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Background, Problem & Goal
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The gap in performance between memory and processors is plotted over time
Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2007.




Goal: No delays due to cache misses

= How to achieve?

o Make the caches bigger? Expensive
Consumes
o Inform the CPU of future accesses? Bandwidth

o Let the CPU guess future accesses? Requires Predictor

o Let the memory system guess future accesses? Pollutes Caches




In-order architecture
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In-order architecture

Advantages

o Simple to understand, program
o Cheap to produce

o Low energy consumption

Disadvantages
o Slow

o Dependency-unaware
Almost no ILP



In-order with runahead execution

Dundas, James, and Trevor Mudge. "Improving data cache performance by pre-
executing instructions under a cache miss." Proceedings of the 11th international

conference on Supercomputing. ACM, 1997.

Idea: Instead of blocking on memory operations, run ahead and touch
everything
o But do not change the architectural state



In-order architecture with runahead

<:| Currently executing . Runahead execution
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In-order architecture with runahead

Advantages
o Simple
o MLP

Disadvantages
o Small additional cost

o Some executed instructions are repeated
Results of runahead execution are not reused



Out-of-Order architecture
Physical Register File (PRF) -g- -HLI IL

_ _ EAX RO EAX: R42
o Physical Memory for Registers £Bx R —

Architectural Register File (ARF) ECX R ECX: R1

a “Programmer model” P

Register Alias Table (RAT)

o Mapping architectural (virtual) registers to physical registers

PRF much larger than ARF

Register Renaming

o Rename the Architectural Register of an instruction to a Physical Register (and back)
Retirement

o Effects of Instruction become observable
o In-order (only head of instruction window can retire)



Out-of-order architecture

Intel Nehalem microarchitecture
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= Hump 1: Reservation stations (scheduling window)

= Hump 2: Reordering (reorder buffer aka |nstruct|on window
or active window)
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Out-of-order architecture

= Scheduling Window
o How many instructions are waiting for execution
o Element on chip: Reservation Station

s Instruction Window

o How many instructions are waiting to be retired
o Element on chip: Reorder Buffer (ROB)

= In reality: Instruction Window larger than Scheduling Window
o Sched. W. subset of Inst. W.

= For this presentation: Instruction Window = Scheduling Window
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Out-of-order architecture

<:| Currently executing « Out-of-Order execution
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Out-of-order architecture

Advantages

o Dependency-Aware

o Fast (ILP, MLP)

o Instructions executed once

Disadvantages

o Expensive

o Performance largely dependent on window size
o Blocking

14



Instruction Window Size

<:| Currently executing « Out-of-Order execution

More transistors

More addressing bits

More comparators

Higher Memory Contention

Higher Power Consumption

“Dark Silicon” with cache-local code
More cache pollution on mispredictions

O V| WIN|I—H|O
AlMMOroO|®@| >




Key Approach and Ideas




Make the window non-blocking

A non-blocking window behaves like a bigger blocking window
o But costs less

Existing hardware can be used while otherwise idle
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Out-of-order architecture with Runahead

<:| Currently executing . Runahead/Out-of-order execution
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Out-of-order architecture with Runahead

= Advantages
Q
0 (ILP, increased MLP)
o Less hardware cost than bigger instruction windows and OoO-only
o Increases usage, less misses

= Disadvantages
a
o Slight additional hardware cost
a Instructions are repeated

19



Load A misses Conventional OoO
in L2 cache

N

Compute !

: Useful |
. computation
1

(a)

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.
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Load A misses Instruction window Conventional OoO
in L2 cache becomes full

N

Compute !

: Useful
. computation
1
:

L2 miss A (being serviced from memory)

(a)

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses Instruction window Conventional OoO
in L2 cache becomes full

\ No forward progress in program ———p»
Compute ! Stall
Bzl L2 miss A (being serviced from memory)
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Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses Instruction window Load B misses Instruction window Conventional OoO
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Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses Instruction window Load B misses Instruction window Conventional OoO

in L2 cache becomes full in L2 cache becomes full
\ No forward progress in program ———p» \
Compute ! Stall Compute ! Stall Compute
. Useful . : , ' | , , , ' :
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Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses

Instruction window

Load B misses

Instruction window

Conventional OoO

in L2 cache becomes full in L2 cache becomes full
\ No forward progress in program ———p» \
Compute : Stall Compute i Stall Compute
Useful : '

computation

(a)

in L2 cache

L2 miss A (being serviced from memory)

