
Runahead Execution: An Alternative to Very Large

Instruction Windows for Out-of-order Processors

Onur Mutlu§ Jared Stark †

Chris Wilkerson ‡ Yale N. Patt§

§ECE Department

The University of Texas at Austin

{onur,patt}@ece.utexas.edu

† Microprocessor Research

Intel Labs

jared.w.stark@intel.com

‡ Desktop Platforms Group

Intel Corporation

chris.wilkerson@intel.com

1

Presented by Silvan Niederer

21.11.18

Published in

HPCA 2003

Background, Problem & Goal

2

The gap in performance between memory and processors is plotted over time

Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2007.

3

Goal: No delays due to cache misses

◼ How to achieve?

❑ Make the caches bigger?

❑ Inform the CPU of future accesses?

❑ Let the CPU guess future accesses?

❑ Let the memory system guess future accesses?

Expensive

Consumes

Bandwidth

Requires Predictor

Pollutes Caches

4

In-order architecture

0 A

1 B

2 C

3 D

4 E

5 F

6 G

G

F E

A B C D

5

InstructionPC

Currently executing

Memory locations

Load operations

In-order architecture

◼ Advantages

❑ Simple to understand, program

❑ Cheap to produce

❑ Low energy consumption

◼ Disadvantages

❑ Slow

❑ Dependency-unaware

◼ Almost no ILP

6

In-order with runahead execution

◼ Dundas, James, and Trevor Mudge. "Improving data cache performance by pre-
executing instructions under a cache miss." Proceedings of the 11th international
conference on Supercomputing. ACM, 1997.

◼ Idea: Instead of blocking on memory operations, run ahead and touch
everything

❑ But do not change the architectural state

7

In-order architecture with runahead

0 A

1 B

2 C

3 D

4 E

5 F

6 G

G

F E

A B C D

8

InstructionPC

Currently executing Runahead execution

In-order architecture with runahead

◼ Advantages

❑ Simple

❑ MLP

◼ Disadvantages

❑ Small additional cost

❑ Some executed instructions are repeated

◼ Results of runahead execution are not reused

9

Out-of-Order architecture

10

◼ Physical Register File (PRF)

❑ Physical Memory for Registers

◼ Architectural Register File (ARF)

❑ “Programmer model”

◼ Register Alias Table (RAT)

❑ Mapping architectural (virtual) registers to physical registers

◼ PRF much larger than ARF

◼ Register Renaming

❑ Rename the Architectural Register of an instruction to a Physical Register (and back)

◼ Retirement

❑ Effects of Instruction become observable

❑ In-order (only head of instruction window can retire)

RAT

EAX

EBX

ECX

…

PRF

R0

R1

R2

…

R127

ARF

EAX: R42

EBX: R2

ECX: R1

…

Out-of-order architecture

11Image left: Wikipedia Image CC (user Appaloosa) Right: O. Mutlu Design of Digital Circuits Slides

Out-of-order architecture

◼ Scheduling Window

❑ How many instructions are waiting for execution

❑ Element on chip: Reservation Station

◼ Instruction Window

❑ How many instructions are waiting to be retired

❑ Element on chip: Reorder Buffer (ROB)

◼ In reality: Instruction Window larger than Scheduling Window

❑ Sched. W. subset of Inst. W.

◼ For this presentation: Instruction Window = Scheduling Window

12

Out-of-order architecture

0 A

1 B

2 C

3 D

4 E

5 F

6 G

G

F E

A B C D

13

InstructionPC

Currently executing Out-of-Order execution

Instruction Window

Out-of-order architecture

◼ Advantages

❑ Dependency-Aware

❑ Fast (ILP, MLP)

❑ Instructions executed once

◼ Disadvantages

❑ Expensive

❑ Performance largely dependent on window size

❑ Blocking

14

Instruction Window Size

15

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Currently executing Out-of-Order execution

0 A

1 B

2 C

3 D

4 E

5 F

6 G

More transistors

More addressing bits

More comparators

Higher Memory Contention

Higher Power Consumption

“Dark Silicon” with cache-local code

More cache pollution on mispredictions

Key Approach and Ideas

16

Make the window non-blocking

◼ A non-blocking window behaves like a bigger blocking window

❑ But costs less

◼ Existing hardware can be used while otherwise idle

17

Out-of-order architecture with Runahead

0 A

1 B

2 C

3 D

4 E

5 F

6 G

G

F E

A B C D

18

InstructionPC

Currently executing Runahead/Out-of-order execution

Instruction Window

Runahead Instruction Window

Out-of-order architecture with Runahead

◼ Advantages

❑ Dependency-Aware

❑ Fast (ILP, increased MLP)

