Rethinking the Memory Hierarchy
for Modern Languages

Po-An Tsai, Yee Ling Gan, Daniel Sanchez

Originally presented at MICRO 2018
Today’s presenter: Fabian Withrich

09 April 2020

Executive Summary

* Problem: flat address space is inefficient for memory-safe languages
* Move cache lines instead of objects (ignore semantics)
* Short-lived objects require backing storage in main memory

* Solution: Hotpads — a novel memory hierarchy
* Hides memory layout in hardware
* Moves objects rather than cache lines
* Replace caches with pads which store objects efficiently
* Introduce new instructions which manipulate objects in a safe way

* Results: Hotpads outperforms conventional cache hierarchies
* 34% faster execution
* 2.6x less energy used
* Reduced data movement

I Background & Problem

Conventional Memory Interface

* Early languages (C, Fortran...) expose memory as a flat address space
 Allow arbitrary loads and stores (unsafe operations)

* Downsides:
* Invalid pointers (memory corruption)
* Memory leaks (show up during runtime)
* Programmers think of objects instead of addresses

I Memory-Safe Languages

* Memory-safe languages strictly hiding the flat address space

* Do not expose raw pointers or allow access to arbitrary memory locations
* Provide an object-based model to access memory

* Most modern languages (Java, Go, Rust, ...) are memory-safe

* Benefits:
* Objects are more natural for most programmers
* Memory safety avoids corruption bugs
* Automatic memory management (garbage collection) simplifies programming

* Downsides:
 Memory safety adds overhead and performance suffers

Conventional Memory Hierarchy

* Overhead is caused by a mismatch between object-based model and
the memory hierarchy exposed as flat address space

* Inefficient as most spatial locality is within an object

* Maintaining the illusion of flat address space requires costly
associative lookups

Main Memory

0x0000

OXFFFF

6

I Key Approach & ldeas

I Hotpads

* A new memory hierarchy designed from the ground up for object-
based programs

* Hotpads uses pads which are directly addressed memories managed
by hardware

* A pad is maintained using techniques similar to garbage collection
* Hotpads introduces new instructions to support pointer operations

Pads

* Data array

* Contiguous region for allocated objects
and free space

* Data array of each pad and the main
memory is mapped to different addresses

) * C-Tags
,/,/ __ DataArray \\\ * Each object has canonical address which
Objects S points to final resting place
Metadata * C-Tags array maps canonical address to
Free Space per-level address

* Metadata

* Pointer? Valid? Dirty? Recently-used?

Aside: Scratchpads

* Pads are similar to Scratchpads but consider semantics of an object
 Scratchpads are like caches (fast, close to CPU)

* In Scratchpads data has to be explicitly moved by programmer

* Pads move data implicitly when accessing a memory address

I ISA Extension: Overview

* Hotpads ISA treats pointers as abstract data types (address may not
be accessed)

* Enables the microarchitecture to manipulate pointers safely

* Only one addressing mode base + offset

* base is always a pointer to the start of an object

 offset is an immediate (where is data inside the object?)

* Pointers to arbitrary locations within an object are not allowed

I ISA Extension: Data Load/Store

* The standard load/store instructions can be used to access non-
pointer data within an object

* rd register can only hold data
* rp register can only hold pointers

disp(rp) = rp + disp (dispis immediate)
* 3(0x42) - access third word in object which sits at address 0x42

Data Load 1d rd, disp(rp) rd <- Mem[EffAddr]
Data Store st rd, disp(rp) Mem[EffAddr] <- rd

ISA Extension: Pointer Load/Store

* Load and store instructions to access pointers within an object

* Same semantic as before but the system knows that the data
accessed is a pointer

Pointer Load 1ldptr rp, disp(rb) rp <- Mem[EffAddr]
Pointer Store stptr rp, disp(rb) Mem[EffAddr] <- rd

ISA Extension: Pointer Dereference

* Hotpads includes a dereference instruction to facilitate pointer
rewriting (only in L1 pad)

* Unlike 1dptr, derefptr indicates that we intend to immediately
access the pointed-to object

* Brings pointed-to object into L1 pad

Pointer Dereference derefptr rp, disp(rb) rp <- Mem[EffAddr]
brings object in L1

ISA Extension: Object Allocation

* Hotpads provides an instruction to allocate a new object
* Hotpads has a pointer equality instruction

Allocation alloc rp, size, type NewAddr <- Alloc(size)
Mem[NewAddr] <- type
rp <- NewAddr

Pointer Equality segptr rd, rpl, rp2 rpl == rp2

I ISA Extension: Objects in Pads

* Objects must be word aligned within a pad (at least two words long)
* The first word contains type id and metadata