Load A misses

AN

Compute

L2 miss B (being serviced from memory)

Runahead Oo0O

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

25



Load A misses Instruction window Load B misses Instruction window Conventional OoO
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Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses Instruction window Load B misses Instruction window Conventional OoO

in L2 cache becomes full in L2 cache becomes full
\ No forward progress in program ———p» \
Compute ! Stall Compute ! Stall Compute

. Useful . : , ' | , , , ' :
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' Load A misses Load A is the oldest  Load B misses
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N
Compute Runahead mode
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L2 miss B (being serviced from memory)

(b)

<__________

Program execution

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses Instruction window Load B misses Instruction window Conventional OoO

in L2 cache becomes full in L2 cache becomes full
\ No forward progress in program ———p» \
Compute ! Stall Compute ! Stall Compute
. Useful . : , ' | , . : ' :
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i \ Pipeline flush /
1 \\
Compute ! Runahead mode Compute
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L2 miss B (being serviced from memory)

(b)

<__________

Program execution timeline

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.



Load A misses

in L2 cache

N

Instruction window
becomes full

No forward progress in program ———p»

Load B misses
in L2 cache

N

Instruction window
becomes full

Conventional OoO

Compute

Stall Compute

Stall

Compute

Useful
computation

(a)

L2 miss A (being serviced from memory)

Load A misses

Load A is the oldest Load B misses

Load A reexecuted

1
1
1
T
|

L2 miss B (being serviced from memory)

Load B reexecuted

<__________

in L2 cache instruction in window in L2 cache (cache hit) (cache hit)
\ Pipeline flush
Compute | : Runahead mode N Compute Compute
L2 miss A (being serviced from memory) :
L2 miss B (being serviced from memory) :
(b) |

Runahead OoO

~&— Cycles saved by runahead execution —#

o

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

Program execution timeline
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Mechanisms (in some detail)
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Runahead Mode

Turning the CPU into an expensive (and smart) prefetcher
Everything runs the same as in "Normal Mode”
Exceptions:

o Interrupts

a I/O Accesses

o Stores

Has no effect on the architectural state
o "Hidden from the programmer”

31
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Figure 2. Processor model used for description and evaluation of runahead. Figure is not to scale.

Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows
for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings. The Ninth International Symposium on. IEEE, 2003.
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Entering Runahead Mode

Checkpointed

Physical
Register
FHFS

R-RAT

Blocking memory

operation reaches
head of instruction
window

Branch History

Architectural Register
Register
File Return Address
Stack
Checkpoint

No
architectural
effect
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Leaving Runahead Mode

Physical
Register
Files

———

Both RATs

Blocking memory
operation finishes

Checkpointed
Branch History
Architectural Register
Register
File Return Address
Stack

Restore

Pipeline
flush

Same
procedure as
branch
misprediction
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Figure 2. Processor model used for description and evaluation of runahead. Figure is not to scale.

Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows
for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings. The Ninth International Symposium on. IEEE, 2003.
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The root of all evil

Evict

D>

O

(2
O

Full Instruction Window

Blocking load rO = [memaddr]

rl=r0+1

Load r2 = [r1]

Some instruction
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Dependency

What is rO now?
_/

L A

Instruction Window

ril=r0+1

Load r2 = [r1]

4 This load is imprecise

Pollutes cache
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Instruction and Data Validity

Source Destination
INV

Any source invalid implies destination invalid,

INV makes instruction “invalid
. INV
- The instruction causing the runahead mode is

invalid by definition

INV

If an instruction reaches the head of the
instruction window:
if invalid: pseudo-retire immediately
else: wait for execution

39



Instruction and Data Validity

; eax 1s 42

mov ebx, eax

; eax 1s 1nvalid

; ebx 1s 1nvalid

; eax 1s valid

; ebx 1s 42, valid
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What about store operations?

Instructions in Runahead mode must not change the architectural state
In previous work (ACM 1997), store operations were ignored

o But they are actually essential to performance ptr[2] = in;
//...
/tmp = *(ptr[2]);
mov dword ptr[edx+8], eax
// © o o ecx depends on ebx
mov ebx, dword ptr[edx+8] o ooty on oo

mov ecx, dword ptr[ebx]

41



New “cache”

Runahead
Cache

Never writes back
512B

STO-bit

o Inverse cache-cold-bit
INV-bit
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Store operations

Invalid store instruction scheduled

Sets the invalid bit of the store
buffer

L1
DATA -
CACHE
L Selection
1™ Logi¢

g STORE -

BUFFER
I NV

RUNAHEAD
CACHE

Image:
Mutlu, O.
HPCAQ3
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LLoad operations

Invalid store instruction scheduled

Sets the invalid bit of the store
buffer

L1
DATA .