❑ Less hardware cost than bigger instruction windows and OoO-only

❑ Increases usage, less misses

◼ Disadvantages

❑ Expensive

❑ Slight additional hardware cost

❑ Instructions are repeated

19

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

20

Conventional OoO

21

Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

22

Conventional OoOConventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

23

Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

24

Conventional OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

25

Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

26

Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

27

Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

28

Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

29

Conventional OoO

Runahead OoO

Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency tolerance." IEEE Micro 26.1 (2006): 10-20.

Mechanisms (in some detail)

30

Runahead Mode

◼ Turning the CPU into an expensive (and smart) prefetcher

◼ Everything runs the same as in “Normal Mode”

◼ Exceptions:

❑ Interrupts

❑ I/O Accesses

❑ Stores

◼ Has no effect on the architectural state

❑ “Hidden from the programmer”

31

Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows

for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9

2003. Proceedings. The Ninth International Symposium on. IEEE, 2003. 32

Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows

for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9

2003. Proceedings. The Ninth International Symposium on. IEEE, 2003. 33

Entering Runahead Mode

Architectural

Register

File

Branch History

Register

Return Address

Stack

Blocking memory

operation reaches

head of instruction

window

Checkpoint

Run

Physical

Register

Files

R-RAT

No

architectural

effect

Checkpointed

34

Leaving Runahead Mode

Architectural

Register

File

Branch History

Register

Return Address

Stack

Blocking memory

operation finishes

Restore

Pipeline

flush

Physical

Register

Files

Both RATs

Same

procedure as

branch

misprediction

Run

Reset

Checkpointed

35

Mutlu, Onur, et al. "Runahead execution: An alternative to very large instruction windows

for out-of-order processors." High-Performance Computer Architecture, 2003. HPCA-9

2003. Proceedings. The Ninth International Symposium on. IEEE, 2003. 36

The root of all evil

Blocking load r0 = [memaddr]

r1 = r0 + 1

Load r2 = [r1]

37

Full Instruction Window

.

.

.

Some instruction

Evict

ld

+

1

ld

Dependency

r1 = r0 + 1

Load r2 = [r1]

38

Instruction Window

.

.

.

What is r0 now?

This load is imprecise

Pollutes cache

+

1

ld

Instruction and Data Validity

INV

INV

INV

OR
INV

DestinationSource

Any source invalid implies destination invalid,

makes instruction “invalid”

The instruction causing the runahead mode is

invalid by definition

If an instruction reaches the head of the

instruction window:

if invalid: pseudo-retire immediately

else: wait for execution

39

.

.

.

Instruction and Data Validity

40

mov ebx, eax

; eax is 42

; ebx is invalid ; ebx is 42, valid

; eax is valid; eax is invalid

What about store operations?

◼ Instructions in Runahead mode must not change the architectural state

◼ In previous work (ACM 1997), store operations were ignored

❑ But they are actually essential to performance

mov dword ptr[edx+8], eax
//...
mov ebx, dword ptr[edx+8]
mov ecx, dword ptr[ebx]

41

ecx depends on ebx

and memory state,

ebx depends on eax

ptr[2] = in;
//...
tmp = *(ptr[2]);

New “cache”

◼ Never writes back

◼ 512B

◼ STO-bit

❑ Inverse cache-cold-bit

◼ INV-bit
Runahead

Cache

S
T
O

I
N
V

42

Store operations

Invalid store instruction scheduled

Sets the invalid bit of the store

buffer

43

Image:

Mutlu, O.

HPCA03

Load operations

Invalid store instruction scheduled

Sets the invalid bit of the store

buffer

44

mov dword ptr[esp+8], eax
// few instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:

Mutlu, O.

HPCA03

Store operations

Invalid store instruction retired

sets INV,

sets STO

45

Image:

Mutlu, O.

HPCA03

Load operations

Invalid store instruction retired

sets INV,

sets STO

46

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now INV

Image:

Mutlu, O.

HPCA03

Store operations

Valid store instruction executed

Clears the invalid bit of the store

buffer

Requests the affected cache line

On miss: Propagate through

hierarchy

47

Image:

Mutlu, O.

