
Seminar in

Computer Architecture

Meeting 2c: Example Talk I

Prof. Onur Mutlu

ETH Zürich

Fall 2019

26 September 2019

Example Conference Talk

2

PAR-BS

◼ Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

3

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

We Will Do This Differently

◼ I will give a “conference talk”

◼ You can ask questions and analyze what I described

4

Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda

Computer Architecture Group

Microsoft Research

6

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

The DRAM System

7

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

FR-FCFS policy

1) Row-hit first

2) Oldest first

8

Multi-Core Systems

CORE 0 CORE 1 CORE 2 CORE 3

L2

CACHE

L2

CACHE

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 7
. . .

Shared DRAM

Memory System

Multi-Core

Chip

threads’ requests

interfere

Inter-thread Interference in the DRAM System

◼ Threads delay each other by causing resource contention:

❑ Bank, bus, row-buffer conflicts [MICRO 2007]

◼ Threads can also destroy each other’s DRAM bank parallelism

❑ Otherwise parallel requests can become serialized

◼ Existing DRAM schedulers are unaware of this interference

◼ They simply aim to maximize DRAM throughput

❑ Thread-unaware and thread-unfair

❑ No intent to service each thread’s requests in parallel

❑ FR-FCFS policy: 1) row-hit first, 2) oldest first

◼ Unfairly prioritizes threads with high row-buffer locality

9

Consequences of Inter-Thread Interference in DRAM

10

◼ Unfair slowdown of different threads [MICRO 2007]

◼ System performance loss [MICRO 2007]

◼ Vulnerability to denial of service [USENIX Security 2007]

◼ Inability to enforce system-level thread priorities [MICRO 2007]

Cores make

very slow

progress

Memory performance hogLow priority

High priority
N

o
rm

a
liz

e
d

 M
e

m
o

ry
 S

ta
ll-

T
im

e DRAM is the only shared resource

Our Goal

◼ Control inter-thread interference in DRAM

◼ Design a shared DRAM scheduler that

❑ provides high system performance

◼ preserves each thread’s DRAM bank parallelism

❑ provides fairness to threads sharing the DRAM system

◼ equalizes memory-slowdowns of equal-priority threads

❑ is controllable and configurable

◼ enables different service levels for threads with different priorities

11

12

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

The Problem

◼ Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

❑ Memory-Level Parallelism (MLP)

❑ Out-of-order execution, non-blocking caches, runahead execution

◼ Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

◼ Multiple threads share the DRAM controller

◼ DRAM controllers are not aware of a thread’s MLP

❑ Can service each thread’s outstanding requests serially, not in parallel

13

Bank Parallelism of a Thread

14

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

15

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

16

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

17

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling (PAR-BS)

❑ Request Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

Parallelism-Aware Batch Scheduling (PAR-BS)

◼ Principle 1: Parallelism-awareness

❑ Schedule requests from a thread (to
different banks) back to back

❑ Preserves each thread’s bank parallelism

❑ But, this can cause starvation…

◼ Principle 2: Request Batching

❑ Group a fixed number of oldest requests
from each thread into a “batch”

❑ Service the batch before all other requests

❑ Form a new batch when the current one is done

❑ Eliminates starvation, provides fairness

❑ Allows parallelism-awareness within a batch

18

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

PAR-BS Components

◼ Request batching

◼ Within-batch scheduling
❑ Parallelism aware

19

Request Batching

◼ Each memory request has a bit (marked) associated with it

◼ Batch formation:

❑ Mark up to Marking-Cap oldest requests per bank for each thread

❑ Marked requests constitute the batch

❑ Form a new batch when no marked requests are left

◼ Marked requests are prioritized over unmarked ones

❑ No reordering of requests across batches: no starvation, high fairness

◼ How to prioritize requests within a batch?

20

Within-Batch Scheduling

◼ Can use any existing DRAM scheduling policy

❑ FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

◼ But, we also want to preserve intra-thread bank parallelism

❑ Service each thread’s requests back to back

◼ Scheduler computes a ranking of threads when the batch is
formed

❑ Higher-ranked threads are prioritized over lower-ranked ones

❑ Improves the likelihood that requests from a thread are serviced in
parallel by different banks

◼ Different threads prioritized in the same order across ALL banks

21

HOW?

How to Rank Threads within a Batch

◼ Ranking scheme affects system throughput and fairness

◼ Maximize system throughput

❑ Minimize average stall-time of threads within the batch

◼ Minimize unfairness (Equalize the slowdown of threads)

❑ Service threads with inherently low stall-time early in the batch

❑ Insight: delaying memory non-intensive threads results in high
slowdown

◼ Shortest stall-time first (shortest job first) ranking

❑ Provides optimal system throughput [Smith, 1956]*

❑ Controller estimates each thread’s stall-time within the batch

❑ Ranks threads with shorter stall-time higher

22
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

◼ Maximum number of marked requests to any bank (max-bank-load)

❑ Rank thread with lower max-bank-load higher (~ low stall-time)

◼ Total number of marked requests (total-load)

❑ Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

23

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

24

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

◼ PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

◼ Three properties:

