
Speculative Lock Elision (SLE):
Enabling Highly Concurrent 

Multithreaded Execution

James R. Goodman

Originally presented at MICRO 2001
Presented today by: Torgin Mackinga

Ravi Rajwar



Elision Definition

elision – noun

The act of omitting (skipping) something

2



Executive Summary

◼ Problem: Conventional locking can introduce unnecessary
serialization

◼ Goal: Dynamically elide unnecessary locks

◼ Solution: Speculatively execute critical sections

◼ Hardware implementation: Requires no changes to ISA

❑ Programmer and compiler-transparent

❑ Existing code can be sped up without any changes

◼ Effect: Reduces the burden on programmers by allowing
them to use frequent serialization to write correct code

3



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

4



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

5



Problem

6

Unnecessary

serialization

Expensive

Difficult to debug



What we really want…

7

Remove unnecessary serialization
automatically through hardware



Unnecessary serialization example

8



Unnecessary serialization example

9

◼ Lock only required for add

◼ Difficult to statically fix

Thread 2Thread 1



Goal: Elide unnecessary locks

10



Speculative execution

11



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

12



Atomicity conditions

◼ Locks trivially guarantee atomicity

◼ Sufficient conditions:

1. Data read within a speculatively executing critical section is 
not modified by another thread before it completes. 

2. Data written within a speculatively executing critical section 
is not accessed by another thread before it completes.

13



SLE Algorithm

1. Whenever we would acquire a lock, predict that critical 
section will occur atomically and elide the lock acquire. 

2. Execute critical section speculatively and buffer results.

3. If hardware cannot provide atomicity, trigger 
misspeculation, recover and explicitly acquire lock.
(or retry)

4. If we encounter lock-release, atomicity was not violated. 
Elide lock-release operation, commit speculative state.

14



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

15



Implementation

1. When can we speculate?

2. How is speculative state buffered?

3. How is misspeculation detected?

4. How is speculative state committed?

16



1. When can we speculate?

◼ Silent store-pairs

❑ Store followed by another store which reverts it

◼ Detect instructions which could be a lock acquire

❑ ldl_l/stl_c, Compare and swap etc

◼ Predict if another store will form a silent store pair

❑ If yes, initiate speculation and elide lock acquire

◼ Everything happens in hardware, no extra instructions
needed

17



2. How is speculative state buffered?

Speculative register state

◼ Reorder Buffer (ROB)

❑ Uses same recovery mechanisms as branch prediction

❑ Limits size of critical section (w.r.t. dynamic instructions)

◼ Register Checkpoint

❑ Architected register state is stored on entering speculation

❑ Allows instructions to speculatively retire

Speculative memory state

◼ Processor write-buffer (between processor and L1-cache) 
doesn’t commit into cache until elision is validated

❑ Limits size of critical section (w.r.t number of unique cache
lines modified)

18



3. How is misspeculation detected?

Atomicity violations

◼ Detected by cache coherency protocol

◼ If using register checkpoints, cache needs to be augmented
with an access bit

❑ On write, access bit is set. On commit, unset

Misspeculation due to resource constraints

◼ Write-buffer or ROB full

❑ Does not always require a restart
1. Take the lock
2. Commit speculative state
3. Continue executing

◼ Uncached accesses or events (e.g. some system calls)

❑ Always triggers misspeculation

19



4. How is speculative state committed?

◼ Commit must appear atomically!

Registers

◼ Nothing to do

Memory

◼ State

❑ Speculative store in write-buffer -> exclusive memory request

❑ All speculative entries have a block in exclusive state

◼ Data

❑ Write-buffer is set to have latest architectural state

❑ Reading from write-buffer not on critical path

20



Key features of SLE

◼ Enables highly concurrent multithreaded execution

❑ Execute multiple critical sections at once

◼ Simplifies writing correct multithreaded code

❑ Use conservative synchronization without significant
performance impact

◼ Can be implemented easily in microarchitecture

❑ No ISA support or changes to coherence protocols necessary

◼ Transparent to programmer

❑ Continue using well-understood synchronization routines

21



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

22



Methodology

◼ 3 configurations: a chip multiprocessor (CMP), a bus 
system (SMP) and a directory system (DSM).

◼ 8-core and 16-core processor

◼ Memory consistency model: Total store ordering

❑ same as x86

◼ Register checkpoint for register recovery

◼ SimpleMP: simulator for multi-threaded binaries

23



Benchmarks

◼ Microbenchmark: 

❑ N threads each increment a different counter (2^16)/N times. 
All counters protected by a single lock.