HPCA03

Load operations

Valid store instruction executed

Clears the invalid bit of the store

buffer

Requests the affected cache line

On miss: Propagate through

hierarchy

48

mov dword ptr[esp+8], eax
// some instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:

Mutlu, O.

HPCA03

Store operations

Valid store instruction retired

Writes value, clears INV, sets STO

49

Image:

Mutlu, O.

HPCA03

Load operations

Valid store instruction retired

Writes value, clears INV, sets STO

50

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now valid

Image:

Mutlu, O.

HPCA03

Without Runahead Cache Load operations

Valid store instruction retired

Store decays to NOP

51

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now marked

valid, but is actually

stale

Image:

Mutlu, O.

HPCA03

Without Runahead Cache Load operations

Invalid store instruction retired

Store decays to NOP

52

mov dword ptr[esp+8], eax
// many instructions
mov ebx, dword ptr[esp+8]
mov ecx, dword ptr[ebx]

ebx is now marked

valid, but is actually

stale and invalid

Image:

Mutlu, O.

HPCA03

Load operations

Store Buffer R. Cache L1 Miss
On miss: Propagate through

hierarchy

53

Image:

Mutlu, O.

HPCA03

Key Results:

Methodology and Evaluation

54

Methodology

◼ Running Long Instruction Traces (LITs) in a simulator

❑ Each LIT is 30 ∙ 106 instructions

❑ Chosen to be representative of benchmark

❑ Injected instructions to simulate interrupts

❑ In total 147 LITs

55

Target Machine

56

Core Frequency 4 GHz

Instruction Window Size 128

Scheduling Window Size 16 int, 8 mem, 24 fp

Load and store buffer size 48 load, 32 store

L1 Cache 32 KB 8-way

L2 Cache 512 KB 8-way

Bus Latency (L2 Miss Latency) 495 CPU cycles

57

Mutlu, O.

HPCA03

(recolored)

58

0.73
0.77

1.15

2.02

0.94

0

10

20

30

40

50

60

70

80

90

100

%
 c

y
cl

e
s

w
/

fu
ll

in
st

w
in

d
o
w

 s
ta

lls finite sched, real L2, 128-entry inst window

infinite sched, real L2, 128-entry inst window

infinite sched, real L2, 2048-entry inst window

infinite sched, perfect L2, 2048-entry inst window

finite sched, runahead on real L2, 128-entry inst
window

Scheduling Window: finite | infinite

L2: real | perfect

Instruction Window: 128 | 2048

Runahead

Mutlu, O.

HPCA03

(re-designed)

Numbers over bars: IPC

Mutlu, O.

HPCA03

(recolored)

59

60Image: Multu, O. Design of Digital Circuits slides

61Mutlu, Onur. Efficient runahead execution processors. Diss. 2006.

Summary

62

Summary

◼ Goal

❑ Efficiently increase performance by removing the bottleneck of memory latency

◼ Mechanisms

❑ Transform the blocking instruction window into a nonblocking instruction window

❑ Add a runahead cache to delay the divergence point

◼ Results

❑ Runahead itself gives a performance increase of 11% on the evaluated workload

❑ When working with a runahead cache, this improvement is doubled to 20%

63

Strengths

64

Strengths

◼ Small changes with big effects

◼ Allows for combination with other optimizations

◼ Successful adaption and extension of in-order runahead

◼ Increases Memory Level Parallelism (MLP)

◼ Well-written

65

Weaknesses

66

Weaknesses

◼ Parts of paper did not age well

◼ Missing/Hidden information in paper

❑ e.g. What happens on a page fault?

◼ Limited by memory bandwidth

◼ Prefetch distance limited by memory speed

❑ The faster a full window stall resolves, the less prefetch requests are generated

67

Future?

68

Future?

69

5 GHz

224

97 unified

72 load, 56 store

32 KB, 8-way, 64-byte line size

5 cycles

256KB, 4-way, 64-byte line size

12 cycles

320 cycles-ish (80ns / 4 GHz)

NOW

Thoughts and Ideas

70

Sun Rock

◼ https://arstechnica.com/gadgets/2008/02/sun-can-you-smell-what-the-rock-is-cookin/

◼ Magic Everything-CPU

❑ Out-of-order retirement

❑ Hardware scout

❑ Hardware Transactional Memory

◼ Cancelled in 2010

◼ “This processor had two incredible virtues: It was incredibly slow and it consumed vast amounts of energy.
It was so hot that they had to put about 12 inches of cooling fans on top of it to cool the processor,” said
[Larry] Ellison. “It was just madness to continue that project.”

