Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin C. Lee Engin Ipek Onur Mutlu Doug Burger

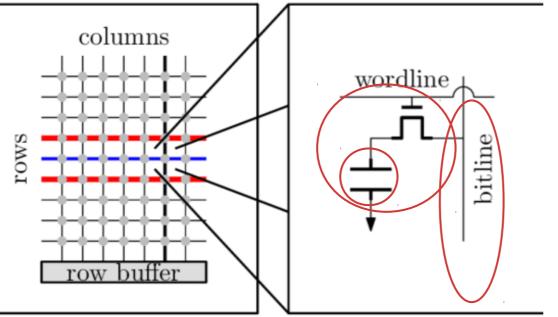
June 2009 ISCA

Presented by Moritz Herting 19.03.2020

Summary

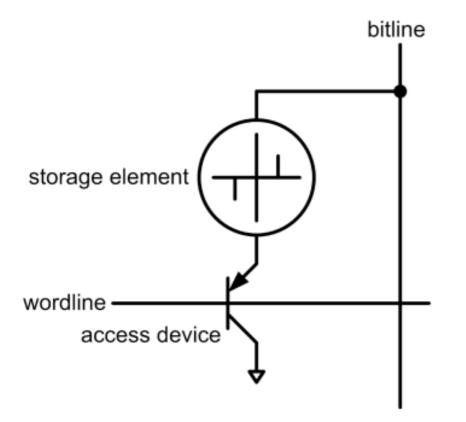
DRAM is hard to scale down

- Scaling down decreases Power Consumption and increases Capacity

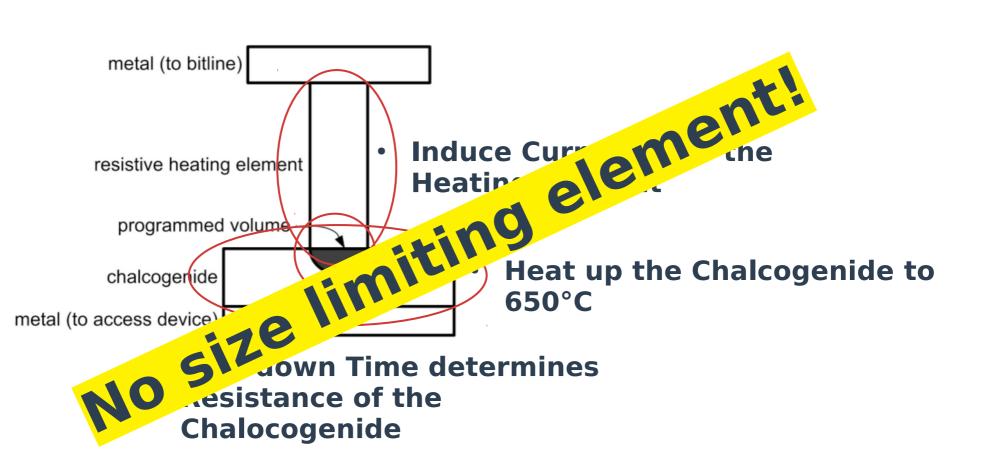

Can we replace DRAM with PCM?

- PCM is easy to scale down
- Get Latency, Power Consumption and Area onto the same Level
- Rearrange Buffer and introduce Partial Writes
- Evaluate different Configurations which use the same Area and compare Latency, Power draw and Endurance
- First to show how to use PCM Technology to architect main Memory that is close to DRAM Performance and has other Advantages as well

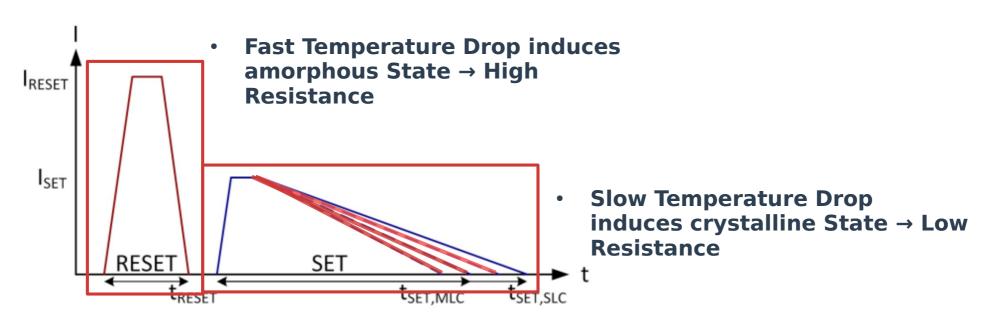
Outline


- Basics of DRAM and PCM
- Experimental Methodology
- Architectural Changes
- Process Scaling Improvements
- Conclusion
- Discussion

