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PAR-BS

◼ Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
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We Will Do This Differently

◼ I will give a “conference talk”

◼ You can ask questions and analyze what I described
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Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness 

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda

Computer Architecture Group

Microsoft Research
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Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary



The DRAM System
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Inter-thread Interference in the DRAM System

◼ Threads delay each other by causing resource contention:

❑ Bank, bus, row-buffer conflicts [MICRO 2007]

◼ Threads can also destroy each other’s DRAM bank parallelism 

❑ Otherwise parallel requests can become serialized 

◼ Existing DRAM schedulers are unaware of this interference

◼ They simply aim to maximize DRAM throughput

❑ Thread-unaware and thread-unfair

❑ No intent to service each thread’s requests in parallel

❑ FR-FCFS policy: 1) row-hit first, 2) oldest first

◼ Unfairly prioritizes threads with high row-buffer locality 
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Consequences of Inter-Thread Interference in DRAM
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◼ Unfair slowdown of different threads [MICRO 2007]

◼ System performance loss [MICRO 2007]

◼ Vulnerability to denial of service [USENIX Security 2007]

◼ Inability to enforce system-level thread priorities [MICRO 2007]
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Our Goal

◼ Control inter-thread interference in DRAM

◼ Design a shared DRAM scheduler that

❑ provides high system performance

◼ preserves each thread’s DRAM bank parallelism

❑ provides fairness to threads sharing the DRAM system

◼ equalizes memory-slowdowns of equal-priority threads

❑ is controllable and configurable

◼ enables different service levels for threads with different priorities
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The Problem

◼ Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests

❑ Memory-Level Parallelism (MLP) 

❑ Out-of-order execution, non-blocking caches, runahead execution

◼ Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

◼ Multiple threads share the DRAM controller

◼ DRAM controllers are not aware of a thread’s MLP

❑ Can service each thread’s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread
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Compute
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Bank Parallelism Interference in DRAM
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2 DRAM Requests

Parallelism-Aware Scheduler
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Parallelism-Aware Batch Scheduling (PAR-BS)

◼ Principle 1: Parallelism-awareness

❑ Schedule requests from a thread (to 
different banks) back to back

❑ Preserves each thread’s bank parallelism

❑ But, this can cause starvation…

◼ Principle 2: Request Batching

❑ Group a fixed number of oldest requests 
from each thread into a “batch”

❑ Service the batch before all other requests

❑ Form a new batch when the current one is done

❑ Eliminates starvation, provides fairness

❑ Allows parallelism-awareness within a batch
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PAR-BS Components

◼ Request batching

◼ Within-batch scheduling
❑ Parallelism aware
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Request Batching

◼ Each memory request has a bit (marked) associated with it

◼ Batch formation:

❑ Mark up to Marking-Cap oldest requests per bank for each thread

❑ Marked requests constitute the batch

❑ Form a new batch when no marked requests are left

◼ Marked requests are prioritized over unmarked ones

❑ No reordering of requests across batches: no starvation, high fairness

◼ How to prioritize requests within a batch?
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Within-Batch Scheduling

◼ Can use any existing DRAM scheduling policy

❑ FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

◼ But, we also want to preserve intra-thread bank parallelism

❑ Service each thread’s requests back to back

◼ Scheduler computes a ranking of threads when the batch is 
formed

❑ Higher-ranked threads are prioritized over lower-ranked ones

❑ Improves the likelihood that requests from a thread are serviced in 
parallel by different banks

◼ Different threads prioritized in the same order across ALL banks
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How to Rank Threads within a Batch

◼ Ranking scheme affects system throughput and fairness

◼ Maximize system throughput

❑ Minimize average stall-time of threads within the batch

◼ Minimize unfairness (Equalize the slowdown of threads)

❑ Service threads with inherently low stall-time early in the batch

❑ Insight: delaying memory non-intensive threads results in high 
slowdown

◼ Shortest stall-time first (shortest job first) ranking

❑ Provides optimal system throughput [Smith, 1956]*

❑ Controller estimates each thread’s stall-time within the batch

❑ Ranks threads with shorter stall-time higher

22
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



◼ Maximum number of marked requests to any bank (max-bank-load)

❑ Rank thread with lower max-bank-load higher (~ low stall-time)

◼ Total number of marked requests (total-load)

❑ Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking
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Example Within-Batch Scheduling Order
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Putting It Together: PAR-BS Scheduling Policy

◼ PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

◼ Three properties:

❑ Exploits row-buffer locality and intra-thread bank parallelism

❑ Work-conserving

◼ Services unmarked requests to banks without marked requests 

❑ Marking-Cap is important

◼ Too small cap: destroys row-buffer locality

◼ Too large cap: penalizes memory non-intensive threads   

◼ Many more trade-offs analyzed in the paper
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Hardware Cost