❑ Worst case scenario for conventional locking

◼ 6 applications

❑ Padded to reduce false sharing

24



Microbenchmark result

25

Perfect scaling with SLE!



Percentage of locks elided

26

Percentage of dynamic lock acquires/releases elided

◼ Barnes worst due to high lock contention

◼ Restart: 1

❑ Restart 0 had 10-30% fewer locks elided

Some workloads almost 100%!
Some workloads up to 100%!

8 processors



Performance gains

27

◼ Base: Performance without SLE

◼ Lock ops: Time spent on lock variable accesses

◼ Non-lock part may increase, as it becomes critical path

◼ Main reasons for performance gains:

❑ Concurrent critical section execution

❑ Reduced memory latencies and traffic

Avg: 0.92



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

28



Summary

◼ Problem: Conventional locking can introduce unnecessary
serialization

◼ Goal: Dynamically remove unnecessary locks

◼ Solution: Speculatively execute critical sections

◼ Easy to implement: Requires no changes to ISA or
coherency protocol

❑ Programmer and compiler-transparent

❑ Existing code can be sped up without any changes

❑ Best case: 46%, worst case: -1%

❑ Existing code is guaranteed to remain correct

◼ Effect: Reduces the burden on programmers by allowing
them to use frequent serialization to write correct code

29



Outline

◼ Problem & Goal

◼ Mechanism Overview

◼ Implementation

◼ Methodology & Results

◼ Summary

◼ Strengths & Weaknesses

◼ Thoughts and Ideas

◼ Open discussion

30



Strengths

◼ Big gains at low cost

◼ Reduces the burden on programmers

◼ Existing code can be sped up

◼ Implementation changes almost none of the existing design

◼ Tackled problems ahead of its time

◼ Answered many of my questions as they came up

31



Weaknesses

◼ Not convinced that every lock can be recognized

◼ Did not mention cost of register checkpoints

◼ Does not help lock-free code

◼ Could have explained more about how prediction works

◼ No explanation of differences between configurations

32



Questions?

33



Thoughts and Ideas

34



Is this implemented?

◼ Yes, Intel TSX in Intel Haswell 2013 (12 years later)

❑ By Ravi Rajwar, author of this paper

◼ 2 variants: HLE and transactional memory

◼ Transactional memory is programmer visible. 

❑ Reset threshold: 9

◼ Still available in 2019 Intel CPUs

❑ E.g Intel Core i9-9000K
35



ZombieLoad 2

◼ Meltdown-type attack

◼ Can read user and system data

❑ Passwords, disk encryption keys etc.

◼ May 2019 Intel released microcode fix

◼ V2 works on Meltdown-safe CPUs

❑ Exploits TSX to speculatively load, then
intentionally causes conflict-abort

◼ Currently V2 is unfixed, according to
paper authors

https://zombieloadattack.com/

36

https://zombieloadattack.com/


Follow-up work

◼ 103 paper citations according to ieeexplore

◼ Gustavo Sousa, Alexandro Baldassin, 
"FGSCM: A Fine-Grained Approach to Transactional
Lock Elision“, Computer Architecture and High 
Performance Computing (SBAC-PAD) 2017 29th 
International Symposium on, pp. 113-120, 2017.

◼ Seunghee Shin, James Tuck, Yan Solihin, 
"Hiding the Long Latency of Persist Barriers Using 
Speculative Execution“, ACM SIGARCH Computer 
Architecture News, vol. 45, pp. 175, 2017.

◼ Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik Sen, 
John Mellor-Crummey, Costin Iancu, 
"Barrier elision for production parallel
programs“, ACM SIGPLAN Notices, vol. 50, pp. 109, 2015.

37



Open Discussion

38



Discussion Starters

◼ Should Intel TSX be disabled until there is a fix?

◼ Do you see any downsides of SLE?

◼ Is there functionality in newer processors which makes 
implementation harder?

◼ Do you think hardware or transactional memory SLE 
implementations are better?

◼ Can you think of another way to elide locks?

◼ Are there non-lock synchronizations that could be elided?
39



CMP

40



DSM vs SMP

41



Difference between SMP, DSM, CMP

“The SMP and DSM versions gain more than CMP because 
their large caches can hold the working set and thus have 
fewer read misses (and memory traffic) for the lock. For the 
CMP, the absence of a large cache hurts and thus there are 
more evictions of locks in clean state because the L1 suffers 
conflict and capacity misses.”

42


