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Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of its scheduling decisions

• Cannot take lessons from the consequences of its past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Results:

• 19% speedup, 21% more bandwidth utilization over best static policy

• Scales as well as the best static policy
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Problem, Background and Goal
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DRAM bandwidth is the bottleneck
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Goal: Efficiently utilize DRAM bandwidth
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The Memory Controller

• Accepts cache misses and write-back requests,
puts them in the memory transaction queue

• Issues activate, read, write and precharge
commands to satisfy these requests

• Must obey many local and global DRAM timing
constraints

0Onur Mutlu and Thomas Moscibroda, "Parallelism-Aware Batch Scheduling: Enabling
High-Performance and Fair Memory Controllers" IEEE Micro, 2009
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FR-FCFS Scheduling Policy

• Provides the best average performance

• (1) Prioritizes read/write over activate/precharge.

• (2) Prioritizes older commands over younger commands

• Can’t anticipate the long term effects of its scheduling decisions

• Can’t take lessons from the consequences of its past actions to decide
better in the future
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Novelty, Key Approach & Ideas
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Key Idea: Enable the Memory Controller to Learn From Its
Actions

Ege Karaismailoglu 2019-04-11 33



Benefits

Ege Karaismailoglu 2019-04-11 34



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

Ege Karaismailoglu 2019-04-11 35



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

Ege Karaismailoglu 2019-04-11 36



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

Ege Karaismailoglu 2019-04-11 37



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

Ege Karaismailoglu 2019-04-11 38



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

• More efficiently utilize DRAM bandwidth (21% more utilization over
FR-FCFS)

Ege Karaismailoglu 2019-04-11 39



Benefits

• Allows the hardware designer to focus on what specific goal the MC should
accomplish

• Enables the MC to adapt to workload changes

• Hopefully enables the MC to make farsighted decisions

• Creates an MC which can use its experience in new, but similar situations

• More efficiently utilize DRAM bandwidth (21% more utilization over
FR-FCFS)

• Improved system performance (19% performance improvement over
FR-FCFS)
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Mechanisms
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Reinforcement Learning
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Overview
Formulate memory access scheduling as an infinite horizon (continuous) task Scheduler
always has 1 DRAM clock cycle to decide what it wants to do

Reward = 1 if a read/write command was issued. Otherwise, Reward = 0
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Reward function
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Reward function

At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as1

1R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
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Reward function

At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as2

γ ∈ [0, 1]
γ ≈ 1→ farsighted

γ ≈ 0→ greedy

2R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
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Reward function
At every time step, the scheduler will make the decision it thinks will maximize the
reward function, which is defined as3

Note that we also have

γ ∈ [0, 1]
γ ≈ 1→ farsighted

γ ≈ 0→ greedy

3R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
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• We define the Q-value of a state-action pair for a specific policy as the expected
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afterwards:4

4R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
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States

For each candidate command, the associated state has 6 attributes:

1. # Reads in the queue

2. # Reads in the queue that are load misses

3. # Writes in the queue

4. # Writes in the queue waiting for the row referenced by this command

5. # Load misses (which are the oldest load misses from their cores) in the queue
waiting for the row referenced by this command

6. The order of the load relative to other loads from C (if this command is related to a
load miss by core C)

All attributes available in the controller’s transaction queue→ fast access
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RL-Based DRAM Scheduling Algorithm
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RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states
With probability 1 - ε:

Select the command with the highest Q-value among all legal commmands
Update the Q-value of the previous command
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RL-Based DRAM Scheduling Algorithm

In every DRAM cycle:
Issue the command you selected in the last cycle
Observe reward
With small probability ε:

Select a random command #to explore the states
With probability 1 - ε:

Select the command with the highest Q-value among all legal commmands
Qprev ← (1− α)Qprev + α(r + γQselected )

Note: Correct operation is ensured by adding a set of extra constraints
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How to store all the Q-values efficiently

Figure: Fine-grain
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How to store all the Q-values efficiently

Figure: Fine-grain Figure: Coarse-grain
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How to store all the Q-values efficiently

Figure: Fine-grain Figure: Coarse-grain Figure: CMAC
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Implementation
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clocked 10 times each DRAM cycle
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Implementation

• Assumption: Scheduler’s pipe can be
clocked 10 times each DRAM cycle

• Scheduler can consider 12 commands
every cycle
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Implementation
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prevent generalization across different
commands

Ege Karaismailoglu 2019-04-11 84



Implementation

• A constant number per action type→
prevent generalization across different
commands

Ege Karaismailoglu 2019-04-11 85



Implementation

• A constant number per action type→
prevent generalization across different
commands

• random shifts of attributes implement
the shiftedness of CMAC arrays
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(Additional) Hardware Overhead

