
Seminar in
Computer Architecture

Meeting 3a: Example Review II

Prof. Onur Mutlu

ETH Zürich
Spring 2020

12 March 2020

Example Paper Presentation

2

We Will Briefly Review This Paper
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

3

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-Aware
Memory Channel Partitioning

Sai Prashanth Muralidhara§ Lavanya Subramanian †

Onur Mutlu † Mahmut Kandemir§
Thomas Moscibroda ‡

§ Pennsylvania State University † Carnegie Mellon University
‡ Microsoft Research

Background, Problem & Goal

5

Main Memory is a Bottleneck

6

n Main memory latency is long
n Core stalls, performance degrades
n Multiple applications share the main memory

Main MemoryCore

Core

Core

Memory
Controller Channel

Problem of Inter-Application Interference

7

Channel Main Memory

Core

Core

Memory
Controller ReqReqReq

n Applications’ requests interfere at the main memory
n This inter-application interference degrades system

performance
n Problem further exacerbated due to

q Increasing number of cores
q Limited off-chip pin bandwidth

Outline

8

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Background: Main Memory

9

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

Ro
w

s

Columns

n FR-FCFS memory scheduling policy [Zuravleff et al., US Patent ‘97; Rixner et al., ISCA ‘00]

q Row-buffer hit first
q Oldest request first

n Unaware of inter-application interference

ChannelMemory
Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Novelty

10

Previous Approach

11

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Previous Approach:
Application-Aware Memory

Request Scheduling

Goal:
Mitigate

Inter-Application Interference

Application-Aware Memory Request Scheduling

n Monitor application memory access
characteristics

n Rank applications based on memory access
characteristics

n Prioritize requests at the memory controller,
based on ranking

12

thread

Threads in the
system

thread

thread

thread

thread

thread

thread

Non-
intensive
cluster

Intensive
cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example: Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010

13

Application-Aware Memory Request Scheduling

14

Advantages
n Reduces interference between applications by

request reordering
n Improves system performance

Disadvantages
n Requires modifications to memory scheduling logic for

q Ranking
q Prioritization

n Cannot completely eliminate interference by request
reordering

Key Approach and Ideas

15

The Paper’s Approach

16

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Goal:
Mitigate

Inter-Application Interference

Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels

17

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Data Mapping in Current Systems

18

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Partitioning Channels Between Applications

19

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Overview: Memory Channel Partitioning (MCP)

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

20

Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low

memory-intensity applications in shared memory channels

21

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

22

High row-buffer locality applications interfere with low
row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Mechanisms (in some detail)

23

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

24

Hardware

System
Software

1. Profile Applications

25

n Hardware counters collect application memory
access characteristics

n Memory access characteristics
q Memory intensity:

Last level cache Misses Per Kilo Instruction (MPKI)
q Row-buffer locality:

Row-buffer Hit Rate (RBH) - percentage of
accesses that hit in the row buffer

2. Classify Applications

26

Test MPKI

High Intensity

HighLow

Low Intensity

Test RBH

High Intensity
Low Row-Buffer

Locality

Low

High Intensity
High Row-Buffer

Locality

High

3. Partition Channels Among Groups: Step 1

27

Channel 1

Assign number of channels
proportional to number of
applications in group

.

.

.

High Intensity
Low Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

Channel 3

High Intensity
High Row-Buffer

Locality

3. Partition Channels Among Groups: Step 2

28

Channel 1

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

.

.

.Assign number of channels
proportional to bandwidth
demand of group

Channel 3

Channel 1

.

.

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

Channel N-1

Channel N

Channel 3

.

.

.

4. Assign Preferred Channel to Application

29

Channel 1

Low Intensity

Channel 2

MPKI: 1

MPKI: 3

MPKI: 4

MPKI: 1

MPKI: 3

MPKI: 4

n Assign each application a preferred channel from
its group’s allocated channels

n Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

5. Allocate Page to Preferred Channel

n Enforce channel preferences
computed in the previous step

n On a page fault, the operating system
q allocates page to preferred channel if free page

available in preferred channel
q if free page not available, replacement policy tries to

allocate page to preferred channel
q if it fails, allocate page to another channel

30

Interval Based Operation

31

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Integrating Partitioning and Scheduling

32

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Goal:
Mitigate

Inter-Application Interference

Observations

n Applications with very low memory-intensity rarely
access memory
à Dedicating channels to them results in precious
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others