DRAM Structure


- DRAM Cell consists of one Capacitor and one Transistor
- Store a Bit
 - Charge/Discharge the Capacitor
- Read a Bit
 - The Charge of the Capacitor gets directly to the Buffer via the Bitline
- Not easily scalable
 - Smaller Capacitors have smaller Charge Capacity
 - Smaller Access Transistors increase Charge Leakage
 - Harder to store Charge for a long Time

PCM Structure



- Similar general Structure as DRAM
- Different Storage Elements
- Needs a special Sense Amplifier and can't connect directly to the Buffer
- Data gets stored by changing the physical Property of a Material

PCM Storage Element

Writing to a Cell

 Intermediate States are possible → Multi Level Cells

Reading from a Cell

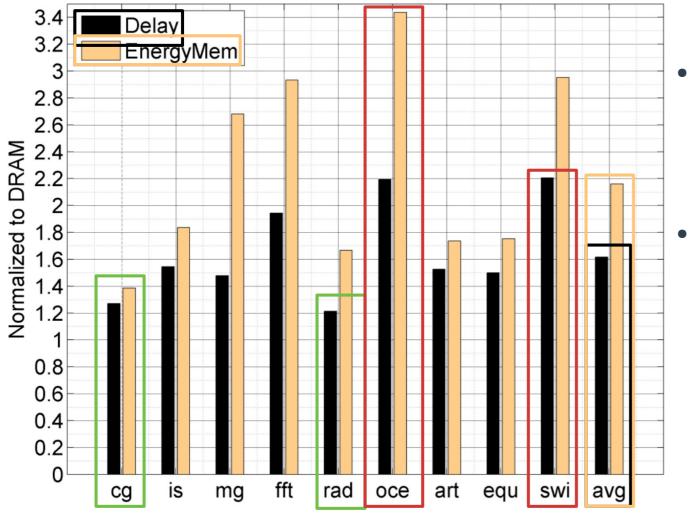
Single Level Cells

- Low Resistance => 0
- High Resistance => 1
- Multi Level Cells
 - Lowest Resistance => 00
 - Higher Resistances => 01, 10 or 11

DRAM vs PCM Cell

- Read Latency
- Write Latency
- Read Energy
- Write Energy
- Area
- Scalable
- Volatile
- Refreshes

DRAM [DDR2] PCM 4.4x 22 cycles **5 cycles 12x 5 cycles 60 cycles** 1.17 pJ/bit 2.11x 2.47 pJ/bit 0.39 pJ/bit 43.12x16.82 pJ/bit **6** F²/ceMulti level cells F²/cell Not easily Yes Yes No Yes No 9


Outline

- Basics of DRAM and PCM
- Experimental Methodology
- Architectural Changes
- Process Scaling Improvements
- Conclusion
- Discussion

Methodology

- Impact on Applications
 - Latency
 - Power Consumption
- Endurance
- Simulation using SESC
- 4 Core Superscalar, Out-of-Order CPU @4GHz
- Parallel Workloads
- Memory intense Workloads

