Memory Hierarchy for Web Search

HPCA, 2018
Grant Ayers Jung Ho Ahn Christos Kozyrakis  Parthasarathy Ranganathan
Stanford University  Seoul National University  Stanford University Google

Presented by Pascal Storzbach



Executive Summary

Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of
datacenter-scale workloads
Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural
evaluations and optimizations of processor design trade-offs
Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial
web search
Observations and Ideas:

— Memory hierarchy an bottleneck

— Significant reuse of data not captured by current cache hierarchies

— Adding an latency-optimized L4 cache using eDRAM
Result: Cache hierarchy optimized for web search without using more transistors on the die

— 27 % overall performance improvement

— Die size equal to original die size (18-core with 2.5 MiB/core to 23-core with 1 MiB/core design)



Outline

Characterizing Search in the Wild
Characterizing Memory Hierarchy for Search
Optimized Memory Hierarchy

Discussion



CHARACTERIZING SEARCH IN THE WILD



Background

Query Search result 3 CO m pO ne ntS .

* Crawling

Cache servers ‘ I n d eXI n g

* Serving
Leaf node Leaf node Leaf node s Leaf node
[index shard] | [index shard] § [index shard] [index shard]




Background

Search attributes:

Index stored on multiple machines (index divided
into shards)

Query processing requires billions of instructions
Search has request-level parallelism

Search is latency-critical



Methodology

* Measurements on 2
PLT1 [16] PLT2 [53] platforms (PLT]., PLTZ)

Microarchitecture Intel Haswell IBM POWERS

Number of sockets 2 2 ¢ 4 d |ffe Fe nt m Etrl CS.

Cores 18 per socket 12 per socket

SMT 2 8 — | PC

Cache block size 64 B 128 B

L1-I$ (per core) 32 KiB 32 KiB _ . Al

L1-D$ (per core) 32 KiB 64 KiB |V|ISS€S per KIIO

Private L2$ (per core) 256 KiB 512 KiB i

Shared L3$ (per socket) 45 MiB 96 MiB |nStFUCtI0nS (M PKI) (L2

and L3 cache)
— Branch MPKI

Table II: Key attributes of PLT1 and PLT2 platforms.



Normalized QPS

o
|

-
|

]
I

w
]

1-

Hardware Optimizations

3- 10% =
8% -

2.5~
6% =
2= 4% =
1.5- 2%~
—

1=

Huge lPages Hardware i’refetchers

Speedup
QPS Improvement

Haswell POWERS

1 1 1 1 1 1 1 1 1
8 16 24 32 40 48 56 64 72

Number of cores (SMT off) SMT 2 4] s Platform [ Haswell ~ POWERS

(a) Search Scalability (b) Simultaneous Multithreading (SMT) (c) Huge Pages and Prefetching

Web search benefits significantly from features like
— High core counts
— Simultaneous Multithreading (SMT)
— Large pages
— Prefetching



Stalls

Key Search Characteristics

Retiring

@ Bad Speculation
Front-End: Latency
Front-End: BW

@ Back-End: Core

@ Back-End: Memory

IPC is reasonably high

L2 MPKI for instruction accesses
is high

L3 MPKI for data is significant
Branch MPKI is uniformly high

Only 32 % of slots are used for
retirements

— Hence, memory hierarchy is a big
opportunity for improvement



CHARACTERIZING MEMORY HIERARCHY FOR
SEARCH



Challenges and Methodology

Challenges

No known timing simulator can run search for non-trivial amount
of virtual time

Performance counters are limited and often broken

Methodology
Validated measurements from real machines

Trace-driven functional cache simulation (modelling a PLT1-like
system)

Analytical model based on curve-fitting data from the fleet



Footprint and Working Set Scaling

8] W
[ ]

Footprint (GiB)

O -
Code Stack Heap

Number of cores (SMT off) 6 16| 260136

Figure 4: Allocated memory footprint as we scale cores. The

shard segment (not shown) is in the 100s of GiB.
6-

=)

B 5-

)

= 4=

A 5

»

= 2 -

R

S 1

0- - |
Heap Shard
Number of threads 1 2 4sM s

Figure 5: Accessed working set for the heap and shard
segments as we scale cores.

Footprint observations:

Heap dominates non-shard
memory footprint

Heap size grows slower than linear
as there are several shared
datastructures

Working set observations:

Shard footprint is constant (100’s
GiB) but it’s working set grows
Heap working set significantly
smaller than footprint

12



Cache Effectiveness

. L1 and L2 caches
experience significant
misses of all types

wi IS L3 cache virtually

0 3 6 9 12 15 18 . . .

MPKI eliminates code misses

e Hi e h e :“"d ~ butis insufficient for

a) ache misses across the memory 1erarcny

classified by type. heap and Shard



L3 cache scaling

1 GiB sufficient for heap

16 MiB sufficient f d . .
o 'Cﬂ;rj"ff‘_@@[@ * 16 MiB L3 cache is
& sufficient to remove code

@

75% = ¢ misses
% 504 * L3 cache is ineffective with
: shard accesses
25% -
* Large (1 GiB) shared caches
e A N N PO P PR R Y are effective for heap
™ B A0 ,{;v b‘)« Q0 ﬁj:-c_:\fé‘fns.?c
.3 Cache Size (MiB) dCCesSes
@ Code Heap Shard == Combined
14

(b) Working set hit rate curve



Type of Misses

MPKI Decrease

6%-
4%-
2%-
0%- .

