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Executive Summary 

• Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of 
datacenter-scale workloads 

• Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural 
evaluations and optimizations of processor design trade-offs 

• Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial 
web search 

• Observations and Ideas: 
– Memory hierarchy an bottleneck 
– Significant reuse of data not captured by current cache hierarchies 
– Adding an latency-optimized L4 cache using eDRAM 

• Result: Cache hierarchy optimized for web search without using more transistors on the die 
– 27 % overall performance improvement 
– Die size equal to original die size (18-core with 2.5 MiB/core to 23-core with 1 MiB/core design) 
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Outline 

• Characterizing Search in the Wild 

• Characterizing Memory Hierarchy for Search 

• Optimized Memory Hierarchy 

• Discussion 
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CHARACTERIZING SEARCH IN THE WILD 
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Background 
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3 Components: 

• Crawling 

• Indexing 

• Serving 

 



Background 

Search attributes: 

1. Index stored on multiple machines (index divided 
into shards) 

2. Query processing requires billions of instructions 

3. Search has request-level parallelism 

4. Search is latency-critical 
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Methodology 

• Measurements on 2 
platforms (PLT1, PLT2) 

• 4 different metrics: 
– IPC 

– Misses per Kilo-
Instructions (MPKI) (L2 
and L3 cache) 

– Branch MPKI 
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Hardware Optimizations 

• Web search benefits significantly from features like 
– High core counts 
– Simultaneous Multithreading (SMT) 
– Large pages 
– Prefetching 
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Key Search Characteristics 

• IPC is reasonably high 
• L2 MPKI for instruction accesses 

is high 
• L3 MPKI for data is significant 
• Branch MPKI is uniformly high 
• Only 32 % of slots are used for 

retirements 
– Hence, memory hierarchy is a big 

opportunity for improvement 
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CHARACTERIZING MEMORY HIERARCHY FOR 
SEARCH 
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Challenges and Methodology 

Challenges 
1. No known timing simulator can run search for non-trivial amount 

of virtual time 
2. Performance counters are limited and often broken 
 
Methodology 
• Validated measurements from real machines 
• Trace-driven functional cache simulation (modelling a PLT1-like 

system) 
• Analytical model based on curve-fitting data from the fleet 
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Footprint and Working Set Scaling 
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Footprint observations: 
• Heap dominates non-shard 

memory footprint 
• Heap size grows slower than linear 

as there are several shared 
datastructures 

Working set observations: 
• Shard footprint is constant (100’s 

GiB) but it’s working set grows 
• Heap working set significantly 

smaller than footprint 



Cache Effectiveness 

• L1 and L2 caches 
experience significant 
misses of all types 

• L3 cache virtually 
eliminates code misses 
but is insufficient for 
heap and shard 
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L3 cache scaling 

• 16 MiB L3 cache is 
sufficient to remove code 
misses 

• L3 cache is ineffective with 
shard accesses 

• Large (1 GiB) shared caches 
are effective for heap 
accesses 
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16 MiB sufficient for code 
1 GiB sufficient for heap 



Type of Misses 

• Conflict misses not 
significant 

• Default associativity: a 
good design point 

• Limited benefit of 
larger cache lines 
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Good cache line size 



OPTIMIZED MEMORY HIERARCHY FOR WEB 
SEARCH 
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Key Insights 

• Good thread-level parallelism 

• Memory hierarchy is a significant bottleneck 

• Some cache hierarchy decisions effective 
others ineffective 
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Optimization Strategy 

• Repurpose expensive on-chip transistors in 
the L3 cache for cores 

• Exploit the available locality in the heap with 
cheaper and higher-capacity DRAM 
incorporated into a latency-optimized L4 
cache 
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Cache vs. Cores Trade-off 

Measurements for Intel Haswell architecture 

• Core area cost is 4 MiB L3 cache 
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Cache vs. Cores Trade-off 

• Some L3 transistors could 
be better used for cores 
– (9c|2.5MiB/core worse 

than 11c|1.23MiB/core) 

• Core count is not all that 
matters 
– (All 18c with < 1MiB/core 

are bad) 
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Cache vs. Cores Trade-off 

What’s the right cache per core 
balance? 
 
Use linear model incorporated from data 
of previous measurements 
• Performance linear to core count 
• 2 measurements per each cache ratio 
 
Result: 1 MiB/core allows 5 extra cores 
and 14% performance improvement 

21 

Optimal Cache-per-Cores Performance 



Latency-optimized L4 Cache 

• Target the locality in the fixed 1 GiB 
heap 

• Use of eDRAM (Embedded DRAM) 
instead of on-chip SRAM 
– eDRAM cheaper with competitive 

latencies 
– More energy efficient 
– Often considered as L4 cache 
– Requires refreshes 

• Less than 1% die area overhead (L4 
controller) 

• Latency optimized 
– Memory accessed in parallel 
– Direct-mapped organization 
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L4 Cache Evaluation 

• Baseline is 23-core design 
with 1MiB/core L3 cache 
(iso-area to 18-core) 

• 1 GiB cache size achieves 
most of the benefits for 
the heap 
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1 GiB sufficient for heap 



L4 Cache Evaluation 

• 27% overall performance 
improvement 

• 22% pessimistic 

• 38% future (+10% 
latency & misses) 

24 

L4 and 1MiB Cache per Core 



Executive Summary 

• Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of 
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• Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural 
evaluations and optimizations of processor design trade-offs 

• Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial 
web search 

• Observations and Ideas: 
– Memory hierarchy an bottleneck 
– Significant reuse of data not captured by current cache hierarchies 
– Adding an latency-optimized L4 cache using eDRAM 
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DISCUSSION 
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Strengths 

• Most of important aspects are evaluated 

• Uses production application for performance 
analysis 

• Tries to predict future improvements 

• Well written 
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Weaknesses 

• Considers only one architecture (though they 
analyse PowerPC) 

• Only applicable to Google Search 
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Follow Up Work 

• Code Layout Optimization for Near-Ideal 
Instruction Cache  

– https://ieeexplore.ieee.org/document/8744367 
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Open Discussion 

• Should this kind of analysis be done also for other 
kind of software? 

• Can there be other benefits of a L4 cache? 
• Should software be able to control cache 

behavior (i.e. evicting strategy)? 
• Online Discussion on Moodle 

– https://moodle-
app2.let.ethz.ch/mod/forum/discuss.php?d=48096 
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Further Readings 

• HPCA: Technology Comparison for Large Last-level Caches (L3cS): Low-
leakage SRAM, Low Write-energy STT-RAM, and Refresh-optimized 
eDRAM 
– https://ieeexplore.ieee.org/document/6522314 
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