
The Case for a
Single-Chip
Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance
Hammond, Ken Wilson, and Kunyung Chang
ASPLOS 1996

Presented by Gauthier de Chezelles
1

Seminar in computer architecture

Background: We are in 1996

● Number of transistors
per chip increases

● Frequency increases

● Number of cores is
constant

2

Executive summary

3

● Background: The size reduction of transistors gives us
opportunities to innovate

● Problem: Increasing the number of issues in a superscalar
architecture is not sustainable

● Goal: Design a simpler processor with multiple smaller CPUs
● Key contributions:

○ Demonstration: Proves that superscalar architectures are
not scalable

○ Innovation: Designs and compares a superscalar
architecture and a multiprocessor architecture

○ Interpretation: Identifies different types of applications
and compares their performances on each architecture

Background

4

We have more space. What do we do?

New space

Old processor

● The trend is to do superscalar
architectures

● This paper proposes it to a
single-chip multiprocessor

5

Lifetime of an instruction

Fetch StoreExecuteDecode

add R8, R17, R18

How can we make this faster ?

● Increase frequency
○ Limited

● We can do more pipelining
● Can we do even better ?

6

Superscalar architecture

Fetch
&

Decode

Integer units

Instruction issue
queue

add R8, R17, R18

FP units

LD/ST units

7

Superscalar architecture

Fetch
&

Decode

add R8, R17, R18

Integer units

Instruction issue
queue FP units

LD/ST units

Fetch more
instructions

8

Superscalar architecture

Fetch
&

Decode

add R8, R17, R18

Integer units

Instruction issue
queue FP units

LD/ST units

Issue more
instructions

Fetch more
instructions

9

Superscalar architecture

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

Execute more
instructions

Issue more
instructions

Fetch more
instructions

10

Superscalar architecture

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

Execute more
instructions

Issue more
instructions

Fetch more
instructions

11

VOCABULARY

The issue width is the number of
instructions issued per cycle

EXEMPLE

A 3-issue processor issues 3
instructions per cycle

Motivation

12

Is this scalable?

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

13

Is this scalable?

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

14

FETCH

Is this scalable?

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

15

FETCH ISSUE

Is this scalable?

Fetch
&

Decode

Integer units

add R8, R17, R18

FP units

LD/ST units

Integer units

FP units

LD/ST units

Instruction issue
queue

16

FETCH ISSUE EXECUTE

Scaling fetch phase

Fetch
&

Decode

add R8, R17, R18 17

FETCH

● Requires fast instruction cache with
good hit rate

● Requires a good branch predictor

● With little space we are able to have a
misprediction rate under 5% for most
programs

● Cache misses are hidden by the size of the
issue queue

Fetch phase will scale

Scaling issue phase

add R8, R17, R18 18

● Requires a bigger issue queue
● Requires more instruction renaming logic

● Issue queue grows quadratically with the
issue width

● The comparaisons in the renaming logic
also grow quadratically

● Wires get longer, and therefore also cycle
time

Instruction
issue queueISSUE

Issue phase will not scale
On the PA-8000 4-issue, 56 instructions queue: 20% of the die area

Scaling execute phase

19

● Requires more execution units
● Requires more data cache ports
● Requires more register file ports

● Execution units grows linearly
● The complexity of the register file grows

quadratically
● Longer delays in the data cache
● Longer wires in the bypass logic

Integer units

FP units

LD/ST units

Integer units

FP units

LD/ST units

EXECUTE

Execute phase will not scale

Other motivation: Applications

20

● Windows 95 is mono-processor
● Windows 96 is multi-processor

● Programmers want to do
multithreading in their app

● Automatic parallelization
technology emerges

Technology push and application pull

Application

Assembly

ISA

Micro architecture

Gates

Physics

Application pull

Technologie push

21

Instruction-level parallelism is limited
by the size of the issue queue

Programmers want to do
application parallelism

The case for a Single-chip
Multiprocessor

22

Comparing two Microarchitectures

21mm x 21mm 21mm x 21mm

23

21mm x 21mm 21mm x 21mm

One CPU Four CPUs

50%

24

21mm x 21mm 21mm x 21mm

3 integer units 4x1 integer units

7%

50%

10%

25

21mm x 21mm 21mm x 21mm

50%

3 FP units 4x1 FP units

9% 12%7%

10%

26

21mm x 21mm 21mm x 21mm

50%

Issue width: 6
instruction queue: 128 entries

Issue width: 4x2
instruction queues: 4x8 entries

Out of order logic: 30%
(instruction queue, renaming logic)

