
Rethinking the Memory Hierarchy 
for Modern Languages

Po-An Tsai, Yee Ling Gan, Daniel Sanchez

Originally presented at MICRO 2018

Today’s presenter: Fabian Wüthrich

09 April 2020



Executive Summary

• Problem: flat address space is inefficient for memory-safe languages
• Move cache lines instead of objects (ignore semantics)
• Short-lived objects require backing storage in main memory

• Solution: Hotpads – a novel memory hierarchy 
• Hides memory layout in hardware
• Moves objects rather than cache lines
• Replace caches with pads which store objects efficiently
• Introduce new instructions which manipulate objects in a safe way

• Results: Hotpads outperforms conventional cache hierarchies
• 34% faster execution
• 2.6x less energy used
• Reduced data movement

2



Background & Problem



Conventional Memory Interface

• Early languages (C, Fortran…) expose memory as a flat address space

• Allow arbitrary loads and stores (unsafe operations)

• Downsides:
• Invalid pointers (memory corruption)

• Memory leaks (show up during runtime)

• Programmers think of objects instead of addresses

Obj. A

Obj. B

0x0000

0xFFFF

4



Memory-Safe Languages

• Memory-safe languages strictly hiding the flat address space

• Do not expose raw pointers or allow access to arbitrary memory locations

• Provide an object-based model to access memory

• Most modern languages (Java, Go, Rust, …) are memory-safe

• Benefits:
• Objects are more natural for most programmers

• Memory safety avoids corruption bugs

• Automatic memory management (garbage collection) simplifies programming

• Downsides:
• Memory safety adds overhead and performance suffers

5



Conventional Memory Hierarchy

• Overhead is caused by a mismatch between object-based model and 
the memory hierarchy exposed as flat address space

• Inefficient as most spatial locality is within an object

• Maintaining the illusion of flat address space requires costly 
associative lookups 

Core L1 L2

Obj.

B Obj. C

Obj. A

Main Memory

0x0000

0xFFFF

6



Key Approach & Ideas



Hotpads

• A new memory hierarchy designed from the ground up for object-
based programs

• Hotpads uses pads which are directly addressed memories managed 
by hardware

• A pad is maintained using techniques similar to garbage collection

• Hotpads introduces new instructions to support pointer operations

8

Core
L1 

pad
L2 

pad
L3 

pad



Pads

• Data array
• Contiguous region for allocated objects 

and free space

• Data array of each pad and the main 
memory is mapped to different addresses

• C-Tags
• Each object has canonical address which 

points to final resting place

• C-Tags array maps canonical address to 
per-level address

• Metadata
• Pointer? Valid? Dirty? Recently-used?

9

Core
L1 

pad
L2 

pad
L3 

pad

Free Space

Objects

Data Array

C-Tags

Metadata



Aside: Scratchpads

• Pads are similar to Scratchpads but consider semantics of an object

• Scratchpads are like caches (fast, close to CPU)

• In Scratchpads data has to be explicitly moved by programmer

• Pads move data implicitly when accessing a memory address

10



ISA Extension: Overview

• Hotpads ISA treats pointers as abstract data types (address may not 
be accessed) 

• Enables the microarchitecture to manipulate pointers safely

• Only one addressing mode base + offset 

• base is always a pointer to the start of an object

• offset is an immediate (where is data inside the object?)

• Pointers to arbitrary locations within an object are not allowed

11



ISA Extension: Data Load/Store

• The standard load/store instructions can be used to access non-
pointer data within an object

• rd register can only hold data

• rp register can only hold pointers

• disp(rp) = rp + disp (disp is immediate)
• 3(0x42) - access third word in object which sits at address 0x42

Instruction Format Operation

Data Load ld rd, disp(rp) rd <- Mem[EffAddr]

Data Store st rd, disp(rp) Mem[EffAddr] <- rd

12



ISA Extension: Pointer Load/Store

• Load and store instructions to access pointers within an object

• Same semantic as before but the system knows that the data 
accessed is a pointer

Instruction Format Operation

Pointer Load ldptr rp, disp(rb) rp <- Mem[EffAddr]