1. logic to compute state attributes→ counters that are updated every DRAM cycle

2. logic to update Q-values→ single pipelined 16-bit fixed-point multiplier

3. storing the Q-values→ 32 kB on-chip storage
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Key Results: Methodology & Evaluation
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Methodology

Some important parameters of the
simulated CMP:

• Frequency: 4 GHz

• #Cores: 4 (each 2-way simultaneously
multithreaded)

• iL1/dL1 size: 32 kB

• Shared L2 cache: 4MB, 8-way
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Methodology

Some important parameters of the
simulated CMP:

• Frequency: 4 GHz

• #Cores: 4 (each 2-way simultaneously
multithreaded)

• iL1/dL1 size: 32 kB

• Shared L2 cache: 4MB, 8-way

Some important parameters of the
simulated DRAM:

• DDR2-800 SDRAM

• Transaction Queue: 64 entries

• Peak Data Rate: 6.4 GB/s

• DRAM Bus Frequency: 400 MHz

• Single rank with 4 DRAM chips

• #Banks: 4 per DRAM chip

• Row Buffer Size: 2 KB

Ege Karaismailoglu 2019-04-11 93



Applications & Benchmarks
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Compared Memory Controllers
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Compared Memory Controllers

• A conventional in-order MC

• MC implementing FR-FCFS

• RL-based controller proposed by this paper

• An ideal scheduler with an ideal memory that can sustain 100% peak bandwidth
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Results: Data Bus Utilization
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Results: Performance Improvement
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Results: Scaled to More Cores
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Executive Summary

Problem: Scheduling policies

• Cannot anticipate the long term effects of their scheduling decisions

• Cannot take lessons from the consequences of their past actions

Solution: RL-based controller computes learning, far-sighted policy→ efficient
bandwidth utilization

Results:

• 19% speedup, 21% more bandwidth utilization over best static policy

• Scales as well as the best static policy
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Strengths

• A fundamentally more powerful approach than its predecessors

• Tries to solve an important problem that will always be relevant

• Significantly improves overall performance and data bus utilization

• The paper accurately predicts that the DRAM bandwidth is going to be the main
problem, 11 years ago!

• Well-written paper
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Weaknesses
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Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.
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Weaknesses

• It does not provide fairness across multiple competing threads. It does not even
provide non-starvation.

• More complicated hardware than FR-FCFS

• Extending it is hard since hardware will get even more complicated

• Heterogeneous workloads are not tested
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• Periodically order threads based on the service they have attained from the
memory controllers so far
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• Periodically order threads based on the service they have attained from the
memory controllers so far

• Prioritize the threads that have attained the least service over others in each period
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Can we do better?

• Can we solve the fairness problem?
– "ATLAS" [Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, HPCA 2010]
– TCM scheduling [Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, MICRO 2010]
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• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster
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• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster

• Prioritize 1st cluster over 2nd cluster
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• Dynamically group threads into a latency-sensitive cluster and a
bandwidth-sensitive cluster

• Prioritize 1st cluster over 2nd cluster

• Employ different policies within each cluster
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Can we do better?

• Can we solve the fairness problem?
– "ATLAS" [Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, HPCA 2010]
– TCM scheduling [Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, MICRO 2010]
– "BLISS" [L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, O. Mutlu, IEEE

Transactions on Parallel and Distributed Systems 2016]
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• Mark each application either as vulnerable-to-interference or as
interference-causing.
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• Mark each application either as vulnerable-to-interference or as
interference-causing.

• Prioritize requests from 1st group over requests from 2nd group
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Key Takeaways

• A novel approach to utilize the data bus

• Effective in terms of performance gain

• Comes with some hardware cost

• QoS-unaware→ no fairness

• Seemingly hard to improve
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Open Discussion
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Discussion

How can we solve the fairness problem while keeping our
RL-based approach?
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Discussion

Are there other flaws in this approach?
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Discussion

Can this approach be used to solve other scheduling problems?
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Discussion

When are machine-learning based approaches applicable in
computer architecture?
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Backup slides
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Ensuring correct operation

• the scheduler is not permitted to select NOPs when other legal commands are
available

• the scheduler is only allowed to activate rows due to pending requests in the
transaction queue (i.e., the scheduler cannot choose to activate an arbitrary row
with no pending requests)

• the scheduler is not allowed to precharge a newly activated row until it issues a
reador write command to it.
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Results: RL versus Family-BEST
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Results: RL versus Family-BEST

Preference relations used in Family-BEST:

• Row commands over column commands

• Older commands over younger commands

• Reads over writes

• Load misses over store misses

• More critical load misses over less critical ones, based on sequence numbers
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Results: Online versus Offline
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