is possible that, in some cases, the source of the copy is
already in cache. Similarly, it is also desirable in some
cases that the destination should be written into the cache
by the CE so that the application can avoid cache misses
when touching the data subsequently. In order to support
these caching benefits, CEs should have access to the cache.
Since the last level of cache is typically on-die and as a
result, access to cache largely means that the copy engine
should be integrated on-die.

Based on the above analysis, we consider an off-die CE,
which is placed in the MCH. However, this solution can
be easily applied/extended for the other possibilities shown
in Figure 2. We also believe these to be the most relevant
solutions given how the server platform architectures are
evolving.

3.2 Triggering Copy Execution on the CPU

In order to trigger copy execution, we now describe the
ISA and micro-architectural support required in the CPU.
There are three steps involved, as illustrated in Figure 3.

(1) Copy Initiation: A memory copy operation typically
requires three operands: the source address, destination ad-
dress and the length of the copy. For a CISC machine, one
instruction may be enough to specify all three operands.
However, for a RISC machine, more instructions may be re-
quired. We assume a RISC machine in order to describe the
additional ISA support required. We propose the addition
of three new registers (indicated with the C prefix to denote
Copy). These three copy registers are first initialized with
the source (in Cs), destination (in Cd) and length (in Cl) by
using existing instructions (like addi). After all the copy
parameters are available, a new instruction called ecpy is is-
sued to start the process of communicating the copy param-
eters to the CE. At this point, the copy control unit (CCU)
reads the three copy registers and buffers them.

Copy Control
Unit

Cs  Cd   Cl

Page−walk
TLB,

// Setup src, dest, len
addi Cs, Rs, 0
addi Cd, Rd, 0
addi Cl, Rl, 0
// Issue copy command
ecpy
...

(1)

CPU

(3) Start copy

Copy complete

Dedicated Copy Registers

(2) V to P

Figure 3. CPU support for initiating copy op-
erations

(2) Address Translation: After receiving a copy com-
mand, the CCU translates the source and destination ad-
dresses from virtual to physical address by using the TLB
(This may require a page walk if a TLB miss is detected). If
the memory copy region crosses a page boundary, this copy
must be split up into several operations, each of which has
three operands with contiguous physical memory regions.

(3) Copy Communication: Once the translation(s) is
complete, each resulting copy is individually communicated
to the copy engine. Note that the communication of the
three parameters to the CE should be atomic and ordered to
avoid any interleaving of parameters between simultaneous
memory copies issued by different processors in the plat-
form. We discuss the interconnect support needed for this
in the following section.

3.3 Communication between CPU and Copy En-
gine

The communication between CE and CPU needs to tra-
verse the global interconnect (a shared bus). A typical
pipelined bus [9] consists of address lines, command lines
and data lines. A bus transaction goes through several
phases – the phases of interest here include arbitration,
request, snoop, response and data. After the arbitration

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



phase, the CPU is allowed to place a transaction on the
bus. The transaction typically consists of request type (read,
write, invalidate, etc.), length of the transaction and physi-
cal memory address.

To send a copy transaction on the bus, we require two
addresses (source, destination) and the length of the copy to
be placed on the address/command bus. In order to do so,
we encode a new request type called copy. By placing the
copy request type on the bus during the request phase, we
indicate that two different addresses will be transmitted to
agents (CPU, MCH, etc) on the address lines in the subse-
quent clock cycles. During these clocks, the length of the
request is asserted in the command lines. As a result, all
nodes in the system are able to latch the request on the bus.
The response and data phases are largely ignored for this
transaction since it is similar to a memory write transaction
where CPU does not expect any response or data. Once the
MCH collects the copy addresses and length, it communi-
cates the copy command to the CE. After some period of
time, the CE will place completion status on the bus so that
completion of the copy is visible to all the nodes in the sys-
tem. The completion is indicated by placing the destination
address on the address bus, the status of the copy on the data
bus and the copy request as well as the ID of the requesting
agent on the command bus.

