
Memory Hierarchy for Web Search

Presented by Pascal Störzbach

Jung Ho Ahn
Seoul National University

Christos Kozyrakis
Stanford University

Parthasarathy Ranganathan
Google

Grant Ayers
Stanford University

HPCA, 2018

Executive Summary

• Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of
datacenter-scale workloads

• Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural
evaluations and optimizations of processor design trade-offs

• Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial
web search

• Observations and Ideas:
– Memory hierarchy an bottleneck
– Significant reuse of data not captured by current cache hierarchies
– Adding an latency-optimized L4 cache using eDRAM

• Result: Cache hierarchy optimized for web search without using more transistors on the die
– 27 % overall performance improvement
– Die size equal to original die size (18-core with 2.5 MiB/core to 23-core with 1 MiB/core design)

2

Outline

• Characterizing Search in the Wild

• Characterizing Memory Hierarchy for Search

• Optimized Memory Hierarchy

• Discussion

3

CHARACTERIZING SEARCH IN THE WILD

4

Background

5

3 Components:

• Crawling

• Indexing

• Serving

Background

Search attributes:

1. Index stored on multiple machines (index divided
into shards)

2. Query processing requires billions of instructions

3. Search has request-level parallelism

4. Search is latency-critical

6

Methodology

• Measurements on 2
platforms (PLT1, PLT2)

• 4 different metrics:
– IPC

– Misses per Kilo-
Instructions (MPKI) (L2
and L3 cache)

– Branch MPKI

7

Hardware Optimizations

• Web search benefits significantly from features like
– High core counts
– Simultaneous Multithreading (SMT)
– Large pages
– Prefetching

8

Key Search Characteristics

• IPC is reasonably high
• L2 MPKI for instruction accesses

is high
• L3 MPKI for data is significant
• Branch MPKI is uniformly high
• Only 32 % of slots are used for

retirements
– Hence, memory hierarchy is a big

opportunity for improvement

9

Stalls

CHARACTERIZING MEMORY HIERARCHY FOR
SEARCH

10

Challenges and Methodology

Challenges
1. No known timing simulator can run search for non-trivial amount

of virtual time
2. Performance counters are limited and often broken

Methodology
• Validated measurements from real machines
• Trace-driven functional cache simulation (modelling a PLT1-like

system)
• Analytical model based on curve-fitting data from the fleet

11

Footprint and Working Set Scaling

12

Footprint observations:
• Heap dominates non-shard

memory footprint
• Heap size grows slower than linear

as there are several shared
datastructures

Working set observations:
• Shard footprint is constant (100’s

GiB) but it’s working set grows
• Heap working set significantly

smaller than footprint

Cache Effectiveness

• L1 and L2 caches
experience significant
misses of all types

• L3 cache virtually
eliminates code misses
but is insufficient for
heap and shard

13

L3 cache scaling

• 16 MiB L3 cache is
sufficient to remove code
misses

• L3 cache is ineffective with
shard accesses

• Large (1 GiB) shared caches
are effective for heap
accesses

14

16 MiB sufficient for code
1 GiB sufficient for heap

Type of Misses

• Conflict misses not
significant

• Default associativity: a
good design point

• Limited benefit of
larger cache lines

15

Good cache line size

OPTIMIZED MEMORY HIERARCHY FOR WEB
SEARCH

16

Key Insights

• Good thread-level parallelism

• Memory hierarchy is a significant bottleneck

• Some cache hierarchy decisions effective
others ineffective

17

Optimization Strategy

• Repurpose expensive on-chip transistors in
the L3 cache for cores

• Exploit the available locality in the heap with
cheaper and higher-capacity DRAM
incorporated into a latency-optimized L4
cache

18

Cache vs. Cores Trade-off

Measurements for Intel Haswell architecture

• Core area cost is 4 MiB L3 cache

19

Cache vs. Cores Trade-off

• Some L3 transistors could
be better used for cores
– (9c|2.5MiB/core worse

than 11c|1.23MiB/core)

• Core count is not all that
matters
– (All 18c with < 1MiB/core

are bad)

20

Cache vs. Cores Trade-off

What’s the right cache per core
balance?

Use linear model incorporated from data
of previous measurements
• Performance linear to core count
• 2 measurements per each cache ratio

Result: 1 MiB/core allows 5 extra cores
and 14% performance improvement

21

Optimal Cache-per-Cores Performance

Latency-optimized L4 Cache

• Target the locality in the fixed 1 GiB
heap

• Use of eDRAM (Embedded DRAM)
instead of on-chip SRAM
– eDRAM cheaper with competitive

latencies
– More energy efficient
– Often considered as L4 cache
– Requires refreshes

• Less than 1% die area overhead (L4
controller)

• Latency optimized
– Memory accessed in parallel
– Direct-mapped organization

22

L4 Cache Evaluation

• Baseline is 23-core design
with 1MiB/core L3 cache
(iso-area to 18-core)

• 1 GiB cache size achieves
most of the benefits for
the heap

23

1 GiB sufficient for heap

L4 Cache Evaluation

• 27% overall performance
improvement

• 22% pessimistic

• 38% future (+10%
latency & misses)

24

L4 and 1MiB Cache per Core

Executive Summary

• Motivation: Online data-intensive services (OLDI) comprise a significant and growing portion of
datacenter-scale workloads

• Problem: Complexity of OLDI services (such as web search) has precluded detailed architectural
evaluations and optimizations of processor design trade-offs

• Goal: Provide in-depth study of the microarchitecture and memory system behavior of commercial
web search

• Observations and Ideas:
– Memory hierarchy an bottleneck
– Significant reuse of data not captured by current cache hierarchies
– Adding an latency-optimized L4 cache using eDRAM

• Result: Cache hierarchy optimized for web search without using more transistors on the die
– 27 % overall performance improvement
– Die size equal to original die size (18-core with 2.5 MiB/core to 23-core with 1 MiB/core design)

25

DISCUSSION

26

Strengths

• Most of important aspects are evaluated

• Uses production application for performance
analysis

• Tries to predict future improvements

• Well written

27

Weaknesses

• Considers only one architecture (though they
analyse PowerPC)

• Only applicable to Google Search

28

Follow Up Work

• Code Layout Optimization for Near-Ideal
Instruction Cache

– https://ieeexplore.ieee.org/document/8744367

29

https://ieeexplore.ieee.org/document/8744367
https://ieeexplore.ieee.org/document/8744367

Open Discussion

• Should this kind of analysis be done also for other
kind of software?

• Can there be other benefits of a L4 cache?
• Should software be able to control cache

behavior (i.e. evicting strategy)?
• Online Discussion on Moodle

– https://moodle-
app2.let.ethz.ch/mod/forum/discuss.php?d=48096

30

https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096
https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=48096

Further Readings

• HPCA: Technology Comparison for Large Last-level Caches (L3cS): Low-
leakage SRAM, Low Write-energy STT-RAM, and Refresh-optimized
eDRAM
– https://ieeexplore.ieee.org/document/6522314

31

https://ieeexplore.ieee.org/document/6522314
https://ieeexplore.ieee.org/document/6522314