◼ <1.5KB storage cost for

❑ 8-core system with 128-entry memory request buffer

◼ No complex operations (e.g., divisions)

◼ Not on the critical path

❑ Scheduler makes a decision only every DRAM cycle
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System Software Support

◼ OS conveys each thread’s priority level to the controller 

❑ Levels 1, 2, 3, … (highest to lowest priority)

◼ Controller enforces priorities in two ways

❑ Mark requests from a thread with priority X only every Xth batch

❑ Within a batch, higher-priority threads’ requests are scheduled first

◼ Purely opportunistic service

❑ Special very low priority level L

❑ Requests from such threads never marked

◼ Quantitative analysis in paper
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Evaluation Methodology

◼ 4-, 8-, 16-core systems

❑ x86 processor model based on Intel Pentium M

❑ 4 GHz processor, 128-entry instruction window

❑ 512 Kbyte per core private L2 caches, 32 L2 miss buffers

◼ Detailed DRAM model based on Micron DDR2-800

❑ 128-entry memory request buffer

❑ 8 banks, 2Kbyte row buffer

❑ 40ns (160 cycles) row-hit round-trip latency

❑ 80ns (320 cycles) row-conflict round-trip latency

◼ Benchmarks

❑ Multiprogrammed SPEC CPU2006 and Windows Desktop applications

❑ 100, 16, 12 program combinations for 4-, 8-, 16-core experiments
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Comparison with Other DRAM Controllers

◼ Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]

❑ Prioritizes row-hit requests, older requests
❑ Unfairly penalizes threads with low row-buffer locality, memory non-intensive 

threads

◼ FCFS [Intel Pentium 4 chipsets]

❑ Oldest-first; low DRAM throughput
❑ Unfairly penalizes memory non-intensive threads

◼ Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]

❑ Equally partitions DRAM bandwidth among threads 
❑ Does not consider inherent (baseline) DRAM performance of each thread
❑ Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]

❑ Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

◼ Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]

❑ Estimates and balances thread slowdowns relative to when run alone
❑ Unfairly treats threads with inaccurate slowdown estimates
❑ Requires multiple (approximate) arithmetic operations
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Unfairness on 4-, 8-, 16-core Systems
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System Performance (Hmean-speedup)
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Summary

◼ Inter-thread interference can destroy each thread’s                  
DRAM bank parallelism 
❑ Serializes a thread’s requests → reduces system throughput

❑ Makes techniques that exploit memory-level parallelism less effective

❑ Existing DRAM controllers unaware of intra-thread bank parallelism

◼ A new approach to fair and high-performance DRAM scheduling

❑ Batching: Eliminates starvation, allows fair sharing of the DRAM system 

❑ Parallelism-aware thread ranking: Preserves each thread’s bank parallelism

❑ Flexible and configurable: Supports system-level thread priorities → QoS policies

◼ PAR-BS provides better fairness and system performance than 
previous DRAM schedulers
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Thank you. Questions?



Parallelism-Aware Batch Scheduling
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Multiple Memory Controllers (I)

◼ Local ranking: Each controller uses PAR-BS independently

❑ Computes its own ranking based on its local requests

◼ Global ranking: Meta controller that computes a global 
ranking across all controllers based on global information

❑ Only needs to track bookkeeping info about each thread’s requests 
to the banks in each controller

◼ The difference between the ranking computed by each 
scheme depends on the balance of the distribution of 
requests to each controller

❑ Balanced → Local and global rankings are similar
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Multiple Memory Controllers (II)
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Example with Row Hits

Stall time

Thread 1 4

Thread 2 4

Thread 3 5

Thread 4 7

AVG 5
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Stall time

Thread 1 5.5

Thread 2 3

Thread 3 4.5

Thread 4 4.5

AVG 4.375

Stall time

Thread 1 1

Thread 2 2

Thread 3 4

Thread 4 5.5

AVG 3.125
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Now Your Turn to Analyze…

◼ Background, Problem & Goal

◼ Novelty

◼ Key Approach and Ideas

◼ Mechanisms (in some detail)

◼ Key Results: Methodology and Evaluation

◼ Summary

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Open Discussion
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PAR-BS Pros and Cons

◼ Upsides: 

❑ First scheduler to address bank parallelism destruction across 
multiple threads

❑ Simple mechanism (vs. STFM)

❑ Batching provides fairness

❑ Ranking enables parallelism awareness

◼ Downsides:

❑ Does not always prioritize the latency-sensitive applications

❑ Deadline guarantees?

❑ Complexity?

◼ Some ideas implemented in real SoC memory controllers
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More on PAR-BS

◼ Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
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