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Executive Summary

• Many applications heavily rely on sparse linear algebra

• They require effective compression formats to mitigate computational 
and storage overheads

• Existing formats suffer from the expensive cost of finding the position of 
non-zero elements

• SMASH: Hardware/Software cooperative mechanism for efficient 
non-zero elements discovery and sparse matrix operations
• Software: Efficient compression with a hierarchy of bitmaps
• Hardware: Scans bitmaps to find indices of non-zero elements

• 38 - 44 % faster than the state-of-the-art for SpMV and SpMM

• SMASH is highly effective, low cost, and widely applicable
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Outline

• Definition and Applications of a Sparse Matrix

• Properties of an Effective Compression Format

• State-of-the-art: CSR and BCSR

• Indexing Overhead of CSR and BCSR

• SMASH: Effective Mechanism for Sparse Matrix Compression

• Evaluation Methodology and Key Results

• Conclusion

• Critique and Discussion
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Definition: Sparse Matrix

• Majority of its values are 0

• Widely used in modern 
applications

• Vary in size and sparsity

• Computations with zeros are 
unnecessary

• Storing zeros is wasteful and/or 
infeasible

4https://en.wikipedia.org/wiki/Sparse_matrix#/media/File:Finite_element_sparse_matrix.png



Definition: Sparse Matrix

Need
sparse matrix 
compression 

to avoid 
overheads
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Application: Graph Analytics For Social Networks

6https://www.semanticscholar.org/paper/Topics-in-social-network-analysis-and-network-O'Malley-Onnela/61ede53272f795e1115badd45f28164e34b98a37/figure/0



Application: Graph Analytics For Social Networks

7https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

over 2.5 billion active users, Ø connections/user = 340



Application: Sparse Weights in DNN with Dropout

8https://dimensionless.in/what-is-neural-network/neural-network-schematic/



Application: Sparse Weights in DNN with Dropout
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Application: Diagonal Matrix Computation
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Exploiting the structure of A → From quadratic to linear complexity



Properties of an Effective Compression Format
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3. General Applicability

1. Storage Efficiency

2. Computational Efficiency



Compressed Sparse Row (CSR)

• Most widely used (Intel  MKL, OpenBLAS, Eigen, etc.)

• Compressed Sparse Column (CSC) follows the same concept
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Compressed Sparse Row (CSR)

Advantages

• Enables spatial locality

• Only stores non-zero values 
(ignoring meta-data)

Disadvantages

• Costly insertion of non-zero 
values

• Difficult to obtain temporal 
locality
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Block Compressed Sparse Row (BCSR)

• Modification of CSR
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Block Compressed Sparse Row (BCSR)

Advantages

• Reduced storage for indices

• Enables blocking 
optimization in matrix 
operations

Disadvantages

• Storage of zeros

• Computational overhead
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Indexing Overhead of CSR and BCSR

• Multiple memory instructions to get position of non-zero value or 
block 

• Comparison of indices
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Zero-cost Indexing for CSR and BCSR

Zero-cost indexing indicates room for improvement
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SMASH: A Novel Compression Approach

Hardware/Software Cooperative Mechanism

• Enables highly efficient sparse matrix compression and computation

• Works effectively for a diverse set of sparse matrices 

21
Software Compression Hardware-accelerated Indexing



SMASH: Software Compression Scheme

Single Bitmap

• Bit encodes the existence of a 
non-zero value in a region

• A lot of zero bits

Hierarchy of Bitmaps

• Idea: Apply encoding recursively 
to reduce the number of zero 
bits (bottom-up)

22

Non-zero blocks



SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values 

with different granularity
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SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values 

with different granularity

Compression Ratios
• Configurable, determine change in 

granularity between levels

Non-zero Array (NZA)
• Stores non-zero blocks of matrix

Representation in Memory
• Only store necessary information
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SMASH: Software Compression Scheme

Efficient storage
• Each non-zero block has only a few 

bits (= #levels) of meta-data

Fast indexing
• Traverse bitmap hierarchy in a depth-

first manner to compute the index
• Index is a simple sum of products

Enables hardware acceleration
• Little amount of data to transfer
• Facilitated by hierarchical structure
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SMASH: Hardware Acceleration Scheme
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SMASH: Hardware Acceleration Scheme

• Communication over 
SMASH ISA
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SMASH: Hardware Acceleration Scheme
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• Matrix size and compression 
ratios as parameters
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SMASH: Hardware Acceleration Scheme

• Communication over 
SMASH ISA

• Matrix size and compression 
ratios as parameters

• One buffer per bitmap level

• Hardware logic:
• Reads parameters

• Scans bitmaps for set bits

• Computes index of next non-zero 
block and stores it into registers
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Evaluation Methodology

Simulator: ZSim Simulator 

Workloads:
• SpMV & SpMM

• 15 matrices

• Varied sparsity levels and non-zero distributions

• Sparsity level from 0.01% to 8.79%

• PageRank & Betweenness Centrality
• 4 graphs

• Number of edges from 1M to 3.3M
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Evaluation Result: Storage Efficiency 