CACHE
Selection

- Logi‘t‘

BUFFER
I INV

RUNAHEAD
CACHE

mov dword ptr[esp+8], eax
// few instructions

mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:
Mutlu, O.
HPCAQ3
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Store operations

Invalid store instruction retired

sets INV,
sets STO

—_—
L1
DATA -
CACHE
. Selection
™ Logi¢
__»| STORE |
BUFFER
] NV

RUNAHEAD
CACHE

Image:
Mutlu, O.
HPCAQ3

45



LLoad operations

Invalid store instruction retired

sets INV,
sets STO

—_—
L1

DATA -

CACHE
. Selection
™ Logic“L-#'>

__»| STORE -
BUFFER
] NV

RUNAHEAD
CACHE

mov dword ptr[esp+8], eax
// many instructions

mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:
Mutlu, O.
HPCAQ3

46



Store operations

Valid store instruction executed

Requests the affected cache line

Clears the invalid bit of the store
buffer

On miss: Propagate through

hierarchy
4»
L1
DATA | .
CACHE
N — Selection
™ Logi¢
g STORE -
BUFFER

T INV

RUNAHEAD Image:
CACHE Mutlu, O.
HPCAO3

47



LLoad operations

Valid store instruction executed

Requests the affected cache line

Clears the invalid bit of the store
buffer

On miss: Propagate through

hierarchy
4»
L1
DATA -
CACHE
N Selection
ol il Logi‘t‘
=N STORE —
BUFFER
] NV

RUNAHEAD
CACHE

mov dword ptr[esp+8], eax
// some instructions

mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:
Mutlu, O.
HPCAQ3
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Store operations

Valid store instruction retired

—_—
L1
DATA .
CACHE
L Sel
- < =
- o STORE .
BUFFER
e NV

ection
Logi¢

Writes value, clears INV, sets STO

RUNAHEAD
CACHE

Image:
Mutlu, O.
HPCAO3
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LLoad operations

Valid store instruction retired

Writes value, clears INV, sets STO

—_—
L1
DATA .
CACHE
. Selection
- Logitt
- | STORE | .
BUFFER
e NV

RUNAHEAD
CACHE

mov dword ptr[esp+8], eax
// many instructions

mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:
Mutlu, O.
HPCAQ3
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Without Runahead Cache

LLoad operations

Valid store instruction retired

Store decays to NOP

——
L1

DATA -
CACHE

L Sel

—

| o STORE .
BUFFER

ection

Lo gi‘[‘

T INV

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]

ebx is now marked
valid, but is actually
stale

Image:
Mutlu, O.
HPCAQ3
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Without Runahead Cache

LLoad operations

Invalid store instruction retired

Store decays to NOP

——
L1

DATA -
CACHE

L Sel

—

| o STORE .
BUFFER

ection

Lo gi‘[‘

T INV

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]

ebx is now marked
valid, but is actually
stale and invalid

Image:
Mutlu, O.
HPCAQ3
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LLoad operations

Store Buffer o)R. Cachery L1 £y Miss

On miss: Propagate through

hierarchy
_*
L1

DATA -

CACHE
N Selection
- Logi‘t‘

g STORE -
BUFFER

T INV

RUNAHEAD
CACHE

Image:
Mutlu, O.

HPCAOQO3
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Key Results:
Methodology and Evaluation




Methodology

Running Long Instruction Traces (LITs) in a simulator
o Each LIT is 30 - 10° instructions

o Chosen to be representative of benchmark

o Injected instructions to simulate interrupts

o In total 147 LITs



Target Machine

Core Frequency

Instruction Window Size
Scheduling Window Size

Load and store buffer size

L1 Cache

L2 Cache

Bus Latency (L2 Miss Latency)

4 GHz

128

16 int, 8 mem, 24 fp
48 load, 32 store

32 KB 8-way

512 KB 8-way

495 CPU cycles
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Instructions Per Cycle
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% cycles w/ full inst window stalls

100 -
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L2:
Instruction Window:;
Runahead
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w finite sched, real L2, 128-entry inst window

® infinite sched, real L2, 128-entry inst window
W infinite sched, real L2, 2048-entry inst window
B infinite sched, perfect L2, 2048-entry inst window

m finite sched, runahead on real L2, 128-entry inst
window

Mutlu, O.
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(re-designed)
58



Instructions Per Cycle
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Runahead on In-order vs. Out-of-order
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Instructions per Cycle
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® In-order baseline with runahead (2)
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Mutlu, Onur. Efficient runahead execution processors. Diss. 2006.