3.4 Operation Modes for Copy Engines

We consider two execution modes: synchronous and
asynchronous. Figure 4 illustrates CE’s flow of execution
starting after the copy command is communicated to the CE
and ending with the CE notifying the CPU of copy comple-
tion.

Synchronous Copy Engine: The simplest mode is to ex-
ecute the copy synchronously with respect to CPU. The CE
notifies CPU only after the copy is completed. As a result,
the ecpy instruction will not retire until the copy is com-
pleted. Since the CE is in the cache coherent domain so that
it performs coherent reads and writes by sending out the
necessary snoops to all the processors, and by performing
speculative memory reads/writes. As shown in Figure 4(a),
by doing these in parallel, the latencies are overlapped and
the overall execution time can be reduced. Once the copy
is completed, the CE sends a notification to the requesting
processor, which then retires the ecpy instruction.

Asynchronous Copy Engines: Synchronous copy engines
allow the CPU to overlap the execution of as many instruc-
tions as can be held in the re-order buffer. However, the
re-order buffer is typically small (around 128 entries), and
a copy operation can take a much longer period of time to
complete. Since there is room for additional overlap, we
consider asynchronous copy execution where CE notifies
CPU of copy completion earlier than actual completion. To

CE receives a
copy command

Snoop caches Memory
reads/writes

Multi−line
Snoop reads/writes

Memory

Complete copy

Complete
snoops

Notify early
completion

completion
Notify

pending copy
Maintain

CE receives a
copy command

(b) Asynchronous copy engines

To CPU
caches

To Memory
controller

To Memory
controller

To CPU
caches

(a) Synchronous copy engines

Complete copy

Notify
completion

Figure 4. Copy execution flow

enable this, the CE needs to make the outstanding copy
globally observable by informing all processors that it is
using the memory regions. Typically, this is made possi-
ble by broadcasting individual snoop operations. However,
as broadcasting one snoop per cache line and receiving in-
dividual responses for each may incur additional overhead,
we propose to use a multi-line snoop operation, which sends
base address and length of the buffer to processor caches.
Upon receiving the multi-line snoop for source and desti-
nation of the copy, the CCU enters this information in a
pending copy table to track the pending copies and sends
back an acknowledgement to the CE. As shown in Figure
4(b), the CE then sends an early completion notification to
the requesting processor so that it can retire the ecpy in-
struction. All subsequent loads and stores from any proces-
sor are locally compared against the entries in the pending
copy table and are stalled and retried until the copy is actu-
ally completed. Once the CE completes copy, it broadcasts
the completion notification to the processors in the platform
so that the local CCU can delete the copy entry from the
pending copy table. This releases any loads and stores that
are pending in the processor.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



3.5 Copy Engine Structure and Memory Trans-
actions Scheduling

CE consists of a queue of control registers, which store
the source, destination addresses and the length of outstand-
ing copy commands. It also contains a stream buffer to store
copied data. Since data transfer size requested from the
memory is typically one cache line (e.g., 64 bytes), more
than one data transfers are required if the copy length is
larger than a cache line size. Assuming there is one mem-
ory queue Mem Q in the memory controller, CE performs
the following steps: (1) enqueues a sequence of read re-
quests to Mem Q, (2) reads data from the memory into a
stream buffer, (3) enqueues a sequence of write requests to
Mem Q, (4) writes data from the stream buffer to the mem-
ory. By issuing a stream of reads and writes, we can exploit
the row locality in the memory. It is known that modern
DRAM chips latch an entire row (row buffer) on the first
access to that row. Subsequent accesses to the same row
have much lower latency because these accesses will not
incur the precharge and row access latencies.

Since both CPU and CE issue memory requests to
Mem Q, we consider scheduling of these two types of re-
quests. This depends on CE’s operation mode. FIFO can
be used in synchronous mode. However, CE may issue sev-
eral read/write requests into Mem Q so that CPU requests
suffer a longer delays. This limits the extent to which CPU
can overlap other computation with the copy operation. To
let the CPU make maximum forward progress while CE is
busy, we design another scheduling approach called CPU
request bypass, where CPU requests are placed in front of
CE generated requests in Mem Q. To avoid CE starvation,
we have implemented a fairness algorithm which guaran-
tees a pre-determined amount of memory bandwidth for the
CE. In the rest of the paper, we use SYNC WLB to indicate
CPU request bypass and SYNC NLB to indicate no bypass
during synchronous mode. ASYNC indicates asynchronous
copy mode which assumes CPU request bypass.