9% 12%7%

10%

11%

27

21mm x 21mm 21mm x 21mm

50%

L1 cache
Hit time: 2 cycles

8 Banks

L1 cache
Hit time: 1 cycle

Out of order logic: 30%
(instruction queue, renaming logic)

9% 12%7%

10%

11%

8%
6%

28

21mm x 21mm 21mm x 21mm

50%

L2 Cache:
Size: 256K

Hit time: 4 cycles

L2 cache:
Size: 256K

Hit time: 5 cycles

Out of order logic: 30%
(instruction queue, renaming logic)

9% 12%7%

10%

11%

8%
6%

L2 cache 26% L2 cache: 26%

29

21mm x 21mm 21mm x 21mm

50%

Out of order logic: 30%
(instruction queue, renaming logic)

9% 12%7%

10%

11%

8%
6%

L2 cache 26% L2 cache: 26%

Clock: 500 MHz Clock: 500 MHz

30

Simulation

31

Tested applications

32

We use SimOS because it supports
multiprocessor

Programs are manually edited to be
multithreaded

6-issues vs 2-issues

21mm x 21mm

Out of order logic: 30%
(instruction queue, renaming logic)

9%7%

8%

L2 cache 26%

21mm x 21mm

50%

12%

10%

11%

L2 cache: 26%

VS

33

Simulation: 6-issues vs 2-issues

Observation

x3 in issue width but only up to
30% better in performances

Conclusion

The processor was not able to do
instruction level parallelism

34

Simulation: 6-issues vs 4x2-issues

21mm x 21mm

Out of order logic: 30%
(instruction queue, renaming logic)

9%7%

8%

L2 cache 26%

VS

35

21mm x 21mm

50%

12%

10%

11%

6%

L2 cache: 26%

Simulation: 6-issues vs 4x2-issues

36

Observation

Fine grained thread-level parallelism: Superscalar does at most 10% better

Simulation: 6-issues vs 4x2-issues

37

Observation

Large grained thread-level parallelism: Multiprocessor performs 50% - 100% better

Conclusion

38

Conclusion

39

● Background: The size reduction of transistors gives us
opportunities to innovate

● Problem: Increasing the number of issues in superscalar
architectures is not sustainable

● Goal: Design simpler processors with multiple smaller CPUs
● Key contribution:

○ Demonstration: Prove that superscalar architectures are
not scalable

○ Innovation: Design and compare a superscalar
architecture and a multiprocessor architecture

○ Interpretation: Identify different types of applications and
compare their performances on each architecture

The Case for a
Single-Chip
Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance
Hammond, Ken Wilson, and Kunyung Chang
ASPLOS 1996

Presented by Gauthier de Chezelles
40

Seminar in computer architecture

Discussion

41

Strengths

● The paper is trying to project itself on the long term
● The architectural choices are well argumented (especially on

latency and queue sizes)
● The results are well analyzed

42

Weaknesses

● Does not speak about the need of recompiling
● Not a lot of details on how well are the apps threaded.
● Comparaison with a perfectly multithreaded app would have

been nice
● Not a lot of background (register renaming, register file....). But

maybe it was different times
● Only compares superscalar and multiprocessor. Could we

have done something else with those new transistors ?
● No mention of energy

43

Open discussion

● What would you have done with those new transistors?

○ What about more instructions ? Vector instructions ?

● What about today ? What would you do with a new transistor

scaling ?

○ Do you see any limit in having 16, 64 CPUs in one

processor ?

○ If yes what other use cases could you think of ?

44

Annex

45

Annex

46

Annex

47

Annex

48

Annex

Dynamic scheduling: Executing instructions out of order.

49

