
An Energy-Efficient Microarchitecture for
High Performance ILP and High

Throughput TLP

MorphCore

Khubaib

M. Aater Suleman

Milad Hashemi

Chris Wilkerson

Yale N. Patt

MICRO 2012

Presented by Lukas Fluri

2

Executive summary
● Problem: Modern workloads require a microarchitecture with good single- and multi-

threaded performance while not wasting any energy. Current cores do not provide
this as they are specialized on the execution of one of those workload-types.

● MorphCore: microarchitecture based on a big out-of-order core with the ability to
switch to higly parallel in-order SMT execution mode

● Results: MorphCore

– Performs very close to the best single-thread optimized core on single-threaded
workloads

– Achieves 2/3 of the performance improvement of the best optimized multi-
threaded architecture on multi-threaded workloads

– Performs best on average over all workloads compared to the other measured
core architectures

– Achieves the performance improvements with significally less energy than other
cores

3

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

4

2 important concepts for this paper

Out-of-order execution

Simultaneous Multithreading

5

Out-of-order execution (OOO)

R3 ← MUL R1, R2
R3 ← ADD R3, R1
R1 ← ADD R6, R7
R5 ← MUL R6, R8
R7 ← ADD R3, R5

F D E E E E R W

F D - - - E R W

F - - - D E R W

F D E E E E R W

F D E R - - - W

F D E E E E R W

F D - - - E R W

F D E R - - - W

F D E E E E R W

F D - - - E R W

Program to execute:

Out-of-order execution

In-order execution

Dependencies!

Based on an example from: Onur Mutlu, Course ‘Design of Digital Circuits’ 2017

6

Simultaneous Multithreading (SMT)
T

im
e

Superscalar Fine-grained
multithreading

Simultaneous
Multithreading

 Thread 1
 Thread 2
 Thread 3
 Thread 4
 Thread 5

Issue width Issue width Issue width Based on an example from
Eggers, Emer et al 1997

7

Industry builds 2 types of cores

● Exploit Instruction-
Level-Parallelism (ILP)

+ High single thread
performance

- Power-inefficient for
multi-threaded
programs

● Exploit Thread-Level-
Parallelism (TLP)

+ High parallel
Throughput

- Poor single thread
performance

Large out-of-order cores Small cores

8

Problem

Modern workloads require a micro-
architecture capable of both delivering good
single and multi-threaded performance.

Currently only possible with a big OOO-
core that wastes huge amounts of
energy on multi-threaded workloads.

9

Early approach: ACMP

Asymmetric Chip Multiprocessor

● One or few large cores for fast
single-threaded execution

● Many small cores for high
throughput in multi-threaded
execution

- Numbers of cores fixed at
design time, can’t adapt
dynamically to workload

Image: Morad,Weiser et al 2005

10

Recent approach: Core Fusion

Core Fusion

● Many small cores for high
throughput in multi-threaded
execution

● Ability to dynamically fuse into
larger cores when executing
single-threaded code

+ Can dynamically adapt to
workload

- Fused cores have low
performance and high
power/energy consumption

C
or

e
0

C
or

e
4

C
or

e
1

C
or

e
5

C
or

e
2

C
or

e
6

C
or

e
3

C
or

e
7

Fused Core 1

Fused Core 2

11

Goal

● Can adapt to its workload
● Provides high performance in single-threaded

execution
● Provides high parallel throughput in multi-threaded

execution
● Uses no more energy/power than necessary

MorphCore

Propose a Core architecture that:

12

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

13

Key insight 1

A highly threaded in-order
core can achieve the same
or better performance as an
out-of-order core. (While
using much less energy)

Image source: Khubaib, Suleman et al. “MorphCore”, 2012

14

Key insight 2

Such a core can be built using almost a subset of
the hardware required to build an aggressive
OOO core.