* Hotpads tracks integrity of pad pointers (cannot transform non-
pointer data into a pointer to a pad)

* Relies on language-level memory safety to guarantee integrity of
main memory pointers

I Key Features

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

18

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

19

Data Movement

class Node {
int value;
Node next;

}
Node A; Node B;
A.next = B;

Reg L1 Pad L2 Pad Main Mem
r0 Objects
rl
r2 Free
Space
r3 b

Initial state

20

Data Movement (con.)

class Node { Reg L1 Pad L2 Pad Main Mem
int value; rO

Node next; ‘
} rl l—-
r2

int v = A.value; 3
1d r@, (rl).value r

A is copied into L1 pad
A in L1 still points to B

® Hotpanln marmiin~r AhiAc+~ TnAanliAiFhr AW A~~A~A~

* BUMP Data Load 1d rd, disp(rp) rd <- Mem[EffAddr] 5

21

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

22

Pointer Rewrites
class Node { Reg L1 Pad L2 Pad Main Mem

int value;

Node next;
rlis rewritten to A’s L1 pad address

¥

int v = A.value;
1d r@, (rl).value

® Subse nnnnn +F AAavAafAavAamnmc~cAacr AF 1 ArcrrcrAce A AfAarvie ~AF AN A AT 1 hl:v-?ctly

I
Data Load 1d rd, disp(rp) rd <- Mem[EffAddr]
* Hotpads can rewrite pointer safely (memory layout hidden from

software) .

Pointer Rewrites within Pad

class Node { Reg L1 Pad L2 Pad Main Mem
int value; rO

Node next;
} ri —)
r2 — l-

int v = A.next.value;

derefptr r2, (rl).next r3

1d r3, (r2).value B is copied into L1
A’s pointer is rewritten

* Subse ectly
withc Data Load 1d rd, disp(rp) rd <- Mem[EffAddr]
e Pads Pointer Dereference derefptr rp, disp(rb) rp <- Mem[EffAddr] T1ters

brings object in L1

24

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

25

Object Allocation

class Node { Reg L1 Pad L2 Pad Main Mem
int value; rO
Node next;
rl

\

CPU allocates new object C

¥

Node C = new Node();
alloc r3, type=Node

r2
r3

OO | icion | fomat | Operstin

. Nod (Allocation alloc rp, size, type NewAddr <- Alloc(size)
ode Mem[NewAddr] <- type
* In-hier . rp <- NewAddr

26

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

27

Garbage Collection and Evictions

Reg L1 Pad L2 Pad Main Mem
r0
> _
r2 B (stale)
o)

L1 pad is full

* When a pad fills up, it triggers a collection-eviction (CE) to free space
* Removes dead objects
* Evicts live, not-recently used objects to the next-level pad

* Cis dead (unreferenced). Other objects are live. Only B is recently used.
28

I Garbage Collection and Evictions (con.)

Reg L1 Pad L2 Pad Main Mem
ro

ol | e \—
r2 Space B (stale)
r3

L1 collection-eviction (CE) collects
dead C and evicts live A& D to L2

* CEs happen concurrently with program execution

* Each pad can perform a CE independently from higher-level pads

* Makes CE cost proportional to pad size

* Here: no need to check L2 pad when performing collection-eviction in L1 pad
29

I Key Features

* Implicit, object-based data movement

* Pointer rewrites

* In-hierarchy object allocation

* Hierarchical garbage collection and evictions

30

Additional Features

* Support for large objects which do not fit in particular pad
* Objects can be split in subobjects
* Subobjects use pads like caches

* Object-level coherence
* Modified version of MESI cache-coherence protocol
* Support for multi-core processors

* Legacy mode for flat-address-based programs
* Uses one large object for all their memory
* 4% slower than traditional caches on average (up to 14%)

I Fvaluation & Results

I Methodology

e Simulation with MaxSim

» ZSim (for architecture simulation)
* Maxine JVM (modified to use Hotpads ISA)

* 4-core processor with out-of-order execution enabled
e Caches: L1, L2, L3 (shared)
e Pads: L1D, L1l, L2, L3 (shared)

* Workloads
* 13 Java workloads from Dacapo, SpecJBB and JgraphT

Execution Time Improvement

=8 App (Non-GC)

o

} 34% improvement

normalized to baseline
© © o o o =
O N DO

Execution time breakdown

BH BH BH BH BH BH BH BH BH BH BH BH BH BH
\\,\‘\V\de*s\)(\"\o‘ﬁ i c“{&éea‘c“ba(‘\‘ @t W | \J\“O“ pmd spedpza%‘a“\‘ Y 00\0‘\\‘\%\ o2
WS

