MICRO 2012

MorphCore

An Energy-Efficient Microarchitecture for
High Performance ILP and High
Throughput TLP

Presented by Lukas Fluri



Executive summary

* Problem: Modern workloads require a microarchitecture with good single- and multi-
threaded performance while not wasting any energy. Current cores do not provide
this as they are specialized on the execution of one of those workload-types.

 MorphCore: microarchitecture based on a big out-of-order core with the ability to
switch to higly parallel in-order SMT execution mode

 Results: MorphCore

Performs very close to the best single-thread optimized core on single-threaded
workloads

Achieves 2/3 of the performance improvement of the best optimized multi-
threaded architecture on multi-threaded workloads

Performs best on average over all workloads compared to the other measured
core architectures

Achieves the performance improvements with significally less energy than other
cores
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2 important concepts for this paper

Out-of-order execution

Simultaneous Multithreading



Out-of-order execution (OOO)

In-order execution
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Based on an example from: Onur Mutlu, Course ‘Design of Digital Circuits’ 2017



Simultaneous Multithreading (SMT)
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= Thread 1
£ = Thread 2
= = Thread 3
= Thread 4
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Issue width Issue width Issue width Based on an example from

Eggers, Emer et al 1997



Industry builds 2 types of cores

Large out-of-order cores Small cores

* Exploit Instruction- e Exploit Thread-Level-
Level-Parallelism (ILP) Parallelism (TLP)

+ High single thread + High parallel
performance Throughput

- Power-inefficient for - Poor single thread
multi-threaded performance

programs



Problem

Modern workloads require a micro-
architecture capable of both delivering good
single and multi-threaded performance.

Currently only possible with a big OOO-
core that wastes huge amounts of

energy on multi-threaded workloads.



Early approach: ACMP

Asymmetric Chip Multiprocessor

* One or few large cores for fast
single-threaded execution

* Many small cores for high
throughput in multi-threaded
execution

- Numbers of cores fixed at
design time, can’t adapt
dynamically to workload
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Image: Morad,Weiser et al 2005
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Recent approach: Core Fusion

Core Fusion Fused Core 2

* Many small cores for high
throughput in multi-threaded
execution

* Ability to dynamically fuse into
larger cores when executing
single-threaded code

Core 4
Core 5

+ Can dynamically adapt to
workload

- Fused cores have Ipw Fused Core 1
performance and high
power/energy consumption



Goal

Propose a Core architecture that:

e Can adapt to its workload

* Provides high performance in single-threaded
execution

* Provides high parallel throughput in multi-threaded
execution

» Uses no more energy/power than necessary

> MorphCore
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Key insight 1
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A highly threaded in-order
core can achieve the same
or better performance as an
out-of-order core. (While
using much less energy)

+ Out—bf—Order
—— In-order

Speedup over Oo0O w/ 1 thread
= =

=
&
O 1 1 1 1

2 4 6 8
Number of SMT Threads

Image source: Khubaib, Suleman et al. “MorphCore”, 2012



Key insight 2

Such a core can be built using almost a subset of

the hardware required to build an aggressive
OQOQO core.
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|dea

* Use a big out-of-order core as base substrate

* Add the capability to switch between out-of-
order and highly threaded in-order SMT
execution mode

* |n the in-order SMT execution mode, turn off
power-hungry OOO-structures
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MorphCore

e Can switch between out-of-
order and in-order SMT Large out-of-order Core

execution mode

=> Can dynamically adapt to
different workloads

* Runs as normal OOO core in
single-threaded programs

=> Provides high performance
single-thread execution

* Runs as highly-threaded in-
order core in multi-threaded
programs

=> Provides high parallel
throughput while not wasting
vast amounts of energy = =-==---- In-order SMT thread

Thread O
Thread 1

Out-of-order/In-order SMT thread
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An out-of-order core 18
microarchitecture

Goal: Add hardware support

for in-order SMT execution

DECODE | RENAME INSERT INTO RS SELECT WAKEUP REGREAD | EXE CUTE COMMIT

The following slides and images are adapted from: Khubaib, Suleman et al. “MorphCore...”, 2012
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Adding in-order SMT support

* Active in in-
order Mode
only

Legend De-Mux h M
* Active in out-
m >\ of-order
Shared — Mode only
L] Only 000 — >
I-cache f—
I:I Only InQrder >

