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(Learn how to) 

rigorously 

analyze, present, discuss 

papers and ideas 

in computer architecture

Recap: Key Goal
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Recap: Some Goals of This Course

◼ Teach/enable/empower you to:

❑ Think critically

❑ Think broadly

❑ Learn how to understand, analyze and present papers and ideas

❑ Get familiar with key first steps in research

❑ Get familiar with key research directions
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Recap: Steps to Achieve the Key Goal

◼ Steps for the Presenter

❑ Read

❑ Absorb, read more (other related works)

❑ Critically analyze; think; synthesize

❑ Prepare a clear and rigorous talk

❑ Present

❑ Answer questions

❑ Analyze and synthesize (in meeting, after, and at course end)

◼ Steps for the Participants

❑ Discuss

❑ Ask questions

❑ Analyze and synthesize (in meeting, after, and at course end)
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Course Logistics

◼ Requirements: 

❑ 1: Submit HW0

❑ 2: Explicitly provide paper preferences

❑ https://safari.ethz.ch/architecture_seminar/spring2019

◼ 2 presentations each week we meet

◼ Each presentation

❑ One student presents one paper and leads discussion

❑ Max 30-minute summary+analysis

❑ Max 20-minute discussion+brainstorming+feedback

❑ Should follow the suggested guidelines

◼ No class next week
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Course Requirements and Expectations
◼ Attendance required for all meetings

❑ Sign in sheet

◼ Each student presents one paper
❑ Prepare for presentation with engagement from the mentor(s)

❑ Full presentation + questions + discussion

◼ Non-presenters participate during the meeting
❑ Ask questions, contribute thoughts/ideas

❑ Better if you read/skim the paper beforehand

◼ Everyone comments on papers in the online review system
❑ After presentation

◼ Write synthesis report at the end of semester 
❑ Sample synthesis report online
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Grading Rubric

◼ Quality of your presentation (60%)

❑ How well did you understand the material? 

❑ How well did you present it? 

❑ How well did you answer the questions?

❑ Be prepared to explain technical terms 

❑ We will take into account the difficulty of the paper and the 
time you had to prepare.

◼ Quality of the final synthesis paper (30%)

❑ How well did you understand some of the papers presented 
during the seminar?

◼ Attendance (10%)

◼ Participation (during class and online) (BONUS 10%)

❑ Did you ask good questions? 

❑ Did you attend all sessions?
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Algorithm for Presentation Preparation

◼ Study Lecture 1 again for presentation guidelines

◼ Read and analyze your paper thoroughly

❑ Discuss with anyone you wish + use any resources

◼ Prepare a draft presentation based on guidelines

◼ Meet mentor(s) and get feedback

❑ Revise the presentation and delivery

◼ Meet mentor(s) again and get further feedback

❑ Revise the presentation and delivery

◼ Meetings are mandatory – you have to schedule them with 

your assigned mentor(s). We may suggest meeting times. 

◼ Practice, practice, practice
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Example Paper Presentations
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Learning by Example

◼ A great way of learning

◼ We already did one example last time

❑ Memory Channel Partitioning

◼ We will do at least one more today
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Structure of the Presentation

◼ Background, Problem & Goal

◼ Novelty

◼ Key Approach and Ideas

◼ Mechanisms (in some detail)

◼ Key Results: Methodology and Evaluation

◼ Summary

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Open Discussion
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Background, Problem & Goal
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Novelty
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Key Approach and Ideas
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Mechanisms (in some detail)
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Key Results: 

Methodology and Evaluation
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Summary
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Strengths
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Weaknesses
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Thoughts and Ideas
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Takeaways
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Open Discussion
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Example Paper Presentation
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Let’s Review This Paper

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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RowClone
Fast and Energy-Efficient In-DRAM 

Bulk Data Copy and Initialization

Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, 
G. Pekhimenko, Y. Luo, O. Mutlu, 

P. B. Gibbons, M. A. Kozuch, T. C. Mowry 

Vivek Seshadri



Background, Problem & Goal
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Memory Channel – Bottleneck
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Goal: Reduce Memory Bandwidth Demand

Core

Core

C
a
ch

e

MC

M
e

m
o

ry

Channel

Reduce unnecessary data movement



Bulk Data Copy and Initialization

Bulk Data 
Copy

Bulk Data 
Initialization

src dst

dstval



Bulk Data Copy and Initialization
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Bulk Data Copy and Initialization
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Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Shortcomings of  Today’s Systems