Performance/Energy Baseline of PCM

Latency

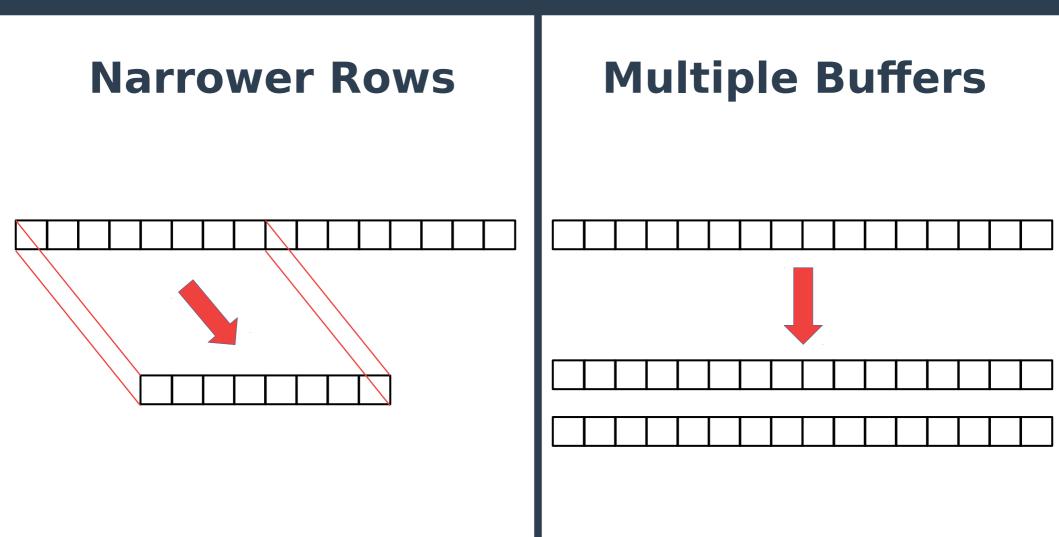
- 1.2x up to 2.2x
- 2.16x on Average

Energy

- 1.4x up to 3.4x
- 2.2x on Average

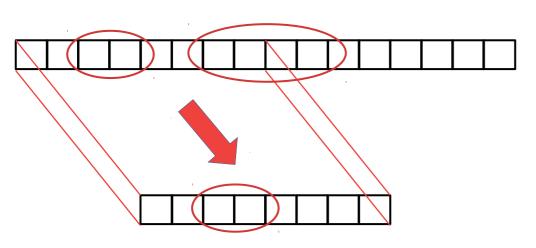
Outline

- Basics of DRAM and PCM
- Experimental Methodology
- Architectural Changes
- Process Scaling Improvements
- Conclusion
- Discussion


Problems to solve

Buffer Reorganization

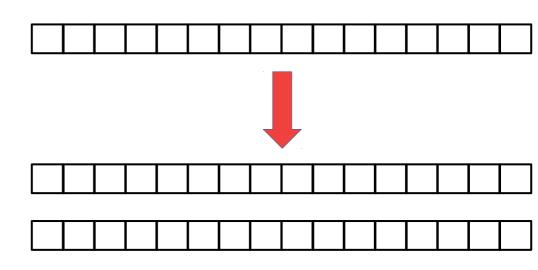
- High Latency
- High Energy Usage
- Limited Endurance
- Increased Area Usage