Branch 7

Predictor Select” —y %\

I-Cache PC/'O PC/'l PC-2 | o+ |PCT 8 Instruction
Buffers

2-way

SMT

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Adding in-order SMT support

Active in in-
order Mode
only

Legend
[/// /] shared Active in out-
| onlyoco of-order
Mode only
S Only InOrder
RireT Breiids Phy Src Ids Renamed Instrs
—> F-RAT Dependency M >
' Check Logic Allocate
DfCOded Resources
nstrs (ROB, LDQ, STQ) Renamed
STQ-alloc v iistrs
\ ] i v —>
Dest Srcllds 4 q
; LDQ STQ. ROB
ROB'a"OC = EreeList Phy Dest Ids Pt 9 /7 /
Speculative-RAT Phy Src Ids. | \{ROB+Store Buffer)
Dest| Src Static Mapping . S T
(concatenate Thread ID Phy Dest Ids >
Thread|ID to Arch Reg ID) Renamed Instrs Mode Selector|
LDQ-alloc —>
FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Adding in-order SMT support

RS FIFO

Insert

RS Free List
(insert into
empty slots)

Insert in

RS
locations

to insert
—>

Renamed Instrs

ThO instructions

Th7 instructions

Active in in-
order Mode
only

Active in out-
of-order
Mode only

circular
Thread FIFO order
ID Mode Selector
RS
RS Free List
FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Adding in-order SMT support

InOrder Select

(only among

the head instrs
nf the threades)

Reservation Station Entry

000 Tag Match bits

|

|

InOrder Wakeup
(FIFO order per

thread)

Req OO0 Exec

Req InOrder Exec

!

n

I
LSrc Tagl/] I/I l SHIFT R ,DELAYl

stc Tag2” M [SHIFT {R[DELAY2

| AN

]

Reschedule

eq[scheduled | pést Tag [ scheduled |M|

I—
Set /[Rese 6

InOrder Ready (Match)
(Wakeup)

Active in in-
order Mode
only

Active in out-
of-order
Mode only

. . e Send instr to FU
oo 1-Bit fields —
Grant R
Grant Mode Selector
\wiwiwarelsjicivy 000 Wakeup
(among any (wakeup any
ready instrs || gep instr in RS)
in RS)
FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Adding in-order SMT support

Active in in-
order Mode
Small result only
buffer
° Active in out-
1 of-order
Bypass Mode only
=
Physical b Result Bus Store Buffer
—> . _—
Reg File / $ STQ Lookup
Y
2 ALU 4 D-Cache
Physical
Register ALUs
File (PRF)
LDQ Lookup
FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Adding in-order SMT support

e Active in in-
order Mode
only

* Active in out-
of-order
Mode only

ROB-commit

Permanent-RAT

FETCH

DECODE

RENAME

INSERT INTO RS

SELECT

WAKEUP

REG READ

EXECUTE

COMMIT
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Adding in-order SMT support

* Active in in-

RS FIFO [| InOrder Select R inOrder Wakeup Small result order Mode

Insert (only among (FIFO order per buffer only
the head instrs )

of the threads) Active i t
* Active in out-

of-order

_ - . Store Buffer
Brancn —— Out-of-Order execution e

Physical

RS Register ; ROB-commit
File (PRF) || D-Cache

I-Cache ROB-alloc

In-Order execution ALUs

000 Select OO0 Wakeup Permanent-RAT
Speculative-RAT (among any (wakeup any

ready instrs dep instrin RS)
in RS)
LDQ-alloc RS Free List LDQ Lookup

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT




Area, Power & Frequency Overhead%

Active in in-
RS FIFO | InOrder Select M |norder Wakeup Small result orcer Mode
Insert (only among (FIFO order per buffer y
the head instrs thread)
of the threads) Active | t
ctive in out-
of-order
Mode only
B h Store Buffer
ranc STQ Lookup
- STQ-alloc _
Predictor * 1.5% area overhead Pyt
RS il D-Cache ROB-commit
* 1.5% power overhead | File (PRF)
I-Cache ROB-alloc
* 2.5% frequency penalty ALUs
00O Select OO0 Wakeup Permanent-RAT
Speculative-RAT (among any (wakeup any
2-way ready instrs dep instrin RS)
SMT in RS)
LDQ-alloc RS Free List LDQ Lookup

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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Area, power & frequency overhead |

* Active in in-

RS FIFO InOrder Select InOrder Wakeup Small result g:ﬁer Mode
Insert (only among (FIFO order per buffer y
the head instrs thread)
of the threads) C
* Active in out-
of-order
. Mode only
tore Buffer
Branch * All these parts are 00O0O-mode only FTQ Lookup
Predictor * They can be turned off during In-Order mode Iai
-Cache ROB-commit
-Cache RoB-a = Huge power saving
ALUs

000 Select OO0 Wakeup Permanent-RAT
Speculative-RAT (among any (wakeup any

ready instrs dep instr in RS)
in RS)
LDQ-alloc RS Free List LDQ Lookup

FETCH DECODE RENAME INSERT INTO RS SELECT WAKEUP REG READ EXECUTE COMMIT
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When to switch between modes?