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

32
1046ns, 3.6uJ    (for 4KB page copy via DMA)



Novelty, Key Approach, and 

Ideas
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RowClone: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement
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1046ns, 3.6uJ → 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



Mechanisms (in some detail)
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DRAM Chip Organization
M

em
o

ry
 C

h
an

n
el

C
h

ip
 I/

O

Bank

Bank I/O

Subarray

Row Buffer

Row of DRAM Cells



RowClone Types

◼ Intra-subarray RowClone (row granularity)

❑ Fast Parallel Mode (FPM)

◼ Inter-bank RowClone (byte granularity)

❑ Pipelined Serial Mode (PSM)

◼ Inter-subarray RowClone
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RowClone: Fast Parallel Mode (FPM)

r c r o ws

s t o wd r

1. Source row to row buffer

2. Row buffer to destination row

Row Buffer
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?
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RowClone: Intra-Subarray (I)

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
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RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer, 
connect dst – copy data from row buffer to dst)
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Fast Parallel Mode: Benefits

Latency Energy11x 74x

Bulk Data Copy

1046ns to 90ns 3600nJ to 40nJ

No bandwidth consumption

Very little changes to the DRAM chip



Fast Parallel Mode: Constraints

◼ Location of source/destination

❑ Both should be in the same subarray

◼ Size of the copy

❑ Copies all the data from source row to destination



RowClone: Inter-Bank
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(Pipelined 

Internal RD/WR)
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(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost



RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

◼ Initialization with arbitrary data

❑ Initialize one row

❑ Copy the data to other rows

◼ Zero initialization (most common)

❑ Reserve a row in each subarray (always zero)

❑ Copy data from reserved row (FPM mode)

❑ 6.0X lower latency, 41.5X lower DRAM energy

❑ 0.2% loss in capacity
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RowClone: Latency & Energy Benefits
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System Design to 

Enable RowClone
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End-to-End System Design
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DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 

copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



51

1. Hardware/Software Interface

▪ Two new instructions

• memcopy and meminit

• Similar instructions present in existing ISAs

▪ Microarchitecture Implementation

• Checks if instructions can be sped up by RowClone

• Export instructions to the memory controller
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2. Managing Cache Coherence

▪ RowClone modifies data in memory

• Need to maintain coherence of cached data

▪ Similar to DMA

• Source and destination in memory

• Can leverage hardware support for DMA

▪ Additional optimizations
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3. Maximizing Use of the Fast 

Parallel Mode

▪ Make operating system subarray-aware

▪ Primitives amenable to use of FPM

• Copy-on-Write

 Allocate destination in same subarray as source

 Use FPM to copy

• Bulk Zeroing

 Use FPM to copy data from reserved zero row
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4. Handling Data Reuse After 

Zeroing

▪ Data reuse after zero initialization
• Phase 1: OS zeroes out the page

• Phase 2: Application uses cachelines of the  page

▪ RowClone
• Avoids misses in phase 1

• But incurs misses in phase 2

▪ RowClone-Zero-Insert (RowClone-ZI)
• Insert clean zero cachelines



Key Results: 

Methodology and Evaluation
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Methodology

◼ Out-of-order multi-core simulator

◼ 1MB/core last-level cache

◼ Cycle-accurate DDR3 DRAM simulator

◼ 6 Copy/Initialization intensive applications

+SPEC CPU2006 for multi-core

◼ Performance

❑ Instruction throughput for single-core

❑ Weighted Speedup for multi-core



Copy/Initialization Intensive Applications

◼ System bootup (Booting the Debian OS)

◼ Compile (GNU C compiler – executing cc1)

◼ Forkbench (A fork microbenchmark)

◼ Memcached (Inserting a large number of objects)

◼ MySql (Loading a database)

◼ Shell script (find with ls on each subdirectory)



Copy and Initialization in Workloads
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Single-Core – Performance and 

Energy
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Multi-Core Systems

▪ Reduced bandwidth consumption benefits all 
applications.

▪ Run copy/initialization intensive applications 
with memory intensive SPEC applications.