Pointer Store stptr rp, disp(rb) Mem[EffAddr] <- rd

13



ISA Extension: Pointer Dereference

• Hotpads includes a dereference instruction to facilitate pointer 
rewriting (only in L1 pad)

• Unlike ldptr, derefptr indicates that we intend to immediately 
access the pointed-to object

• Brings pointed-to object into L1 pad

Instruction Format Operation

Pointer Dereference derefptr rp, disp(rb) rp <- Mem[EffAddr]
brings object in L1

14



ISA Extension: Object Allocation

• Hotpads provides an instruction to allocate a new object

• Hotpads has a pointer equality instruction

Instruction Format Operation

Allocation alloc rp, size, type NewAddr <- Alloc(size)
Mem[NewAddr] <- type

rp <- NewAddr

Pointer Equality seqptr rd, rp1, rp2 rp1 == rp2

15



ISA Extension: Objects in Pads

• Objects must be word aligned within a pad (at least two words long)

• The first word contains type id and metadata

• Hotpads tracks integrity of pad pointers (cannot transform non-
pointer data into a pointer to a pad)

• Relies on language-level memory safety to guarantee integrity of 
main memory pointers

16



Key Features



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

18



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

19



Data Movement
class Node {

int value;
Node next;

}

Initial state

Node A; Node B;
A.next = B;

r0

Reg L1 Pad L2 Pad

A

Main Mem

B

r3

r1

r2 Free 
Space

Objects

20



Data Movement (con.)

• Hotpads moves objects implicitly on access

• Bump pointer allocation stores A compactly after other objects

class Node {
int value;
Node next;

}

A is copied into L1 pad
A in L1 still points to B

int v = A.value;
ld r0, (r1).value

Reg L1 Pad L2 Pad

A

Main Mem

B

A
r0

r3

r1

r2

21

Instruction Format Operation

Data Load ld rd, disp(rp) rd <- Mem[EffAddr]



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

22



Pointer Rewrites

• Subsequent dereferences of r1 access a copy of A in the L1 directly 
without associative lookups

• Hotpads can rewrite pointer safely (memory layout hidden from 
software)

class Node {
int value;
Node next;

}

r1 is rewritten to A’s L1 pad address

int v = A.value;
ld r0, (r1).value

Reg L1 Pad L2 Pad

A

Main Mem

B

r0

r3

r1

r2
A

23

Instruction Format Operation

Data Load ld rd, disp(rp) rd <- Mem[EffAddr]



Pointer Rewrites within Pad

• Subsequent dereferences of A.next access the L1 copy of B directly 
without associative lookups

• Pads still require some associative lookups e.g. for non-L1 pointers

class Node {
int value;
Node next;

}

B is copied into L1
A’s pointer is rewritten

int v = A.next.value;
derefptr r2, (r1).next 
ld r3, (r2).value

Reg L1 Pad L2 Pad

A

Main Mem

B

r0

r3

r1

r2
A

B

24

Instruction Format Operation

Data Load ld rd, disp(rp) rd <- Mem[EffAddr]

Pointer Dereference derefptr rp, disp(rb) rp <- Mem[EffAddr]
brings object in L1



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

25



Object Allocation

• Requires no backing storage in main memory

• Node C can be accessed cheaply without cache misses

• In-hierarchy allocation reduces data movement

class Node {
int value;
Node next;

}

CPU allocates new object C

Node C = new Node();
alloc r3, type=Node

Reg L1 Pad L2 Pad

A

Main Mem

B

r0

r3

r1

r2
A

B

C

Instruction Format Operation

Allocation alloc rp, size, type NewAddr <- Alloc(size)
Mem[NewAddr] <- type

rp <- NewAddr

26



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

27



Garbage Collection and Evictions

• When a pad fills up, it triggers a collection-eviction (CE) to free space
• Removes dead objects
• Evicts live, not-recently used objects to the next-level pad
• C is dead (unreferenced). Other objects are live. Only B is recently used.

L1 pad is full

Reg L1 Pad L2 Pad

A

Main Mem

B (stale)

r0

r3

r1

r2
A

B

C

D

28



Garbage Collection and Evictions (con.)