* Based on number of active threads

Threshold t =2

When # active threads <= t, switch to OOO-mode
When # active threads > t switch to In-Order-mode

Uses MONITOR/MWAIT, 2 already existent ISA
instructions to get info about waiting threads

=» No changes to operating systems, compilers or
ISAs, and no recompilation of programs necessary!
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Switching from OQO to in-order

* Handled by a micro-code routine that performs the following
tasks:

1)Drains the core pipeline

2)Spills the architectural registers of all threads (into
reserved memory regions)

3) Turns off Renaming unit, OO0O-Wakeup and Select blocks
and Load Queue (clock-gated)

4)Fills register values back into each thread’'s PRF partitions



Switching from in-order to OO0 )

* Handled by a micro-code routine that performs the following
tasks:

1)Drains the core pipeline

2)Spills the architectural registers of all threads. Store pointers
to the architectural state of the inactive threads in the Active
Thread Table

3) Turns on Renaming unit, OOO-Wakeup and Select blocks
and Load Queue

4)Fills the architectural registers of only the active threads into
pre-determined locations in PRF, and updates the
speculative- and permanent RAT



Overhead of changing the mode

Two main contributors to overhead:

— Draining of the pipeline (dependent on
instructions still in pipeline)

- Spilling of architectural register state of the
threads (~250 cycles)
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The cores
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Core Type Freq |Issue- | Num | SMT Total Total | Peak ST Peak MT
(Ghz) | width | of threads Threads | Norm | throughput | throughput
cores | per core . Area
00O0-2 000 3.4 4 - 1 2 2 1 4 ops/cycle | 4 ops/cycle
‘\ \ ~ L o

000-4 000 323\~Q Expected close Ighest ops/cycle | 4 ops/cycle
to best in both, ded N

MED 000 3.4 2 / 3 T'and MT 2 ops/cyclé™ 6 ops/cycle
, N

SMALL in-order | 3.4 ;/ 3 2 6 0.97 Z\Opg% 6 ops/cycle

¥
MorphCore | OOO or | 3.315 | 4 1 000: 2 2o0r8 1.015 | 4 ops/cycle | 4 ops/cycle
In-order In-order: 8

Adapted from: Khubaib, Suleman et al. “MorphCore...”, 2012




* 14 single-thread and 14 multi-threaded workloads

The workloads

|  Workload | Problem description | Input set |
Multi-Threaded Workloads
web web cache [29] 500K queries
gsort Quicksort [8] 20K elements
tsp Traveling salesman [19] 11 cities
OLTP-1 MySQL server [2] OLTP-simple [3]
OLTP-2 MySQL server [2] OLTP-complex [3]
OLTP-3 MySQL server [2] OLTP-nontrx [3]
black Black-Scholes [23] 1M options
barnes SPLASH-2 [34] 2K particles
fft SPLASH-2 [34] 16K points
lu (contig) SPLASH-2 [34] 512x512 matrix
ocean (contig) SPLASH-2 [34] 130x130 grid
radix SPLASH-2 [34] 300000 keys
ray SPLASH-2 [34] teapot.env

water (spatial)

SPLASH-2 [34]

512 molecules

Single-Threaded Workloads

SPEC 2006

| 7 INT and 7 FP benchmarks |

200M instrs

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Result: Single-thread workloads

1.0

MorphCore
reaches 98.8% of
the performance

of O00-2

Speedup Norm. to O0O0O-2
=
N

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012



Result: Multi-threaded workload§6

2.0 Gets beaten
| by OO0-4 |-
MorphCore reachesa . ‘
I22% perf. 8 5.
mprovement over S _
000-2 =
Stays behind MED g _
and SMALL (30% and £ 1.0
33% improv.) Z
But beats MED in oy
three workloads 2 05
Gets beaten by OOO- 3, |
4 three times “ _
0.0- A .
= 0‘3’0{\ &%Qo\()éz Q’<§ Q\(}Q WS S & @&% & & $ "

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Speedup summary

On average,
—0002 MorphCore
—000-4 outperforms all
—MorphCore other cores

=MED
—SMALL

ST Avg MT_Avg All_Avg

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Result: Power & Energy

1.4§

—000-2
—=000-4
—MorphCore
=MED
—SMALL

ST_Avg MT_Avg All_Avg
Power

1.4-

]
—000-2
—=000-4
—MorphCore
=MED
—SMALL

ST_Avg MT_Avg ALL_Avg
Energy

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Overall result

3.5

MorphCore has
the lowest ED?
being 22% lower
than the baseline
000-2

—MorphCore
1=MED
JI=SMALL

ST_Avg MT_Avg ALL_Avg
Energy-Delay-Squared (lower is better)

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Comparison to CoreFusion

Large Out-Of-Order Core

Fused Core 2

| peaiy]

0 pealyL

¢ 810D

J 810D

Z 910D

g 8109

| 810D

G 810D

0 810D

¥ 810D

Fused Core 1

In-order SMT thread

Fused large out-of-order core
Small out-of-order core

Out-of-order/In-order SMT thread
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Comparison to CoreFusion

* CoreFusion is better in
multi-threaded
workloads (8% on aver.)