▪ Half the cores run copy/initialization intensive 
applications. Remaining half run SPEC 
applications.
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Multi-Core Results: Summary
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Summary
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Executive Summary

▪ Bulk data copy and initialization

• Unnecessarily move data on the memory channel

• Degrade system performance and energy efficiency

▪ RowClone – perform copy in DRAM with low cost

• Uses row buffer to copy large quantity of data

• Source row → row buffer → destination row

• 11X lower latency and 74X lower energy for a bulk copy

▪ Accelerate Copy-on-Write and Bulk Zeroing

• Forking, checkpointing, zeroing (security), VM cloning

▪ Improves performance and energy efficiency at low cost

• 27%  and 17% for 8-core systems (0.01% DRAM chip area)



Strengths
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Strengths of the Paper

◼ Simple, novel mechanism to solve an important problem

◼ Effective and low hardware overhead

◼ Intuitive idea!

◼ Greatly improves performance and efficiency (assuming 
data is mapped nicely)

◼ Seems like a clear win for data initialization (without 
mapping requirements)

◼ Makes software designer’s life easier

❑ If copies are 10x-100x cheaper, how to design software?

◼ Paper tackles many low-level and system-level issues

◼ Well-written, insightful paper
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Weaknesses
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Weaknesses

◼ Requires data to be mapped in the same subarray to 
deliver the largest benefits

❑ Helps less if data movement is not within a subarray

❑ Does not help if data movement is across DRAM channels

◼ Inter-subarray copy is very inefficient

◼ Causes many changes in the system stack 

❑ End-to-end design spans applications to circuits

❑ Software-hardware cooperative solution might not always be 
easy to adopt

◼ Cache coherence and data reuse cause real overheads

◼ Evaluation is done solely in simulation

◼ Evaluation does not consider multi-chip systems

◼ Are these the best workloads to evaluate?
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Recall: Avoid Rat Holes

68
Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf
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Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



70

Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Aside: A Recommended Book
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Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Thoughts and Ideas
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Extensions

◼ Can this be improved to do faster inter-subarray copy?

❑ Yes, see the LISA paper [Chang et al., HPCA 2016]

◼ Can this be extended to move data at smaller granularities?

◼ Can we have more efficient solutions to

❑ Cache coherence (minimize overhead)

❑ Data reuse after copy and initialization

◼ Can this idea be evaluated on a real system? How?

◼ Can similar ideas and DRAM properties be used to perform 

computation on data?

❑ Yes, see the Ambit paper [Seshadri et al., MICRO 2017]
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LISA: Fast Inter-Subarray Data Movement

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 

[Source Code] 
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https://github.com/CMU-SAFARI/RamulatorSharp


In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


Ambit: Bulk-Bitwise in-DRAM Computation

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 

Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Efficient Data Coherence Support

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Takeaways
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Key Takeaways

◼ A novel method to accelerate data copy and initialization

◼ Simple and effective

◼ Hardware/software cooperative

◼ Good potential for work building on it to extend it

❑ To different granularities

❑ To make things more efficient and effective

❑ Multiple works have already built on the paper (see LISA, 
Ambit, and many other works in Google Scholar)

◼ Easy to read and understand paper
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Open Discussion

80



Discussion Starters

◼ Thoughts on the previous ideas?

◼ How practical is this?

◼ Will the problem become bigger and more important over 

time?

◼ Will the solution become more important over time?

◼ Are other solutions better? 

◼ Is this solution clearly advantageous in some cases?
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More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
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We Did Not Cover the Following 

Slides. They Are For Your Benefit.



Example Paper Presentation II
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PAR-BS

◼ Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 

Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
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We Will Do This Differently

◼ I will give a “conference talk”

◼ You can ask questions and analyze what I described
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Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness 

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda

Computer Architecture Group

Microsoft Research
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Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary



The DRAM System
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Multi-Core Systems
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Inter-thread Interference in the DRAM System

◼ Threads delay each other by causing resource contention:

❑ Bank, bus, row-buffer conflicts [MICRO 2007]

◼ Threads can also destroy each other’s DRAM bank parallelism 

❑ Otherwise parallel requests can become serialized 

◼ Existing DRAM schedulers are unaware of this interference

◼ They simply aim to maximize DRAM throughput

❑ Thread-unaware and thread-unfair

❑ No intent to service each thread’s requests in parallel

❑ FR-FCFS policy: 1) row-hit first, 2) oldest first

◼ Unfairly prioritizes threads with high row-buffer locality 
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Consequences of Inter-Thread Interference in DRAM

94

◼ Unfair slowdown of different threads [MICRO 2007]

◼ System performance loss [MICRO 2007]

◼ Vulnerability to denial of service [USENIX Security 2007]

◼ Inability to enforce system-level thread priorities [MICRO 2007]
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Our Goal