3.6 Copy Retirement and Dependency Check

Copy retirement and dependency check are the last two
steps to ensure that copies are completed appropriately and
all dependency checks are maintained appropriately.

Copy retirement: As mentioned earlier, CCU receives
copy notification from CE(s) in the platform. It has to deal
with three types of copy notification: (1) an early copy
completion notification for a copy that it generated, (2) a
final copy completion notification for a copy that was ei-
ther initiated by itself or by another unit, (3) a multi-line
snoop notification for a copy that was initiated elsewhere.
When receiving an early notification or a final notification,
CCU ensures that ecpy instruction is retired if it initiated

the copy. Upon receiving final notification, it also deletes
the copy entry from the pending copy table. Upon receiving
a multi-line snoop, CCU enters the addresses in the pend-
ing copy table so that it can enable dependency checks for
asynchronous copy execution.

CPU

CCU
Pending
copy
table

Caches

Hit
CE

Multi−line snoop
(Address, length)

Loads/
store(ecpy executed)

Copy initiated

Y
Stall/Retry

N

Figure 5. Dependency check for asyn-
chronous copies

Dependency check: Another issue that needs to be ad-
dressed is dependency check. For instance, once the copy
command is initiated, CPU continues to execute other in-
structions, which could be dependent on the copy source
or destination data. In order to detect these data depen-
dencies, CCU maintains the outstanding copy source and
destination addresses in the pending copy table. Figure 5
shows how dependency is detected and handled. Just as the
subsequent loads and stores are compared to pending mem-
ory transactions in load/store queues, they should also be
compared against the copy commands in the pending copy
table. This is especially critical when copies are executed
asynchronously. When receiving a multi-line snoop, CCU
enters the addresses and length into the pending copy table.
This allows the CPU to perform dependency checks glob-
ally against copies initiated by all CPUs.

4 Performance Evaluation

4.1 Execution-Driven Simulation

Our copy engine simulation results are based on an
execution-driven simulator SimpleScalar [10]. Since Sim-
pleScalar had a simplistic memory subsystem model based
on a fixed latency calculation, our first task is to modify the
cache/memory subsystem to a detailed event-driven model,
which implements (1) MSHRs to limit the number of out-
standing memory transactions, (2) a pipelined bus model to
accurately model latency and queuing effect, (3) a memory
subsystem model that takes into account DRAM cycle times
(row access, column access, precharge) based on the page
conflicts, number of memory channels and DRAM technol-
ogy. Our second major task is to add hardware support re-
quired to enable synchronous and asynchronous CE models.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



This is achieved by adding instruction support to the simu-
lator, (2) modeling of the communication between CPU and
CE via the interconnect and (3) modeling of CE to gener-
ate coherent reads and writes to memory subsystem. The
final task is to calibrate the model with appropriate parame-
ter values so as to simulate the delays observed in a realistic
server platform. While we do not have multi-processor sup-
port in SimpleScalar, the delays we model take into account
the time taken for snooping all the processors in a 4-way
platform.

Our base system configuration is a four-way
fetch/issue/commit MIPS micro-processor. The de-
tailed configuration parameters are shown in Table 1.
Variations to the parameters are explained where needed.
The memory latency (80ns) also includes the delays taken
to propagate the request and response via a realistic chipset.
In addition to latency, the simulation takes into account
the stalls experienced in the cache hierarchy due to fully
occupied MSHRs and queuing delays experienced due to
bus and memory traffic generated by the application.