15

Idea
● Use a big out-of-order core as base substrate
● Add the capability to switch between out-of-

order and highly threaded in-order SMT
execution mode

● In the in-order SMT execution mode, turn off
power-hungry OOO-structures

16

MorphCore
● Can switch between out-of-

order and in-order SMT
execution mode
➔ Can dynamically adapt to

 different workloads
● Runs as normal OOO core in

single-threaded programs
➔ Provides high performance

 single-thread execution
● Runs as highly-threaded in-

order core in multi-threaded
programs
➔ Provides high parallel

throughput while not wasting
vast amounts of energy

T
hr

ea
d

0
T

hr
ea

d
4

T
hr

ea
d

1
T

hr
ea

d
5

T
hr

ea
d

2
T

hr
ea

d
6

T
hr

ea
d

3
T

hr
ea

d
7

Large out-of-order Core

Out-of-order/In-order SMT thread

In-order SMT thread.

17

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

18An out-of-order core
microarchitecture

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

LDQ-alloc
STQ-alloc

ROB-alloc

Speculative-RAT

RS

RS Free List

OOO Select
(among any
ready instrs
in RS)

OOO Wakeup
(wakeup any
Dep instr in RS)

Physical
Register
File (PRF)

ALUs

D-Cache

Store Buffer

LDQ/STQ
Lookup

Permanent-RAT

ROB-commit

The following slides and images are adapted from: Khubaib, Suleman et al. “MorphCore...”, 2012

Goal: Add hardware support
for in-order SMT executionI-Cache

Branch
Predictor

19

Adding in-order SMT support

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT
RS

RS Free List

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

Physical
Register

File (PRF)
ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

Permanent-RAT

ROB-commit

I-Cache

LDQ-alloc

STQ-allocBranch
Predictor

8-way
SMT

● Active in in-
order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

20

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT RS

RS Free List

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

Physical
Register

File (PRF)
ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

Permanent-RAT

ROB-commit

I-Cache

LDQ-alloc

STQ-alloc

Branch
Predictor

8-way
SMT

.

Adding in-order SMT support
● Active in in-

order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

21

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT RS
OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

Physical
Register

File (PRF)
ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

Permanent-RAT

ROB-commit

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

.

RS Free List

RS FIFO
Insert

Adding in-order SMT support
● Active in in-

order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

22

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

Physical
Register

File (PRF)
ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

Permanent-RAT

ROB-commit

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

.

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

Adding in-order SMT support

1-Bit fields

● Active in in-
order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

23

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)
ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

Permanent-RAT

ROB-commit

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

. ﾧ

Physical
Register

File (PRF)

Small result
buffer

Adding in-order SMT support
● Active in in-

order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

24

Physical
Register

File (PRF)

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

Small result
buffer

. ﾧ

Permanent-RAT

ROB-commit

Adding in-order SMT support
● Active in in-

order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

25

Physical
Register

File (PRF)

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

Small result
buffer

Permanent-RAT

ROB-commit

Out-of-Order execution

● Active in in-
order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

In-Order execution

Adding in-order SMT support

26

Physical
Register

File (PRF)

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

Small result
buffer

Permanent-RAT

ROB-commit

Area, Power & Frequency Overhead

● 1.5% area overhead
● 1.5% power overhead
● 2.5% frequency penalty

● Active in in-
order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

27

Physical
Register

File (PRF)

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT

2-way
SMT

ROB-alloc

Speculative-RAT

RS

OOO Select
(among any
ready instrs

in RS)

OOO Wakeup
(wakeup any

dep instr in RS)

ALUs

D-Cache

Store Buffer
STQ Lookup

LDQ Lookup

I-Cache

LDQ-alloc

STQ-alloc
Branch

Predictor

8-way
SMT

RS Free List

RS FIFO
Insert

InOrder Select
(only among

the head instrs
of the threads)

InOrder Wakeup
(FIFO order per

thread)

Small result
buffer

Permanent-RAT

ROB-commit

Area, power & frequency overhead

● All these parts are OOO-mode only
● They can be turned off during In-Order mode

➔ Huge power saving

● Active in in-
order Mode
only

● Active in
both Modes

● Active in out-
of-order
Mode only

28

When to switch between modes?
● Based on number of active threads

● Threshold t = 2

● When # active threads <= t, switch to OOO-mode

● When # active threads > t switch to In-Order-mode

● Uses MONITOR/MWAIT, 2 already existent ISA
instructions to get info about waiting threads

➔ No changes to operating systems, compilers or
ISAs, and no recompilation of programs necessary!