◼ Control inter-thread interference in DRAM

◼ Design a shared DRAM scheduler that

❑ provides high system performance

◼ preserves each thread’s DRAM bank parallelism

❑ provides fairness to threads sharing the DRAM system

◼ equalizes memory-slowdowns of equal-priority threads

❑ is controllable and configurable

◼ enables different service levels for threads with different priorities
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Outline

◼ Background and Goal

◼ Motivation

❑ Destruction of Intra-thread DRAM Bank Parallelism

◼ Parallelism-Aware Batch Scheduling

❑ Batching

❑ Within-batch Scheduling

◼ System Software Support

◼ Evaluation

◼ Summary



The Problem

◼ Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests

❑ Memory-Level Parallelism (MLP) 

❑ Out-of-order execution, non-blocking caches, runahead execution

◼ Effective only if the DRAM controller actually services the 

multiple requests in parallel in DRAM banks

◼ Multiple threads share the DRAM controller

◼ DRAM controllers are not aware of a thread’s MLP

❑ Can service each thread’s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread
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Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:



Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM
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Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies



2 DRAM Requests

Parallelism-Aware Scheduler

100

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time: 

~1.5 bank access 

latencies
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Parallelism-Aware Batch Scheduling (PAR-BS)

◼ Principle 1: Parallelism-awareness

❑ Schedule requests from a thread (to 

different banks) back to back
❑ Preserves each thread’s bank parallelism

❑ But, this can cause starvation…

◼ Principle 2: Request Batching

❑ Group a fixed number of oldest requests 

from each thread into a “batch”

❑ Service the batch before all other requests

❑ Form a new batch when the current one is done

❑ Eliminates starvation, provides fairness

❑ Allows parallelism-awareness within a batch
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Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1



PAR-BS Components

◼ Request batching

◼ Within-batch scheduling
❑ Parallelism aware
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Request Batching

◼ Each memory request has a bit (marked) associated with it

◼ Batch formation:

❑ Mark up to Marking-Cap oldest requests per bank for each thread

❑ Marked requests constitute the batch

❑ Form a new batch when no marked requests are left

◼ Marked requests are prioritized over unmarked ones

❑ No reordering of requests across batches: no starvation, high fairness

◼ How to prioritize requests within a batch?
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Within-Batch Scheduling

◼ Can use any existing DRAM scheduling policy

❑ FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

◼ But, we also want to preserve intra-thread bank parallelism

❑ Service each thread’s requests back to back

◼ Scheduler computes a ranking of threads when the batch is 
formed

❑ Higher-ranked threads are prioritized over lower-ranked ones

❑ Improves the likelihood that requests from a thread are serviced in 
parallel by different banks

◼ Different threads prioritized in the same order across ALL banks
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How to Rank Threads within a Batch

◼ Ranking scheme affects system throughput and fairness

◼ Maximize system throughput

❑ Minimize average stall-time of threads within the batch

◼ Minimize unfairness (Equalize the slowdown of threads)

❑ Service threads with inherently low stall-time early in the batch

❑ Insight: delaying memory non-intensive threads results in high 
slowdown

◼ Shortest stall-time first (shortest job first) ranking

❑ Provides optimal system throughput [Smith, 1956]*

❑ Controller estimates each thread’s stall-time within the batch

❑ Ranks threads with shorter stall-time higher

106
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



◼ Maximum number of marked requests to any bank (max-bank-load)

❑ Rank thread with lower max-bank-load higher (~ low stall-time)

◼ Total number of marked requests (total-load)

❑ Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking
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T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3
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Example Within-Batch Scheduling Order
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T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling 

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2
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T0
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T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies
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Putting It Together: PAR-BS Scheduling Policy

◼ PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

◼ Three properties:

❑ Exploits row-buffer locality and intra-thread bank parallelism

❑ Work-conserving

◼ Services unmarked requests to banks without marked requests 

❑ Marking-Cap is important

◼ Too small cap: destroys row-buffer locality

◼ Too large cap: penalizes memory non-intensive threads   

◼ Many more trade-offs analyzed in the paper
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Hardware Cost

◼ <1.5KB storage cost for

❑ 8-core system with 128-entry memory request buffer

◼ No complex operations (e.g., divisions)

◼ Not on the critical path

❑ Scheduler makes a decision only every DRAM cycle
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System Software Support

◼ OS conveys each thread’s priority level to the controller 

❑ Levels 1, 2, 3, … (highest to lowest priority)