Table 1. Architectural parameters of simula-
tion

CPU
CPU Clock rate 3.0 GHz
Peak issue, retire rate 4 instructions/cycle
Instruction window size 128
Functional units 2 integer arithmetic, 1 floating point

Cache
L1 inst/data cache 32 Kbytes, 4-way, 64-byte block
L1 cache hit time 2 cycles
L2 unified cache 1 Mbytes, 8-way, 64-byte block
L2 cache hit time 15 cycles
MSHR size 8

Bus
system bus width 64 bits
system bus clock rate 800 MHz

DRAM
Speed 400 MHz DDR 2
Average access time 80ns
Precharge time 15 ns
Row access time 15 ns
Column access time 15 ns

The TCP/IP processing workload that we use is derived
from the FreeBSD stack [11] and performs receive-side
processing. To simulate different types of network traf-
fic, we drive the TCP/IP stack with three different packet
traces. Each trace contains 100,000 packets with a fixed
packet payload size as 512, 1024 and 1400 bytes respec-
tively. These packet sizes were chosen to represent the typi-
cal receive traffic in a web server, email server and database
server configurations.

4.2 Summary of Copy Engine Configurations

We present and analyze simulation results for three CE
configurations: (1) SYNC NLB: synchronous CEs with
no load bypass, (2) SYNC WLB: synchronous CEs with
load bypass and (3) ASYNC: asynchronous CEs which as-
sumes load bypass. As mentioned earlier, load bypass al-
lows memory requests generated by CPU to be interleaved
with CE requests and therefore does not have to stall un-
til all outstanding copies are completed. We compare these
three CE configurations with the base system configuration
that has no CE support (BASE). All three traces are run
through the TCP stack in these four configurations (BASE,
SYNC WLB, SYNC NLB and ASYNC). All data is shown
in the form of percentage of execution time reduction as
compared to the base case.

4.3 Performance Benefits of Copy Engines

Figure 6 shows the execution time reduction with the CE
as compared to a base system in in-order (IO) and out-of-
order (OOO) execution mode. While our primary focus is
the system with an OOO core, we compare against an IO
core to show how poorly copy may perform if the core is
unable to extract parallelism by looking ahead in the in-
struction window. As expected, the benefits of a CE are
significantly greater in an IO system versus than an OOO
system. For instance, when processing 512-byte packets in
an IO system, use of a CE reduces the execution time by
43% to 58%. When processing the same-sized packet in
an OOO system, use of a CE reduces the execution time
by 15% to 48.5%. Based on these results, we also notice
that the difference between synchronous engine and asyn-
chronous engine performance is less significant in an IO
system than in an OOO system. The reason is that the ma-
jor benefit of a CE in an IO system is the reduction in copy
latency itself, whereas a significant portion of the benefit in
an OOO system is because of computation overlap.

0%

10%

20%

30%

40%

50%

60%

70%

80%

512 1024 1400 512 1024 1400

in order outoforder

Payload size (bytes)

E
x
e
c
u
ti
o
n
ti
m
e
 r
e
d
u
c
ti
o
n SYNC_NLB

SYNC_W LB
ASYNC

Figure 6. Performance benefits of CEs

To understand the underlying reasons for the benefits of
CE, we break down the execution time reduction into two

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



parts: (1) faster copy caused by the fact that CE moves data
at a faster rate, and (2) computation overlap where some
computation are executed in parallel with copy operation.
As confirmed in Table 2, in an in-order execution system,
most of the improvement is from faster copies. In addi-
tion, the amount of compute overlap is limited due to the in-
order restriction placed on execution. Therefore even with
ASYNC CEs, the number of the instructions that can be ex-
ecuted in parallel with copy is very limited.

On the other hand, for an out-of-order system, the
three copy execution modes have different contributions.
With SYNC NLB, the improvement is mostly due to faster
copies. Since this approach does not allow subsequent load
instructions to bypass the copy command, only a limited
number of instructions can be executed in parallel with copy
operation. Those instructions that have data dependency
on the load instructions have to wait until the copy com-
pletes. SYNC WLB improves upon this by allowing CPU
issued load instructions to bypass the copy command, so
that more instructions can be executed in parallel with the
copy. For 512-byte packets, the computation overlap is in-
creased from 2.5% (out of 14.6%) for SYNC NLB to 19.6%
(out of the 27.1%) for SYNC WLB. However, SYNC WLB
is still limited by the fact that the number of subsequent in-
structions that can be executed cannot exceed the size of the
instruction window and the load/store queue (128 and 64 in
our case).