Summary
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Summary

Goal
o Efficiently increase performance by removing the bottleneck of memory latency
Mechanisms

o Transform the blocking instruction window into a nonblocking instruction window
o Add a runahead cache to delay the divergence point

Results

o Runahead itself gives a performance increase of 11% on the evaluated workload
o When working with a runahead cache, this improvement is doubled to 20%

63



Strengths




Strengths

Small changes with big effects

Allows for combination with other optimizations
Successful adaption and extension of in-order runahead
Increases Memory Level Parallelism (MLP)

Well-written
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Weaknesses
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Weaknesses

Parts of paper did not age well
Missing/Hidden information in paper
o e.g. What happens on a page fault?
Limited by memory bandwidth

Prefetch distance limited by memory speed
o The faster a full window stall resolves, the less prefetch requests are generated
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Future?

PARAMETER CURRENT FUTURE
Processor Frequency 4 GHz 8 GHz
Fetch/Issue/Retire Width 3 6
Branch Misprediction Penalty 29 stages 58 stages
Instruction window size 128 512

Scheduling window size

16 int, 8 mem, 24 fp

64 int, 32 mem, 96 fp

Load and store buffer sizes

48 load, 32 store

192 load, 128 store

Functional units

31nt, 2 mem, 1 fp

6 int, 4 mem, 2 fp

Branch predictor

1000-entry 32-bit history perceptron [15]

3000-entry 32-bit history perceptron

Hardware Data Prefetcher

Stream-based (16 streams)

Stream-based (16 streams)

Trace Cache

12k-uops, 8-way

64k-uops, 8-way

Memory Disambiguation

Perfect

Perfect

Memory Subsystem

L1 Data Cache

32 KB, 8-way, 64-byte line size

64 KB, 8-way, 64-byte line size

L1 Data Cache Hit Latency

3 cycles

6 cycles

L1 Data Cache Bandwidth

512 GB/s, 2 accesses/cycle

4 TB/s, 4 accesses/cycle

L2 Unified Cache

512 KB, 8-way, 64-byte line size

1 MB, 8-way, 64-byte line size

L2 Unified Cache Hit Latency 16 cycles 32 cycles

L2 Unified Cache Bandwidth 128 GB/s 256 GB/s

Bus Latency 495 processor cycles 1008 processor cycles
Bus Bandwidth 4.25 GB/s 8.5 GB/s

Max Pending Bus Transactions 10 20

Table 2. Parameters for Current and Future Baselines.
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Future?

PARAMETER CURRENT FUTURE Now
Processor Frequency 4 GHz 8 GHz 5 GHz
Fetch/Issue/Retire Width 3 6

Branch Misprediction Penalty 29 stages 58 stages

Instruction window size 128 512 224
Scheduling window size 16 int, 8 mem, 24 fp 64 int, 32 mem, 96 fp 97 unified

Load and store buffer sizes

48 load, 32 store

192 load, 128 store

72 load, 56 store

Functional units

31nt, 2 mem, 1 fp

6 int, 4 mem, 2 fp

Branch predictor

1000-entry 32-bit history perceptron [15]

3000-entry 32-bit history perceptron

Hardware Data Prefetcher

Stream-based (16 streams)

Stream-based (16 streams)

Trace Cache

12k-uops, 8-way

64k-uops, 8-way

Memory Disambiguation

Perfect

Perfect

Memory Subsystem

L1 Data Cache

32 KB, 8-way, 64-byte line size

64 KB, 8-way, 64-byte line size

32 KB, 8-way, 64-byte line size

L1 Data Cache Hit Latency

3 cycles

6 cycles

5 cycles

L1 Data Cache Bandwidth

512 GB/s, 2 accesses/cycle

4 TB/s, 4 accesses/cycle

L2 Unified Cache

512 KB, 8-way, 64-byte line size

1 MB, 8-way, 64-byte line size

256KB, 4-way, 64-byte line size

L2 Unified Cache Hit Latency 16 cycles 32 cycles 12 cycles

L2 Unified Cache Bandwidth 128 GB/s 256 GB/s

Bus Latency 495 processor cycles 1008 processor cycles 320 cycles-ish (80ns / 4 GHz)
Bus Bandwidth 4.25 GB/s 8.5 GB/s

Max Pending Bus Transactions 10 20

Table 2. Parameters for Current and Future Baselines.
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Thoughts and Ideas




Sun Rock

https://arstechnica.com/gadgets/2008/02/sun-can-you-smell-what-the-rock-is-cookin/
Magic Everything-CPU

o Out-of-order retirement

o Hardware scout

o Hardware Transactional Memory

Cancelled in 2010

“This processor had two incredible virtues: It was incredibly slow and it consumed vast amounts of energy.