◼ Chaudhry, Shailender, et al. "High-performance throughput computing." IEEE Micro 25.3 (2005): 32-45.

◼ https://www.reuters.com/article/us-oracle/special-report-can-that-guy-in-ironman-2-whip-ibm-in-real-life-
idUSTRE64B5YX20100512, accessed 1.11.18

71

https://arstechnica.com/gadgets/2008/02/sun-can-you-smell-what-the-rock-is-cookin/
https://www.reuters.com/article/us-oracle/special-report-can-that-guy-in-ironman-2-whip-ibm-in-real-life-idUSTRE64B5YX20100512

Thoughts and ideas

◼ How to reuse the added structures?

❑ Easier hardware debugging by having the architectural register file collected anyways

❑ Adding instructions to use runahead cache as a scratch buffer?

◼ As transactional memory?

❑ Using the checkpointed architectural register file for context switches?

◼ pushad

72

Takeaways

73

Takeaways

◼ It is easier to reuse resources

◼ Adapting existing techniques might work very well

74

Further reading

◼ Mutlu, Onur. Efficient runahead execution processors. Diss. 2006.

◼ Mutlu, Onur, Hyesoon Kim, and Yale N. Patt. "Efficient runahead execution: Power-efficient memory latency
tolerance." IEEE Micro 26.1 (2006): 10-20.

◼ Mutlu, Onur, et al. "On reusing the results of pre-executed instructions in a runahead execution
processor." IEEE Computer Architecture Letters 4.1 (2005): 2-2.

◼ Chappell, Robert S., et al. "Simultaneous subordinate microthreading (SSMT)." Computer Architecture,
1999. Proceedings of the 26th International Symposium on. IEEE, 1999.

◼ Hashemi, Milad, Onur Mutlu, and Yale N. Patt. "Continuous runahead: Transparent hardware acceleration
for memory intensive workloads." The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Press, 2016.

◼ Ramirez, Tanausu, et al. "Runahead threads to improve SMT performance." High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on. IEEE, 2008.

◼ Chaudhry, Shailender, et al. "High-performance throughput computing." IEEE Micro 25.3 (2005): 32-45.

◼ Cain, Harold W., and Priya Nagpurkar. "Runahead execution vs. conventional data prefetching in the IBM

POWER6 microprocessor." Performance Analysis of Systems & Software (ISPASS), 2010 IEEE

International Symposium on. IEEE, 2010.

◼ “Port Contention for Fun and Profit” (brand new, not published yet)

75

Questions

76

Open Discussion

77

Open Discussion

◼ What’s a simple worst case where Runahead Execution would not give any
benefits?

◼ Would it be beneficial to also catch and treat page faults in runahead mode?

◼ If you had to choose between SMT and Runahead Execution: Which one?

❑ It is possible to combine them (at a small cost). Is there a reason you would not want
to?

❑ SMT leak: “Port Contention for Fun and Profit” (“PortSmash”) CVE-2018-5407

◼ Runahead Execution implemented in in-Order CPUs, but not in OoO-CPUs

❑ Why?

❑ How does the addition of L3-cache impact Runahead Execution?

◼ What if instead of having an L3, the L2 was just bigger? What changes?

78

Open Discussion

◼ Intel Atom processors used to be in-Order Architectures, but did not feature
runahead execution. Why?

◼ Other ideas for runahead execution?

❑ Continuous Runahead Execution

❑ Subordinate Simultaneous Multithreading

◼ Other ideas to overcome the memory wall?

79

Backup Slides

80

81ark.intel.com

82

0.73
0.77

1.66
1.69

1.15

2.02

0.94

0

10

20

30

40

50

60

70

80

90

100

%
 c

y
cl

e
s

w
/

fu
ll

in
st

w
in

d
o
w

 s
ta

lls finite sched, real L2, 128-entry inst window

infinite sched, real L2, 128-entry inst window

finite sched, perfect L2, 128-entry inst window

infinite sched, perfect L2, 128-entry inst window

infinite sched, real L2, 2048-entry inst window

infinite sched, perfect L2, 2048-entry inst window

finite sched, runahead on real L2, 128-entry inst
window

Scheduling Window: finite | infinite

L2: real | perfect

Instruction Window: 128 | 2048

Runahead

Numbers over bars: IPC

Mutlu, O.

HPCA03

(re-designed)

83Mutlu HPCA03

84Mutlu HPCA03

85Mutlu HPCA03

86Mutlu HPCA03