Table 2. Factors affecting execution time re-
duction payload size

Payload CE In order (%) Out of order (%)
Size operation Overall Faster Overlap Overall Faster Overlap

(bytes) modes copies copies
SYNC NLB 42.5 40.7 1.8 14.6 12.1 2.5

512 SYNC WLB 50.5 37.4 13.1 27.1 7.5 19.6
ASYNC 68.2 50.5 17.7 48.5 7.5 41.1

SYNC NLB 52.5 51.4 1.1 21.9 20.4 1.5
1024 SYNC WLB 58.9 50.5 8.4 30.1 17.4 12.7

ASYNC 68.2 50.5 17.7 48.0 17.4 30.6
SYNC NLB 56.3 55.4 0.9 23.8 22.7 1.1

1400 SYNC WLB 61.2 54.5 6.7 40.3 32.0 8.3
ASYNC 72.1 54.5 17.6 43.9 32.0 11.9

ASYNC alleviates this limitation by allowing ecpy in-
struction to retire sooner than its actual completion. This in-
creases computation overlap from 19.6% (SYNC WLB) to
41.1%. As we increase packet size from 512 to 1400 bytes,
we can see that the improvement because of faster copy is
increased whereas that because of computation overlap is
reduced. The former observation is obvious since the per-
centage of the copy latency in total execution time is higher
with larger payload sizes. Thus faster copies contribute
more to the improvement. The latter observation is because
of the same reason: the percentage of the computation is
smaller with larger payload sizes. In summary, we believe
an asynchronous execution model is critical to provide suf-
ficient performance benefits even with larger payload sizes.

4.4 Impact of Memory Subsystem

We look at the impact of memory system on performance
with the 1KB packet trace. Figure 7 shows that the execu-
tion time reduces significantly in all four modes as we in-
crease the memory bandwidth from 3.2 GHz to 6.4 GHz.
This is expected because even with CE, the bottleneck still
remains in the memory system. Therefore faster memory
gives better performance. Figure 8 illustrates performance
as we decrease the memory access latency from 110 ns to
80 ns. We can see that memory access time has less im-
pact on CE than the base case. For instance, the execu-
tion time of BASE is reduced by 10% and 18% when la-
tency is reduced to 95 ns and 80 ns respectively. However
with SYNC NLB, the execution time reduction changes by
hardly 2% (from 33.7% to 36.1%). The difference is even
less for SYNC WLB and ASYNC copy engines ( 1% and
0.2% respectively).

0%

10%

20%

30%

40%

50%

60%

70%

80%

3.2 4.3 6.4
M em ory bandw idth (GB/s)

E
x
e
c
u
ti
o
n
ti
m
e
 r
e
d
u
c
ti
o
n

Base SYNC_NLB
SYNC_W LB ASYNC

Figure 7. Impact of memory bandwidth

0%

10%

20%

30%

40%

50%

60%

70%

110 95 80

M em ory access latency (ns)

E
x
e
c
u
ti
o
n
ti
m
e
 r
e
d
u
c
ti
o
n

Base SYNC_NLB
SYNC_W LB ASYNC

Figure 8. Impact of memory latency

5 Related Work

Researchers have attempted to address the bulk data
movement solution in the past. From a networking stand-
point, two major solution vectors are copy avoidance [12]
[13] [14] [15] and copy acceleration [16]. However,
most copy avoidance (zero-copy) techniques have not been
adopted widely in commercial OS due to their limitations
in scope and specific requirements. For instance, in the case
of page remapping [14], when the network packet sizes are
smaller than O/S page sizes, zero-copy is inefficient and re-
quires pages to be pinned down in memory (which in turn