◼ Controller enforces priorities in two ways

❑ Mark requests from a thread with priority X only every Xth batch

❑ Within a batch, higher-priority threads’ requests are scheduled first

◼ Purely opportunistic service

❑ Special very low priority level L

❑ Requests from such threads never marked

◼ Quantitative analysis in paper
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Evaluation Methodology

◼ 4-, 8-, 16-core systems
❑ x86 processor model based on Intel Pentium M

❑ 4 GHz processor, 128-entry instruction window

❑ 512 Kbyte per core private L2 caches, 32 L2 miss buffers

◼ Detailed DRAM model based on Micron DDR2-800

❑ 128-entry memory request buffer

❑ 8 banks, 2Kbyte row buffer

❑ 40ns (160 cycles) row-hit round-trip latency

❑ 80ns (320 cycles) row-conflict round-trip latency

◼ Benchmarks

❑ Multiprogrammed SPEC CPU2006 and Windows Desktop applications

❑ 100, 16, 12 program combinations for 4-, 8-, 16-core experiments
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Comparison with Other DRAM Controllers

◼ Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]

❑ Prioritizes row-hit requests, older requests
❑ Unfairly penalizes threads with low row-buffer locality, memory non-intensive 

threads

◼ FCFS [Intel Pentium 4 chipsets]

❑ Oldest-first; low DRAM throughput
❑ Unfairly penalizes memory non-intensive threads

◼ Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]

❑ Equally partitions DRAM bandwidth among threads 
❑ Does not consider inherent (baseline) DRAM performance of each thread
❑ Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]

❑ Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

◼ Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]

❑ Estimates and balances thread slowdowns relative to when run alone
❑ Unfairly treats threads with inaccurate slowdown estimates
❑ Requires multiple (approximate) arithmetic operations
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Unfairness on 4-, 8-, 16-core Systems
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System Performance (Hmean-speedup)
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Summary

◼ Inter-thread interference can destroy each thread’s                  
DRAM bank parallelism 

❑ Serializes a thread’s requests → reduces system throughput

❑ Makes techniques that exploit memory-level parallelism less effective

❑ Existing DRAM controllers unaware of intra-thread bank parallelism

◼ A new approach to fair and high-performance DRAM scheduling
❑ Batching: Eliminates starvation, allows fair sharing of the DRAM system 

❑ Parallelism-aware thread ranking: Preserves each thread’s bank parallelism

❑ Flexible and configurable: Supports system-level thread priorities → QoS policies

◼ PAR-BS provides better fairness and system performance than 
previous DRAM schedulers
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Thank you. Questions?



Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness 

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda

Computer Architecture Group

Microsoft Research
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Multiple Memory Controllers (I)

◼ Local ranking: Each controller uses PAR-BS independently

❑ Computes its own ranking based on its local requests

◼ Global ranking: Meta controller that computes a global 
ranking across all controllers based on global information

❑ Only needs to track bookkeeping info about each thread’s requests 
to the banks in each controller

◼ The difference between the ranking computed by each 
scheme depends on the balance of the distribution of 
requests to each controller

❑ Balanced → Local and global rankings are similar
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Multiple Memory Controllers (II)

124

U
n

fa
ir

n
e
s
s

N
o

m
a
li

z
e
d

 H
m

e
a
n

-S
p

e
e
d

u
p 7.4% 11.5%

1.18X 1.33X

16-core system, 4 memory controllers



Example with Row Hits

Stall time

Thread 1 4

Thread 2 4

Thread 3 5

Thread 4 7

AVG 5
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Stall time

Thread 1 5.5

Thread 2 3

Thread 3 4.5

Thread 4 4.5

AVG 4.375

Stall time

Thread 1 1

Thread 2 2

Thread 3 4

Thread 4 5.5

AVG 3.125
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Now Your Turn to Analyze…

◼ Background, Problem & Goal

◼ Novelty

◼ Key Approach and Ideas

◼ Mechanisms (in some detail)

◼ Key Results: Methodology and Evaluation

◼ Summary

◼ Strengths

◼ Weaknesses

◼ Thoughts and Ideas

◼ Takeaways

◼ Open Discussion
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PAR-BS Pros and Cons

◼ Upsides: 

❑ First scheduler to address bank parallelism destruction across 
multiple threads

❑ Simple mechanism (vs. STFM)

❑ Batching provides fairness

❑ Ranking enables parallelism awareness

◼ Downsides:

❑ Does not always prioritize the latency-sensitive applications

❑ Deadline guarantees?

❑ Complexity?

◼ Some ideas implemented in real SoC memory controllers
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More on PAR-BS

◼ Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 

Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
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http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
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