* Hotpads outperforms conventional cache hierarchies

* In-hierarchy allocation reduces memory congestion
* App moves less data around which saves time

 Hardware-based collection-evictions reduce GC overheads

* Less time is spent doing garbage collection
34

Dynamic Energy Savings

App (Non-GC) |23 L11/D

L2

I L3

B Mem

> 2.6x reduction

Normalized energy

= 2 e & S
o M M O ® O

BH BH BH BH BH BH BH BH BH BH BH BH BH BH

] . \.\ .K “ “ d . K h e
\\i\ﬂde*suﬂ‘\(z\\?sea<0“\31%6’6“" pa® o W ot g svec"bgage‘a“ 1P o0 Qera

* Hotpads reduces dynamic energy consumption in memory hierarchy

e Pointer rewrites enable direct access to L1 data
* App uses less energy to access frequent data

 Hierarchical collection-eviction collects objects early

* Less energy is used in main memory and during garbage collection
35

Data Movement Benefits

* Hotpads reduces data movement
* Most objects are collected in L1 pad
* 90% of objects never reach main memory

* Hotpads unifies the locality-principle [Allocated Evicted ESH Collected

. . ©
and the generational hypothesis [8-3
* Eviction keeps recently used objects close £ 32 g
to CPU ‘gg 05
)
* Most objects get collected before 88 0.4
reaching higher-levels 2w 03
o ® 0.2
8.2 0.1 SN} - [E€] NS .
Q' o . ’. 27
B~ 0 In Out In In Ot

L11/D L2 L3 Mem

Executive Summary

* Problem: flat address space is inefficient for memory-safe languages
* Move cache lines instead of objects (ignore semantics of objects)
* Short-lived objects require backing storage in main memory

* Solution: Hotpads — a novel memory hierarchy
* Hides memory layout in hardware
* Moves objects rather than cache lines
* Replace caches with pads which store objects efficiently
* Introduce new instructions which manipulate objects in a safe way

* Results: Hotpads outperforms conventional cache hierarchies
* 34% faster execution
* 2.6x less energy used
* Reduced data movement

I Critique

Strengths of the Paper

 Correctly identified performance bottleneck for memory-safe
languages

* Greatly improves performance and efficiency
 Legacy programs are still supported (but slower)
e Simulated on a multi-core processor

Weaknesses of the Paper

* Hotpads requires a lot of changes in the memory hierarchy
* New hardware required for pads

* Flat-address space is often a good abstraction in scientific computing
(e.g. Matrix-Matrix-Multiplication) were performance really matters

* Pointer rewrites only in L1 pad possible

* Many concepts are mentioned again and again but not much details
* Only high-level description of microarchitecture

* No information about virtual addresses or multiple processes

Follow-Up Work

* Extending Hotpads with compression

Compress Objects, Not Cache Lines:
An Object-Based Compressed Memory Hierarchy

Po-An Tsai
MIT CSAIL
poantsai@csail.mit.edu

Abstract

Existing cache and main memory compression techniques
compress data in small fixed-size blocks, typically cache lines.
Moreover, they use simple compression algorithms that focus
on exploiting redundancy within a block. These techniques
work well for scientific programs that are dominated by ar-
rays. However, they are ineffective on object-based programs
because objects do not fall neatly into fixed-size blocks and
have a more irregular layout.

Daniel Sanchez
MIT CSAIL
sanchez@csail.mit.edu

1 Introduction

Compression has become an attractive technique to improve
the performance and efficiency of modern memory hierar-
chies. Ideally, compressing data at a level of the memory hier-
archy (e.g., main memory or the last-level cache) brings two
key benefits. First, it increases the effective capacity of that
level (e.g., reducing page faults or cache misses). Second, it re-
duces bandwidth demand to that level, as each access fetches
a smaller amount of compressed data. Because accesses to

41

Thoughts & Takeaways

* It’s the right time to redesign the memory hierarchy because there is
a trend towards specialized hardware

* Take a fresh look at “the way we’ve always done things” and do better

* Transfer existing concepts from software to hardware get benefits for
free

* Observe current trends and adapt hardware to make programmers
life easier

I Questions?

I Discussion

* Do you think the current memory hierarchy can be modified in such a
drastic manner?

* Do you have other ideas on how to improve the memory hierarchy for
modern languages?

* Will it be easy to implement the microarchitecture (pointer rewrites,
CE...) with existing technologies?

* As Hotpads hides memory addresses, do you think it can be more
secure than existing memory hierarchies (e.g., Spectre, Meltdown?)