Partial Writes

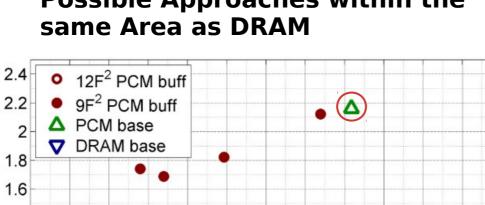
Buffer Reorganization

15

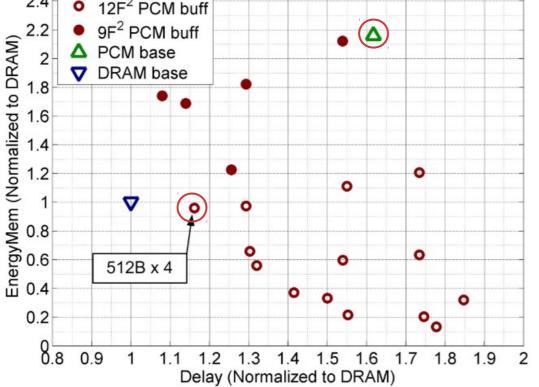
Narrow Rows


• Decrease Amount of simultaneous Writes

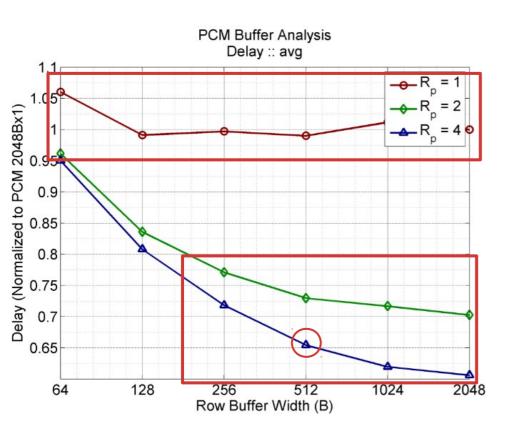
- Decrease Power Draw per Array write
- Improve Endurance
- Less write Coalescence
- Decrease Amount of simultaneous Reads
 - Decrease Power Draw per Array read
 - Less spacious Coherence
- Fewer Latches per Buffer
 - Decrease Power Draw
 - Decreased Area


Multiple Rows

Less Conflict Misses Use multiple Buffers

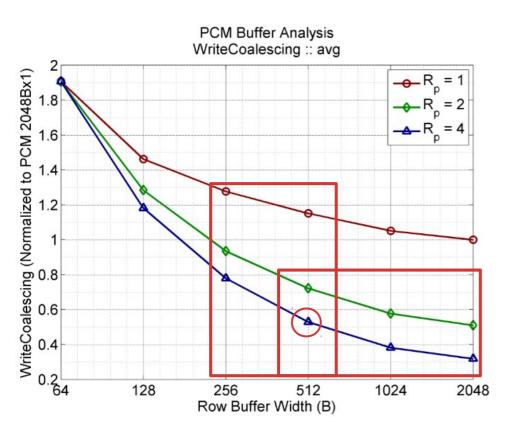

- More read and write
 Coalescence
 - Lower Latency
- Less frequent Reads and Writes
 - Lower Power Usage
 - Improves Endurance
- Increased Area

Evaluating Buffer Reorganizations Performance and Energy

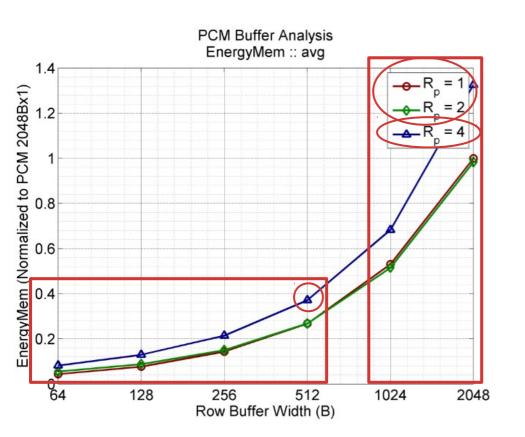

Possible Approaches within the

(PCM Baseline would use to much Area)

- Huge Difference in Performance and Energy Usage depending on the Approach
- Smaller 9F²Cells wouldn't enable us better Approaches
- 4 x 512B seems like a good Approach
 - Reduced Latency from 1.6x times (Baseline) to 1.16x
 - Reduced Power Consumption from 2.2x to about the same Level


Performance of Row Buffer Configurations

Single buffer

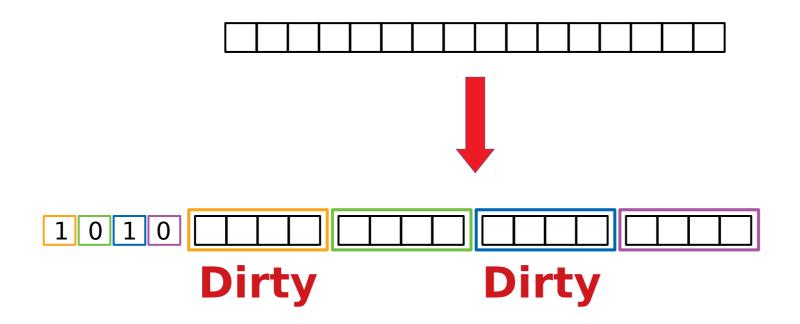

- Not much spacial Locality
- Will get evicted to fast for temporal Locality
- Multiple decently sized Buffers
 - Able to use temporal Locality
- 4x512B Buffer lead to 66% as much Delay as one 2048B Buffer