29

Switching from OOO to in-order
● Handled by a micro-code routine that performs the following

tasks:

1)Drains the core pipeline

2)Spills the architectural registers of all threads (into
reserved memory regions)

3)Turns off Renaming unit, OOO-Wakeup and Select blocks
and Load Queue (clock-gated)

4)Fills register values back into each thread’s PRF partitions

30

Switching from in-order to OOO
● Handled by a micro-code routine that performs the following

tasks:

1)Drains the core pipeline

2)Spills the architectural registers of all threads. Store pointers
to the architectural state of the inactive threads in the Active
Thread Table

3)Turns on Renaming unit, OOO-Wakeup and Select blocks
and Load Queue

4)Fills the architectural registers of only the active threads into
pre-determined locations in PRF, and updates the
speculative- and permanent RAT

31

Overhead of changing the mode

Two main contributors to overhead:
– Draining of the pipeline (dependent on

instructions still in pipeline)
– Spilling of architectural register state of the

threads (~250 cycles)

32

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

33

The cores

Core Type Freq
(Ghz)

Issue-
width

Num
of
cores

SMT
threads
per core

Total
Threads

Total
Norm
. Area

Peak ST
throughput

Peak MT
throughput

OOO-2 OOO 3.4 4 1 2 2 1 4 ops/cycle 4 ops/cycle

OOO-4 OOO 3.23 4 1 4 4 1.05 4 ops/cycle 4 ops/cycle

MED OOO 3.4 2 3 1 3 1.18 2 ops/cycle 6 ops/cycle

SMALL in-order 3.4 2 3 2 6 0.97 2 ops/cycle 6 ops/cycle

MorphCore OOO or
In-order

3.315 4 1 OOO: 2
In-order: 8

2 or 8 1.015 4 ops/cycle 4 ops/cycle

Adapted from: Khubaib, Suleman et al. “MorphCore...”, 2012

Expected highest
single-thread
performance

Expected highest
multi-threaded
performance

Expected close
to best in both,
ST and MT

34

The workloads
● 14 single-thread and 14 multi-threaded workloads

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

35

Result: Single-thread workloads

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

MorphCore
reaches 98.8% of
the performance
of OOO-2

36

Result: Multi-threaded workloads

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

● MorphCore reaches a
22% perf.
Improvement over
OOO-2

● Stays behind MED
and SMALL (30% and
33% improv.)

● But beats MED in
three workloads

● Gets beaten by OOO-
4 three times

Beats MED
Gets beaten
by OOO-4

37

Speedup summary

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

On average,
MorphCore
outperforms all
other cores

38

Result: Power & Energy

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

39

Overall result

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

MorphCore has
the lowest ED2
being 22% lower
than the baseline
OOO-2

40

Comparison to CoreFusion
C

or
e

0
C

or
e

4

C
or

e
1

C
or

e
5

C
or

e
2

C
or

e
6

C
or

e
3

C
or

e
7

Fused Core 1

Fused Core 2

T
hr

ea
d

0
T

hr
ea

d
4

T
hr

ea
d

1
T

hr
ea

d
5

T
hr

ea
d

2
T

hr
ea

d
6

T
hr

ea
d

3
T

hr
ea

d
7

Large Out-Of-Order Core

In-order SMT thread
Out-of-order/In-order SMT thread

Fused large out-of-order core
Small out-of-order core

41

Comparison to CoreFusion

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012

● CoreFusion is better in
multi-threaded
workloads (8% on aver.)

● MorphCore outperforms
CoreFusion in general
(5% on aver.)

● Reduces power (19%),
energy (29%) and ED2
(29%) significally
compared to
CoreFusion

42

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

43

Executive summary
● Problem: Modern workloads require a microarchitecture with good single- and multi-

threaded performance while not wasting any energy. Current cores do not provide
this as they are specialized on the execution of one of those workload-types.