* MorphCore outperforms
CoreFusion in general
(5% on aver.)

* Reduces power (19%),
energy (29%) and ED?
(29%) significally
compared to
CoreFusion

== MorphCore ST Avg
0°4_{ === MorphCore MT Avg
71==MorphCore All Avg

Metric Norm. to CoreFusion
o
o0

Speedup Power Energy ED2_Pr0du;t

Image source: Khubaib, Suleman et al. “MorphCore...”, 2012
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Executive summary
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* Problem: Modern workloads require a microarchitecture with good single- and muilti-
threaded performance while not wasting any energy. Current cores do not provide
this as they are specialized on the execution of one of those workload-types.

 MorphCore: microarchitecture based on a big out-of-order core with the ability to
switch to higly parallel in-order SMT execution mode

 Results: MorphCore

Performs very close to the best single-thread optimized core on single-threaded
workloads

Achieves 2/3 of the performance improvement of the best optimized multi-
threaded architecture on multi-threaded workloads

Performs best on average over all workloads compared to the other measured
core architectures

Achieves the performance improvements with significally less energy than other
cores
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Strengths

* Novel but simple and elegant solution

* Low hardware overhead and low frequency
penalty (1.5% & 2.5%)

* Does not need changes to software,
compilers or OS; ISA remains unchanged

* Solves many of the issues of CoreFusion
* Well structured paper
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\Weaknesses

* Performance on MT-workloads is better than on
other OOO-cores but still weak compared to small
cores (only ~2/3 of performance)

* Mode switching policy may cause big
performance overhead

* No predictable overhead of the mode switching
* Paper sometimes lacks some detalls
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Takeaways

* A new michroarchitecture that can handle both,
single- and multi-threaded workloads, while
delivering good performance and not wasting
energy

* No changes to software necessary
* Well structured paper, sometimes a bit lack of detail
* Possibility of further improvement and extensions
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Thoughts, Ideas and Discussion starters

* Increase issue-width. Can this approach achieve a higher total peak throughput and
tackle the performance gap on MT workloads between MorphCore and
SMALL/MED?

2 Yes, see Khubaib Ph.D. Dissertation 2014



Increase
Issue-width

* Increased width yields
better performance

* At least almost (see lu)

* Comes at cost of higher
energy cost

Image source: Khubaib Ph.D. thesis, 2014

Speedup Norm. to O00-2

Speedup Norm. to 6-wide O00-2 (%)

200

150

100

50

Yv\)

R MY . |
NN SPOSESRN SN S & &
RS

S &
@) x& g
I TS QTS S AR & @ & &q;\ & %&

6-wide O00-4 = 6-wide MorphCore =
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Thoughts, Ideas and Discussion starters

Increase issue-width. Can this approach achieve a higher total peak throughput and
tackle the performance gap on MT workloads between MorphCore and

SMALL/MED?
2 Yes, see Khubaib Ph.D. Dissertation 2014

Is the concept of MorphCore the only approach to the problem of providing good
single- and multi-threaded performance while not wasting energy?

2 No, see Shruti Padmanabha et al. “Mirage Cores...” IEEE/ACM 2017
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Mirage Cores

* Use few OOO cores to analyze Mirage Cores
the execution of a program

* Instruction schedules of parts that |39 EEE INO e
repeat often (e.g. loops) get saved
(“memoized”) (01e]0)

 All further executions of these I InO izel
parts get executed on the in-order e Memamze.

cores B <

Inomem In':)mem

INO e, J

= In-order cores performe nearly as
good as the big out-of-order cores
but use less energy

* High system throughput
+ Shorter execution latency

Image source: Shruti Padmanabha et al. “Mirage Cores...”, 2017
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Thoughts, Ideas and Discussion starters

Increase issue-width. Can this approach achieve a higher total peak throughput and
tackle the performance gap on MT workloads between MorphCore and
SMALL/MED?

2 Yes, see Khubaib Ph.D. Dissertation 2014

Is the concept of MorphCore the only approach to the problem of providing good
single- and multi-threaded performance while not wasting energy?

2 No, see Shruti Padmanabha et al. “Mirage Cores...” MICRO 2017

Fetch in each cycle from several threads instead of fetching several instructions from
one thread each cycle. Can this improve SMT performance?

Gather statistics about thread behaviour to achieve smarter mode-switching (similar
to branch prediction). Is this a good approach?

Does a frequent switch of modes lead to cache trashing?
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