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



requires TLBs to be flushed, etc). Other approaches like
new APIs and kernel structures [12][13] require modifica-
tions to the application and hence have not been adopted
yet. On the other hand, RDMA [15] achieves zero-copies
using TCP Offload Engines (TOE), which we believe are
not viable solutions from an economical as well as tech-
nology standpoint [1]. For copy acceleration, use of DMA
engines for memory-to-memory copies is quite attractive.
However, DMA engines are typically treated as peripheral
devices which may impose a significant overhead in com-
munication between CPU and DMA engine. Finally, since
the DMA engine largely deals with physical addresses (as
it has no translation support), user-level applications are not
allowed to take advantage of it. Our goal in this paper is
to investigate hardware support needed to enable copy en-
gines with the requirement that they are tightly coupled into
the platform and have low communication overhead. Other
copy acceleration techniques include use of larger registers
to move data at a large granularity [16]. While these tech-
niques speed up the copy operation to some extent, they still
stall the CPU for a long time.

6 Conclusions and Future Work

In this paper, we described the bulk data movement prob-
lem and pointed out the need for adding specialized en-
gines in server platforms. We presented the architectural de-
sign and implementation for copy engines with synchronous
as well as asynchronous execution modes. The hardware
support including CPU support, interconnect support, copy
engine design and coherence/synchronization requirements
were also presented in detail. Finally, we modeled copy en-
gine solutions by extending an execution-driven simulator
and showed that the performance benefits of proposed copy
engines are significant.

We believe that integration of copy engines in server
platforms has significant potential. Similar design can be
extended to other bulk data processing engines. In future
work, we plan to evaluate the benefits of copy engines for
wider range of applications. We also plan to extend our
analysis to other bulk data processing like XML parsing and
encryption. We believe that the basic framework presented
in this paper can be easily extended to accommodate other
frequently occurring operations.

References

[1] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, and et al.,
“TCP onloading for datacenter servers,” IEEE Com-
puter Magazine, November 2004.

[2] S. Makineni and R. Iyer, “Performance characteriza-
tion of TCP/IP processing in commercial server work-

loads,” in 6th IEEE Workshop on Workload Charac-
terization (WWC-6), October 2003.

[3] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture A Quantitative Approach. Morgan Kaufmann
Publishing Company, 1999.

[4] D. Marr and et al., “Hyper-threading technology archi-
tecture and microarchitecture,” Intel Technology Jour-
nal, February 2002.

[5] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in
Proc. of the 22nd Annual International Symposium on
Computer Architecture, June 1995, pp. 392–403.

[6] D. Callahan and et al., “Software prefetching,” in 4th
Int’l conference on Architectural support for program-
ming languages and operating systems, April 1991.

[7] T. Chen, “An effective programmable prefetch engine
for on-chip caches,” in Micro-28, December 1995.

[8] Intel Corporation, “IA-32 intel architecture opti-
mization reference manual.” [Online]. Available:
http://www.intel.com/design/Pentium4/documentation.htm

[9] ——, “Pentium(R) Pro family developer’s
manual, volume 1: Specifications.” [On-
line]. Available: http:// developer.intel.com/design/
archives/processors/pro/docs/242690.htm

[10] D. Burger and T. Austin, “The SimpleScalar Tool Set,
version 2.0,” University of Wisconsin, Tech. Rep. CS-
TR-97-1342, June 1997.

[11] M. K. McKusick and et al., The Design and Im-
plementation of the 4.4BSD Unix Operating System.
Addison-Wesley Publishing Company, 1996.

[12] J. Brustoloni, “Interoperation of copy avoidance in
network and file I/O,” in IEEE INFOCOM, March
1999.

[13] J. Brustoloni and P. Steenkiste, “Effects of buffer-
ing semantics on I/O performance,” in Proc. OSDI-II,
USENIX, October 1996, pp. 277–291.

[14] M. Thadani and Y. Khalidi, “An efficient zero-copy
I/O framework for UNIX,” Sun Microsystems Labo-
ratories, Tech. Rep. SMLI TR-95-39, May 1995.

[15] RDMA Consortium, “Architectural specifications
for RDMA over TCP/IP.” [Online]. Available:
http://www.rdmaconsortium.org

[16] Sun Microsystems Laboratories, “Accelerating
core networking functions using the UltraSPARC
VIS[tm] instruction set.” [Online]. Available:
http://www.sun.com

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 