● MorphCore: microarchitecture based on a big out-of-order core with the ability to
switch to higly parallel in-order SMT execution mode

● Results: MorphCore

– Performs very close to the best single-thread optimized core on single-threaded
workloads

– Achieves 2/3 of the performance improvement of the best optimized multi-
threaded architecture on multi-threaded workloads

– Performs best on average over all workloads compared to the other measured
core architectures

– Achieves the performance improvements with significally less energy than other
cores

44

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

45

Strengths
● Novel but simple and elegant solution
● Low hardware overhead and low frequency

penalty (1.5% & 2.5%)
● Does not need changes to software,

compilers or OS; ISA remains unchanged
● Solves many of the issues of CoreFusion
● Well structured paper

46

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

47

Weaknesses
● Performance on MT-workloads is better than on

other OOO-cores but still weak compared to small
cores (only ~2/3 of performance)

● Mode switching policy may cause big
performance overhead

● No predictable overhead of the mode switching
● Paper sometimes lacks some details

48

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

49

Takeaways
● A new michroarchitecture that can handle both,

single- and multi-threaded workloads, while
delivering good performance and not wasting
energy

● No changes to software necessary
● Well structured paper, sometimes a bit lack of detail
● Possibility of further improvement and extensions

50

Outline
● Background, Problem and Goal
● Novelty, Key approach and Ideas
● Mechanisms (in some detail)
● Key Results: Methodology and Evaluation
● Summary
● Strengths
● Weaknesses
● Takeaways
● Thougts, Ideas and Discussion starters

51

Thoughts, Ideas and Discussion starters
● Increase issue-width. Can this approach achieve a higher total peak throughput and

tackle the performance gap on MT workloads between MorphCore and
SMALL/MED?

➔ Yes, see Khubaib Ph.D. Dissertation 2014

52

Increase
issue-width

Image source: Khubaib Ph.D. thesis, 2014

● Increased width yields
better performance

● At least almost (see lu)
● Comes at cost of higher

energy cost

53

Thoughts, Ideas and Discussion starters
● Increase issue-width. Can this approach achieve a higher total peak throughput and

tackle the performance gap on MT workloads between MorphCore and
SMALL/MED?

➔ Yes, see Khubaib Ph.D. Dissertation 2014

● Is the concept of MorphCore the only approach to the problem of providing good
single- and multi-threaded performance while not wasting energy?

➔ No, see Shruti Padmanabha et al. “Mirage Cores...” IEEE/ACM 2017

54

Mirage Cores

Image source: Shruti Padmanabha et al. “Mirage Cores...”, 2017

● Use few OOO cores to analyze
the execution of a program

● Instruction schedules of parts that
repeat often (e.g. loops) get saved
(“memoized”)

● All further executions of these
parts get executed on the in-order
cores

➔ In-order cores performe nearly as
good as the big out-of-order cores
but use less energy

55

Thoughts, Ideas and Discussion starters
● Increase issue-width. Can this approach achieve a higher total peak throughput and

tackle the performance gap on MT workloads between MorphCore and
SMALL/MED?

➔ Yes, see Khubaib Ph.D. Dissertation 2014

● Is the concept of MorphCore the only approach to the problem of providing good
single- and multi-threaded performance while not wasting energy?

➔ No, see Shruti Padmanabha et al. “Mirage Cores...” MICRO 2017

● Fetch in each cycle from several threads instead of fetching several instructions from
one thread each cycle. Can this improve SMT performance?

● Gather statistics about thread behaviour to achieve smarter mode-switching (similar
to branch prediction). Is this a good approach?

● Does a frequent switch of modes lead to cache trashing?

An Energy-Efficient Microarchitecture for
High Performance ILP and High

Throughput TLP

MorphCore

Khubaib

M. Aater Suleman

Milad Hashemi

Chris Wilkerson

Yale N. Patt

MICRO 2012

Presented by Lukas Fluri

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