N Q 1 1
YV
(a) MPKI reduction when eliminating conflict misses

Good cache line 5|ze

;I.Ilr.._

LlI LlD

Cache Block Size 32 128 [l 512
(all caches) 64 [ 256 1024

MPKI

(b) MPKI for various block sizes

* Conflict misses not

significant

Default associativity: a
good design point

Limited benefit of
larger cache lines

15



OPTIMIZED MEMORY HIERARCHY FOR WEB
SEARCH



Key Insights

Good thread-level parallelism
Memory hierarchy is a significant bottleneck

Some cache hierarchy decisions effective
others ineffective



Optimization Strategy

Repurpose expensive on-chip transistors in
the L3 cache for cores

Exploit the available locality in the heap with
cheaper and higher-capacity DRAM
incorporated into a latency-optimized L4

cache



Cache vs. Cores Trade-off

Measurements for Intel Haswell architecture
Core area cost is 4 MiB L3 cache



Cache vs. Cores Trade-off

AL Some L3 transistors could
be better used for cores

¢ A o — (9¢| 2.5MiB/core worse

E 3 than 11c|1.23MiB/core)

éS- v 7Y iRl M

; e Core count is not all that
s i matters

4444444 i — (All 18c with < 1MiB/core
. are bad)

30 60 90 120
Area in equivalent L3 MiB

Figure 9: Search performance (QPS) vs. L3-equivalent area
for various core count and cache size combinations.



Cache vs. Cores Trade-off

Optimal Cache-per-Cores Performance
20% -

15%=

10% =
5% -
0% - I I- II -

SMTOn SMTOn SMT Off SMT Off
(quantized) (quantized)

QPS Improvement

225 175125 075

, ]
L3 MiB per Core > s Y

Figure 10: Search performance when trading cache capacity
for cores.

What'’s the right cache per core
balance?

Use linear model incorporated from data
of previous measurements

* Performance linear to core count
2 measurements per each cache ratio

Result: 1 MiB/core allows 5 extra cores
and 14% performance improvement

21



Latency-optimized L4 Cache

* Target the locality in the fixed 1 GiB
N heap
2l * Use of eDRAM (Embedded DRAM)
é instead of on-chip SRAM

— eDRAM cheaper with competitive
b latencies

— More energy efficient
— Often considered as L4 cache
— Requires refreshes

* Less than 1% die area overhead (L4
controller)

* Latency optimized
— Memory accessed in parallel
— Direct-mapped organization

22



L4 Cache Evaluation

1 GiB ;ufficient for heap

o \O e Baseline is 23-core design
m . with 1MiB/core L3 cache
. (iso-area to 18-core)

1 GiB cache size achieves

FFPIEFSE most of the benefits for

L4 Capacity (MiB)
® Code Heap * Shard » Combined t h e h e a p

(a) L4 hit rate vs. size



L4 Cache Evaluation

L4 and 1MiB Cache per Core

. * 27% overall performance
30%- Improvement

TZ:I II II I| * 22% pessimistic
oo * 38% future (+10%

Baselme Pessmnstlc Assoc1at1ve Future

QPS Improvement

L4 Cache Configuration .
Size (MiB) W 128 256 | 512 [ 1024 [l 2048 Iate nCy & m ISSES)

24



Executive Summary

Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of
datacenter-scale workloads
Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural
evaluations and optimizations of processor design trade-offs
Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial
web search
Observations and Ideas:

— Memory hierarchy an bottleneck

— Significant reuse of data not captured by current cache hierarchies

— Adding an latency-optimized L4 cache using eDRAM
Result: Cache hierarchy optimized for web search without using more transistors on the die

— 27 % overall performance improvement

— Die size equal to original die size (18-core with 2.5 MiB/core to 23-core with 1 MiB/core design)



DISCUSSION

26



Strengths

Most of important aspects are evaluated

Uses production application for performance
analysis
Tries to predict future improvements

Well written



Weaknesses

Considers only one architecture (though they
analyse PowerPC)

Only applicable to Google Search



Follow Up Work

Code Layout Optimization for Near-ldeal
Instruction Cache

— https://ieeexplore.ieee.org/document/8744367



https://ieeexplore.ieee.org/document/8744367
https://ieeexplore.ieee.org/document/8744367

Open Discussion

Should this kind of analysis be done also for other
kind of software?

Can there be other benefits of a L4 cache?

Should software be able to control cache
behavior (i.e. evicting strategy)?
Online Discussion on Moodle

— https://moodle-
app2.let.ethz.ch/mod/forum/discuss.php?d=48096



https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096

Further Readings

HPCA: Technology Comparison for Large Last-level Caches (L3cS): Low-
leakage SRAM, Low Write-energy STT-RAM, and Refresh-optimized
eDRAM

— https://ieeexplore.ieee.org/document/6522314



https://ieeexplore.ieee.org/document/6522314
https://ieeexplore.ieee.org/document/6522314