❑ Exploits row-buffer locality and intra-thread bank parallelism

❑ Work-conserving

◼ Services unmarked requests to banks without marked requests

❑ Marking-Cap is important

◼ Too small cap: destroys row-buffer locality

◼ Too large cap: penalizes memory non-intensive threads

◼ Many more trade-offs analyzed in the paper

25

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

◼ <1.5KB storage cost for

❑ 8-core system with 128-entry memory request buffer

◼ No complex operations (e.g., divisions)

◼ Not on the critical path

❑ Scheduler makes a decision only every DRAM cycle

26

27

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

System Software Support

◼ OS conveys each thread’s priority level to the controller

❑ Levels 1, 2, 3, … (highest to lowest priority)

◼ Controller enforces priorities in two ways

❑ Mark requests from a thread with priority X only every Xth batch

❑ Within a batch, higher-priority threads’ requests are scheduled first

◼ Purely opportunistic service

❑ Special very low priority level L

❑ Requests from such threads never marked

◼ Quantitative analysis in paper

28

29

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

30

Evaluation Methodology

◼ 4-, 8-, 16-core systems

❑ x86 processor model based on Intel Pentium M

❑ 4 GHz processor, 128-entry instruction window

❑ 512 Kbyte per core private L2 caches, 32 L2 miss buffers

◼ Detailed DRAM model based on Micron DDR2-800

❑ 128-entry memory request buffer

❑ 8 banks, 2Kbyte row buffer

❑ 40ns (160 cycles) row-hit round-trip latency

❑ 80ns (320 cycles) row-conflict round-trip latency

◼ Benchmarks

❑ Multiprogrammed SPEC CPU2006 and Windows Desktop applications

❑ 100, 16, 12 program combinations for 4-, 8-, 16-core experiments

31

Comparison with Other DRAM Controllers

◼ Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]

❑ Prioritizes row-hit requests, older requests
❑ Unfairly penalizes threads with low row-buffer locality, memory non-intensive

threads

◼ FCFS [Intel Pentium 4 chipsets]

❑ Oldest-first; low DRAM throughput
❑ Unfairly penalizes memory non-intensive threads

◼ Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]

❑ Equally partitions DRAM bandwidth among threads
❑ Does not consider inherent (baseline) DRAM performance of each thread
❑ Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]

❑ Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

◼ Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]

❑ Estimates and balances thread slowdowns relative to when run alone
❑ Unfairly treats threads with inaccurate slowdown estimates
❑ Requires multiple (approximate) arithmetic operations

32

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

33

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

8.3% 6.1% 5.1%

34

Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary

Summary

◼ Inter-thread interference can destroy each thread’s
DRAM bank parallelism
❑ Serializes a thread’s requests → reduces system throughput

❑ Makes techniques that exploit memory-level parallelism less effective

❑ Existing DRAM controllers unaware of intra-thread bank parallelism

◼ A new approach to fair and high-performance DRAM scheduling

❑ Batching: Eliminates starvation, allows fair sharing of the DRAM system

❑ Parallelism-aware thread ranking: Preserves each thread’s bank parallelism

❑ Flexible and configurable: Supports system-level thread priorities → QoS policies

◼ PAR-BS provides better fairness and system performance than
previous DRAM schedulers

35

Thank you. Questions?

Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda

Computer Architecture Group

Microsoft Research

Backup Slides

Multiple Memory Controllers (I)

◼ Local ranking: Each controller uses PAR-BS independently

❑ Computes its own ranking based on its local requests

◼ Global ranking: Meta controller that computes a global
ranking across all controllers based on global information

❑ Only needs to track bookkeeping info about each thread’s requests
to the banks in each controller

◼ The difference between the ranking computed by each
scheme depends on the balance of the distribution of
requests to each controller

❑ Balanced → Local and global rankings are similar

39

Multiple Memory Controllers (II)

40

U
n

fa
ir

n
e

s
s

N
o

m
a

li
z
e

d
 H

m
e

a
n

-S
p

e
e

d
u

p 7.4% 11.5%

1.18X 1.33X

16-core system, 4 memory controllers

Example with Row Hits

Stall time

Thread 1 4

Thread 2 4

Thread 3 5

Thread 4 7

AVG 5

41

Stall time

Thread 1 5.5

Thread 2 3

Thread 3 4.5

Thread 4 4.5

AVG 4.375

Stall time

Thread 1 1

Thread 2 2

Thread 3 4

Thread 4 5.5

AVG 3.125

End of Backup Slides

Now Your Turn to Analyze…

◼ Background, Problem & Goal

◼ Novelty

◼ Key Approach and Ideas

◼ Mechanisms (in some detail)

◼ Key Results: Methodology and Evaluation

◼ Summary

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Open Discussion

43

PAR-BS Pros and Cons

◼ Upsides:

❑ First scheduler to address bank parallelism destruction across
multiple threads

❑ Simple mechanism (vs. STFM)

❑ Batching provides fairness

❑ Ranking enables parallelism awareness

◼ Downsides:

❑ Does not always prioritize the latency-sensitive applications

❑ Deadline guarantees?

❑ Complexity?

◼ Some ideas implemented in real SoC memory controllers

44

More on PAR-BS

◼ Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

45

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

Seminar in

Computer Architecture

Meeting 2c: Example Talk I

Prof. Onur Mutlu

ETH Zürich

Fall 2019

26 September 2019