Write Coalescing different Approaches

- Multiple not to small Buffers significantly decrease the Number of Writes
- More/bigger Buffers won't significantly decrease the Number of Writes
- 4x512B Buffer lead to 53% less Writes compared to one 2048B Buffer

Energy Usage of different Approaches

- One and two Buffers use a similar Amount of Energy
 - Fewer Reads and Writes impact Energy Consumption way more than doubling the Row Buffer
- 4 Buffers won't use way more Energy than just two
- Increasing the Width of small Buffers won't use much more Energy than they save from less Cell Accesses
- Increasing the Width of big Buffers won't save us enough Cell Accesses to justify the additional Energy Consumption of the Buffer itself
- 4x512B Buffer is a good Middle Ground


Problems to solve

Buffer Reorganization

- High Latency
- High Energy Usage
- Limited Endurance
- Increased Area Usage

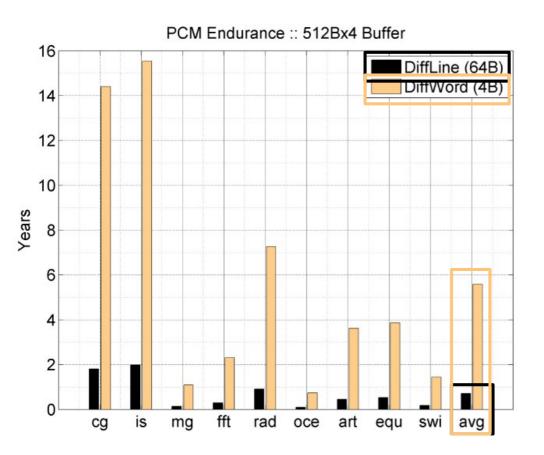
Partial Writes

Partial Writes Idea

Partial Writes Functionality

- Decreases the average Amount of written Bits per Array Write
- Reduce total number of Cell Writes
 - Enhance Endurance
 - Decrease Power Consumption
- Store one dirty Bit per Block
- Buffer Reordering will Accommodate for Area Overheads
- Requires very small Changes in CPU Cache Structure to include those dirty Bits
- 64B and 6B Approach

Partial Writes required Changes


64B Blocks

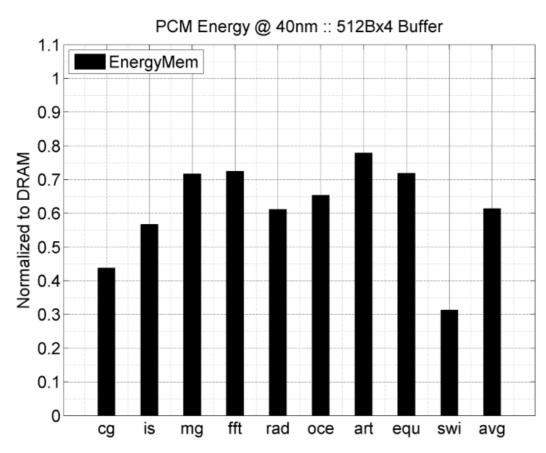
- Tracking begins at L2 Cache
- Requires one Bit per L2 Cache Line
- 0.2% Overhead in L2 Cache
- No Change in L1 Cache needed

4B Blocks

- Tracking begins at L1 Cache
- Requires 16b per L2 Cache Line
- Requires 6b per L1 Cache Line
- 3.1% Overhead in each Cache

Partial Writes Endurance Evaluation

- 0.7 Years with 64B Blocks
- 5.6 Years with 4B Blocks
- Would increase by a Factor of 4 with 32nm Process Size
 - ~700 Years with 64B
 - ~5'600 Years with
 4B


Outline

- Basics of DRAM and PCM
- Experimental Methodology
- Architectural Changes
- Process Scaling Improvements
- Conclusion
- Discussion

Process Scaling Benefits

- Can further reduce PCM Energy Costs
- Improve Endurance further
- Increase Density
 - Increase total Capacity
 - Decrease Price/Capacity Ratio
- Won't decrease Latency

Scaling Improvements from 90nm to 40nm

- PCM will use 61.3% of Energy compared to DRAM
- Will decrease Power by another 2.4x
- DRAM only decreases Power by 1.5x
- PCM scales 1.6x faster

Conclusion

DRAM is hard to scale down

 Scaling down decreases Power Consumption and increases Capacity

• Can we replace DRAM with PCM?