33

Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity
applications in the memory scheduler

n Use memory channel partitioning to mitigate
interference between other applications

34

Key Results:
Methodology and Evaluation

35

Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

36

Methodology
n Simulation Model

q 24 cores, 4 channels, 4 banks/channel
q Core Model

n Out-of-order, 128-entry instruction window
n 512 KB L2 cache/core

q Memory Model – DDR2

n Workloads
q 240 SPEC CPU 2006 multiprogrammed workloads

(categorized based on memory intensity)

n Metrics
q System Performance

37

å=
i

alone
i

shared
i

IPC
IPCSpeedupWeighted

Previous Work on Memory Scheduling
n FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000]

q Prioritizes row-buffer hits and older requests
q Application-unaware

n ATLAS [Kim et al., HPCA 2010]
q Prioritizes applications with low memory-intensity

n TCM [Kim et al., MICRO 2010]

q Always prioritizes low memory-intensity applications
q Shuffles request priorities of high memory-intensity applications

38

Comparison to Previous Scheduling Policies

39

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
or

m
al

ize
d

Sy
st

em
 P

er
fo

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Significant performance improvement over baseline FRFCFSBetter system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

40

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1
1.12

FRFCFS ATLAS TCM

N
or

m
al

ize
d

Sy
st

em
 P

er
fo

rm
an

ce

No IMPS
IMPS

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1
1.12

FRFCFS ATLAS TCM

N
or

m
al

ize
d

Sy
st

em
 P

er
fo

rm
an

ce

No IMPS

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

Interaction with Memory Scheduling
Averaged over 240 workloads

Summary

41

Summary
n Uncontrolled inter-application interference in main memory

degrades system performance

n Application-aware memory channel partitioning (MCP)
q Separates the data of badly-interfering applications

to different channels, eliminating interference

n Integrated memory partitioning and scheduling (IMPS)
q Prioritizes very low memory-intensity applications in scheduler
q Handles other applications’ interference by partitioning

n MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

42

We Did Not Cover The Rest of the Slides.
They Are For Your Benefit.

43

Seminar in
Computer Architecture

Meeting 2b: Example Review II

Prof. Onur Mutlu

ETH Zürich
Fall 2019

26 September 2019

Strengths

45

Strengths

46

Strengths of the Paper
n Novel solution to a key problem in multi-core systems,

memory interference; the importance of problem will
increase over time

n Keeps the memory scheduling hardware simple
n Combines multiple interference reduction techniques
n Can provide performance isolation across applications

mapped to different channels
n General idea of partitioning can be extended to smaller

granularities in the memory hierarchy: banks, subarrays,
etc.

n Well-written paper
n Thorough simulation-based evaluation

47

Weaknesses

48

Weaknesses/Limitations of the Paper
n Mechanism may not work effectively if workload changes

behavior after profiling
n Overhead of moving pages between channels restricts

mechanism’s benefits
n Small number of memory channels reduces the scope of

partitioning
n Load imbalance across channels can reduce performance

q The paper addresses this and compares to another mechanism

n Software-hardware cooperative solution might not always
be easy to adopt

n Evaluation is done solely in simulation
n Evaluation does not consider multi-chip systems
n Are these the best workloads to evaluate?

49

Recall: Try to Avoid Rat Holes

50Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf

Thoughts and Ideas

51

Extensions
n Can this idea be extended to different granularities in

memory?
q Partition banks, subarrays, mats across workloads

n Can this idea be extended to provide performance
predictability and performance isolation? How?

n How can MCP be combined effectively with other
interference reduction techniques?
q E.g., source throttling methods [Ebrahimi+, ASPLOS 2010]
q E.g., thread scheduling methods

n Can this idea be evaluated on a real system? How?
52

Takeaways

53

Key Takeaways
n A novel method to reduce memory interference

n Simple and effective

n Hardware/software cooperative

n Good potential for work building on it to extend it
q To different structures
q To different metrics
q Multiple works have already built on the paper (see bank

partitioning works in PACT 2012, HPCA 2012)

n Easy to read and understand paper
54

Open Discussion

55

Discussion Starters
n Thoughts on the previous ideas?

n How practical is this?

n Will the problem become bigger and more important over
time?

n Will the solution become more important over time?

n Are other solutions better?
n Is this solution clearly advantageous in some cases?

56

Seminar in
Computer Architecture

Meeting 3a: Example Review II

Prof. Onur Mutlu

ETH Zürich
Spring 2020

12 March 2020