It was so hot that they had to put about 12 inches of cooling fans on top of it to cool the processor,” said
[Larry] Ellison. “It was just madness to continue that project.”

Chaudhry, Shailender, et al. "High-performance throughput computing.”" JEEE Micro 25.3 (2005): 32-45.

https://www.reuters.com/article/us-oracle/special-report-can-that-quy-in-ironman-2-whip-ibm-in-real-life-
IdUSTRE64B5YX20100512, accessed 1.11.18
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Thoughts and 1deas

How to reuse the added structures?
o Easier hardware debugging by having the architectural register file collected anyways
o Adding instructions to use runahead cache as a scratch buffer?

As transactional memory?

a Using the checkpointed architectural register file for context switches?
pushad
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Takeaways




Takeaways

It is easier to reuse resources

Adapting existing techniques might work very well
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Further reading

Mutlu, Onur. Efficient runahead execution processors. Diss. 2006.

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency
tolerance." IEEE Micro 26.1 (2006): 10-20.

Mutlu, Onur, et al. "On reusing the results of pre-executed instructions in a runahead execution
processor." IEEE Computer Architecture Letters 4.1 (2005): 2-2.

Chappell, Robert S., et al. "Simultaneous subordinate microthreading (SSMT)." Computer Architecture,
1999. Proceedings of the 26th International Symposium on. IEEE, 1999.

Hashemi, Milad, Onur Mutlu, and Yale N. Patt. "Continuous runahead: Transparent hardware acceleration
for memory intensive workloads." 7he 49th Annual IEEE/ACM International Symposium on
Microarchitecture. 1EEE Press, 2016.

Ramirez, Tanausu, et al. "Runahead threads to improve SMT performance." High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on. 1EEE, 2008.

Chaudhry, Shailender, et al. "High-performance throughput computing.”" JEEE Micro 25.3 (2005): 32-45.

Cain, Harold W., and Priya Nagpurkar. "Runahead execution vs. conventional data prefetching in the IBM
POWERG6 microprocessor." Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on. IEEE, 2010.

“Port Contention for Fun and Profit” (brand new, not published yet)
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(Questions




Open Discussion
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Open Discussion

What's a simple worst case where Runahead Execution would not give any
benefits?

Would it be beneficial to also catch and treat page faults in runahead mode?

If you had to choose between SMT and Runahead Execution: Which one?

o It is possible to combine them (at a small cost). Is there a reason you would not want
to?

a SMT leak: “Port Contention for Fun and Profit” (“PortSmash”) CVE-2018-5407
Runahead Execution implemented in in-Order CPUs, but not in Oo0O-CPUs
o Why?
o How does the addition of L3-cache impact Runahead Execution?

What if instead of having an L3, the L2 was just bigger? What changes?
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Open Discussion

Intel Atom processors used to be in-Order Architectures, but did not feature
runahead execution. Why?

Other ideas for runahead execution?
o Continuous Runahead Execution
o Subordinate Simultaneous Multithreading

Other ideas to overcome the memory wall?
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Intel® Pentium® 4 Processor supporting HT Add to Compare
Technology 3.40E GHz, 1M Cache, 800 MHz
FSB

Specifications Essentials (® Export specifications
Essentials
Product Collection Legacy Intel® Pentium® Processor
Performance
. Code Name Products formerly Prescott
Supplemental Information
Package Specifications Vertical Segment Desktop
Advanced Technologies Status Discontinued
Security & Reliability
Launch Date ? Q1'04
Product Images Lithography 7 90 nm
Recommended Customer Price 7 N/A
Downloads and 3
Software TD p . ’.I 0 3 W
Performance

# of Cores 7

VID Voltage Range 7  1.250V-1.400V

Processor Base Frequency ? 3.40 GHz
Cache 7 1MBL2
Bus Speed 7 800 MHz FSB
FSB Parity 7 No
TDP 7 103 W
VID Voltage Range 7 1.250V-1.400V

ark.intel.com 81
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