- PCM is easy to scale down
- Get Latency, Power Consumption and Area onto the same Level
- Rearrange Buffer and introduce Partial Writes
- Evaluate different Configurations which use the same Area and compare Latency, Power draw and Endurance

Strengths and Weaknesses

- The Good:
- Good Structure
- Most of the important Numbers and Assumptions are clear and Sources are easily retractable
- Almost all important Aspects are evaluated
- The Bad:
- No Energy Evaluation with Partial Writes
- Only Memory intensive Workloads have been looked at
 - Maybe some unforeseen Behavior
- Some more Numbers would have been nice
 - DRAM Scaling, presumably 90nm as well
 - Expected Run Time per Year for the Endurance Evaluation, presumably 24/7/365
 - IPC for CPU Simulation
- Rather exact Numbers regarding they are extrapolated from Simulations/Predictions
 - Maybe some expectable Derivations

Situation Today

• DDR4

- Can be produced in 12nm Process Node Size
- Similar Cell Latency compared to DDR2
- Less than half the Power Consumption of DDR2
- Higher Data Rate

Buffer Reorganization for DRAM has been proposed in 2011

- 35.8% improved Performance (4 core)
- 42% Reduction in Energy (4 core)

Low-Latency PCM

- 119% higher Performance than normal PCM
- 43% less Energy

• PDRAM

- Hybrid System
- 30% Energy Savings

Optane/3D XPoint

- Might be based on PCM
- Hard to find exact Numbers
- Similar Latency to DDR4
- 1/3 of the Bandwith
- Already in use in Enterprise Solutions as an Addition to DRAM
- In use by consumers as an HDD Cache to cheaply bring Performance to a similar Level as an SSD

Situation Today - Further Readings

Samsung 12nm DDR4 Chip

 https://www.golem.de/news/ddr4-speicher-samsung-hat-dritte-10-nmgeneration-entwickelt-1903-140184.htm

DRAM Buffer Reorganization

- https://ieeexplore.ieee.org/document/6113809

Low-Latency PCM

- https://dl.acm.org/doi/10.1145/3316781.3317853

• PDRAM (Hybrid System)

- https://ieeexplore.ieee.org/abstract/document/5227100

• Optane

- https://www.hardwaretimes.com/what-is-intel-optane-memory-heres-how-i t-works-and-why-its-important/
- NVRAM Standard Proposal (video)
 - https://youtu.be/xxpF5oVZsrA

Scalable Alternatives

• Flash (also mentioned in the Paper)

- Slow
- https://de.wikipedia.org/wiki/Flash
- Static RAM
 - Only volatile Alternative
 - https://de.wikipedia.org/wiki/Static_random-access_memory

Optane/3D XPoint

- Not available at the Time of Publication
- https://www.hardwaretimes.com/what-is-intel-optane-memory-heres-how-it-works-and-why-its-important/
- Optical PCM
 - Not yet available
 - https://www.youtube.com/watch?v=UWMEKex6nYA (video)
 - https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-7-1821
- Ferroelectric RAM
 - https://de.wikipedia.org/wiki/Ferroelectric_Random_Access_Memory
- Resistive RAM
 - https://de.wikipedia.org/wiki/Resistive_Random_Access_Memory
- Magnetoresistive RAM
 - https://de.wikipedia.org/wiki/Magnetoresistive_Random_Access_Memory
- Nanotube based RAM
 - https://de.wikipedia.org/wiki/NRAM
 - https://www.youtube.com/watch?v=V1HN0w_aJgg