• CEs happen concurrently with program execution

• Each pad can perform a CE independently from higher-level pads
• Makes CE cost proportional to pad size
• Here: no need to check L2 pad when performing collection-eviction in L1 pad

L1 collection-eviction (CE) collects 
dead C and evicts live A & D to L2

Reg

Free 
Space

L1 Pad L2 Pad

A

Main Mem

B (stale)

r0

r3

r1

r2

B

D

29



Key Features

• Implicit, object-based data movement

• Pointer rewrites

• In-hierarchy object allocation

• Hierarchical garbage collection and evictions

30



Additional Features

• Support for large objects which do not fit in particular pad
• Objects can be split in subobjects

• Subobjects use pads like caches

• Object-level coherence
• Modified version of MESI cache-coherence protocol

• Support for multi-core processors

• Legacy mode for flat-address-based programs
• Uses one large object for all their memory

• 4% slower than traditional caches on average (up to 14%)

31



Evaluation & Results



Methodology

• Simulation with MaxSim
• ZSim (for architecture simulation)

• Maxine JVM (modified to use Hotpads ISA)

• 4-core processor with out-of-order execution enabled

• Caches: L1, L2, L3 (shared)

• Pads: L1D, L1I, L2, L3 (shared)

• Workloads
• 13 Java workloads from Dacapo, SpecJBB and JgraphT

33



Execution Time Improvement

• Hotpads outperforms conventional cache hierarchies

• In-hierarchy allocation reduces memory congestion
• App moves less data around which saves time

• Hardware-based collection-evictions reduce GC overheads 
• Less time is spent doing garbage collection

34% improvement

34



Dynamic Energy Savings

• Hotpads reduces dynamic energy consumption in memory hierarchy

• Pointer rewrites enable direct access to L1 data
• App uses less energy to access frequent data

• Hierarchical collection-eviction collects objects early
• Less energy is used in main memory and during garbage collection

2.6x reduction

35



Data Movement Benefits

• Hotpads reduces data movement
• Most objects are collected in L1 pad

• 90% of objects never reach main memory

• Hotpads unifies the locality-principle 
and the generational hypothesis
• Eviction keeps recently used objects close 

to CPU

• Most objects get collected before 
reaching higher-levels

36



Executive Summary

• Problem: flat address space is inefficient for memory-safe languages
• Move cache lines instead of objects (ignore semantics of objects)
• Short-lived objects require backing storage in main memory

• Solution: Hotpads – a novel memory hierarchy 
• Hides memory layout in hardware
• Moves objects rather than cache lines
• Replace caches with pads which store objects efficiently
• Introduce new instructions which manipulate objects in a safe way

• Results: Hotpads outperforms conventional cache hierarchies
• 34% faster execution
• 2.6x less energy used
• Reduced data movement

37



Critique



Strengths of the Paper

• Correctly identified performance bottleneck for memory-safe 
languages

• Greatly improves performance and efficiency

• Legacy programs are still supported (but slower)

• Simulated on a multi-core processor 

39



Weaknesses of the Paper

• Hotpads requires a lot of changes in the memory hierarchy

• New hardware required for pads

• Flat-address space is often a good abstraction in scientific computing 
(e.g. Matrix-Matrix-Multiplication) were performance really matters

• Pointer rewrites only in L1 pad possible

• Many concepts are mentioned again and again but not much details

• Only high-level description of microarchitecture

• No information about virtual addresses or multiple processes

40



Follow-Up Work

• Extending Hotpads with compression

41



Thoughts & Takeaways

• It’s the right time to redesign the memory hierarchy because there is 
a trend towards specialized hardware

• Take a fresh look at “the way we’ve always done things” and do better

• Transfer existing concepts from software to hardware get benefits for 
free

• Observe current trends and adapt hardware to make programmers 
life easier

42



Questions?



Discussion

• Do you think the current memory hierarchy can be modified in such a 
drastic manner?

• Do you have other ideas on how to improve the memory hierarchy for 
modern languages?

• Will it be easy to implement the microarchitecture (pointer rewrites, 
CE…) with existing technologies?

• As Hotpads hides memory addresses, do you think it can be more 
secure than existing memory hierarchies (e.g., Spectre, Meltdown?)

44