Own Thoughts

- Good Addition to volatile DRAM
- No full replacement in Performance oriented Devices
- Maybe a suitable replacement in Business oriented Ultrabooks/Laptops
- Probably coming more to Consumer Products soon
 - Optane

Hybrid Systems

- Power Consumption
- Security
- Performance

Security Implications

- Encrypted Hard Drive
 - Volatile Encryption/Decryption Unit
 - Volatile Accessor on the same Die which has to be cryptically unlocked after each Power Loss

Others say Holy Grail is Persistence up until CPU Registers

Discussion Topics

- What are some use Cases for persistent main Memory in Applications?
- What could be the Place of PCM within Today's Computers?
- If we could have PCM good enough to replace Memory up until CPU Registers
 - Would there still be a Reason for Volatile Memory?
 - Which Applications and Use cases could profit from this and how?
- Can you come up with some Workloads where Persistence could be important/valuable enough to justify some Loss in Performance and/or Power Consumption?
- Do you think PCM would have better Chances when looking at Applications which are less Memory intensive
- Do you think there is a Difference between Workloads who have a relative higher Amount of
 - Reads
 - Writes
- Do you think there would be a Difference when looking at Consumer Workloads and Usage instead of Enterprise Usage
 - Gaming
 - Operation System Performance
 - Browsing the Eeb
 - Office Work (PowerPoint, Word, Excel)
- Do you think it would be easy/quick to change Applications to better make use of persistent Memory
- Can you come up with some Workloads where Persistence could be a Disadvantage and why?
 - Security
 - Drive Encryption

Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin C. Lee Engin Ipek Onur Mutlu Doug Burger

Discussion Link:

https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=45327#p89471

June 2009 ISCA

Presented by Moritz Herting 19.03.2020

Appendix

		PCM	DRAM	
Array				
A	bank size (MB)	16	16	
C	cell size (F^2)	9MLC, 12MLC	6	
Periphery				
S	sense amplifer (T @ $250\lambda^2/T$)	44	14	
	sense amplifer (F^2)	2750	875	
	latch (T @ $250\lambda^2/T$)	8	0	
	latch (F^2)	500	0	
D	decode 2-AND (T @ $1000\lambda^2/T$)	6	0	
	decode 2-AND (F^2)	250	0	
Buffer Organization				
W	buffer width (B)	64::2x::2048	2048	
R	buffer rows (ea)	1::2x::32	1	

$$\hat{A}_D = \underbrace{A \cdot C_D}_{\text{array}} + \underbrace{W_D \cdot S_D}_{\text{sense}}$$

$$= \underbrace{A \cdot C_P}_{\text{array}} + \underbrace{W_P \cdot S_P}_{\text{sense}} + \underbrace{R_P \cdot W_P \cdot L_P}_{\text{latch}} + \underbrace{R_P \cdot G(\log_2 R, 2) \cdot D_P}_{\text{decode}}$$

decode

 \hat{A}_P

Appendix

Endurance				
\hat{W}	writes per second per bit	calc		
\hat{L}	memory module lifetime (s)	calc		
E	write endurance	1E+08		
Memory Module				
C	logical capacity (Gb)	2		
Memory Bus Bandwidth				
f_m	memory bus frequency (MHz)	400		
M_f	processor frequency multiplier	10		
B	burst length (blocks)	8		
Application Characteristics				
N_w, N_r	number of writes, reads	sim		
T	execution time (cy)	sim		
Buffer Characteristics				
W_P, R_P	buffer width (B), rows	512, 4		
N_{wb}, N_{wa}	buffer, array writes	sim		
δ	fraction of buffer written to array	\sin		

$$\hat{W} = \underbrace{\frac{f_m}{B/2} \cdot \frac{(N_w + N_r) \cdot (B/2) \cdot M_f}{T}}_{\text{memBusOcc}} \times \underbrace{\frac{N_w}{N_w + N_r}}_{\text{writeIntensity}} \times \underbrace{\frac{8W_P \cdot \left(\frac{N_{wa}}{N_{wb}}\right) \cdot \delta}_{\text{bufferOrg}} \times \underbrace{\frac{1}{C/2}}_{\text{capacity}}}$$
(3)