1. Storage Efficiency

• CSR is better for
very sparse matrices

• SMASH is better for
denser matrices

• Cost of storing zeros vs. 
Cost of storing indices

37



Evaluation Result: Computational Efficiency 

1. Storage Efficiency

2. Computational Efficiency

• Sparse Matrix Kernels

• 40 % speedup compared to CSR

• 30% speedup compared to BCSR

• Lower speedup for graph 
computations
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Evaluation Result: Computational Efficiency 

1. Storage Efficiency

2. Computational Efficiency

• SMASH requires fewer 
instructions compared to 
CSR and BCSR
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Evaluation Result: General Applicability

1. Storage Efficiency

2. Computational Efficiency

3. General Applicability
• Matrices with varied size, structure, 

and sparsity

• Increasing the density of a matrix 
leads to higher indexing overhead
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Evaluation Result: Die Area Overhead

41

BMU
• Support 4 matrices

• 3 bitmap buffers per matrix,
each with 256 bytes of storage

• 140 bytes for registers & counters

0.076% area overhead over an 
Intel Xeon E5-2698 CPU core



Conclusion

• Many applications heavily rely on sparse linear algebra

• They require effective compression formats to mitigate computational 
and storage overheads

• Existing formats suffer from the expensive cost of finding the position of 
non-zero elements

• SMASH: Hardware/Software cooperative mechanism for efficient 
non-zero elements discovery to accelerate sparse matrix operations
• Software: Efficient compression with a hierarchy of bitmaps
• Hardware: Scans bitmaps to find indices of non-zero elements

• 38 - 44 % faster than the state-of-the-art for SpMV and SpMM

• SMASH is highly effective, low cost, and widely applicable
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Strengths

• Identifies indexing as a key bottleneck in sparse matrix compression schemes

• Among the first to propose a hardware/software cooperative scheme to 
accelerate sparse matrix indexing

• General applicable
• CPU, GPU, other hardware accelerators etc.
• Any sparse operation like Sparse LU, Sparse QR, etc.

• Extensive evaluation from many perspectives
• Impact of compression ratio, sparsity levels, non-zero distribution, conversion overhead, 

software-only approach, die area overhead, etc.

• SMASH’s implementation of the matrix kernels is open source

• Well written
• Little prior knowledge required
• Structure feels very familiar…
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Weaknesses

• Finding of optimal compression ratios might be complicated

• Selection of number of bitmap levels is not explained

• Evaluation of hardware-accelerated SMASH only in a simulator

• Dynamic updates of sparse matrix is expensive
• Requires reload of bitmaps into BMU to avoid coherency issues

• Dynamic insertion of a non-zero value might require a large copy operation on 
the non-zero array
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Thoughts, Ideas and Alternatives

• SMASH stores zero-containing blocks like BCSR, but only as 1D arrays
• Partitioning of matrix into 2D regions would enable blocking optimization

• Lossy compression formats that approximate matrix values to reduce the 
memory footprint
• CSR: Merge integer index (4 bytes) and float value (4 bytes) into a single value (4 bytes) 
• Value stores index in the leftmost bits and value in the remaining bits
• Loss of precision for floating points values
• Loss of range for integer indices
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Thoughts, Ideas and Alternatives

SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks 
[Gondimalla et al., 2019]

• Acceleration of sparse dot products which are heavily used in CNN

• Representation of sparse vectors with bit masks to indicate position of 
non-zero values

• Fast computation of the intersection between non-zero value indices

• Authors note that sparsity in machine learning models is lower than in 
other applications (10% sparsity and more). 

• They provide an analysis on when bitmasks are more efficient than 
conventional formats like CSR.

46

https://dl.acm.org/doi/10.1145/3352460.3358291


Thoughts, Ideas and Alternatives

ExTensor: An Accelerator for Sparse Tensor Algebra
[Hegde et al., 2019]

• Acceleration of sparse linear algebra

• Representation of sparse operands as hierarchical trees

• Fast computation of the intersection between non-zero element nodes 
or non-zero region subtrees to avoid unnecessary scalar multiplications 
or even dot products
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https://dl.acm.org/doi/10.1145/3352460.3358275


Thoughts, Ideas and Alternatives

SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training
[Qin et al., 2020]

• Acceleration of sparse matrix-matrix 
multiplications in DNN

• Showcase of the importance of matrix-matrix 
multiplications in deep learning

• Explanation on why GPUs and TPUs 
cannot exploit sparsity effectively

• As part of their architecture, they use a bitmap 
format to store operands

• Constant meta-data overhead
by using one bit per element

• For denser matrices, bitmaps have lower 
overhead compared to conventional formats
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https://synergy.ece.gatech.edu/wp-content/uploads/sites/332/2020/01/sigma_hpca2020.pdf


Key Takeaways

• It is essential to take the sparsity of matrix operands into account, if 
one wants to enable applications that operate on very large and 
sparse matrices

• While it takes more time to detect the root of a problem, resolving a 
problem at that level can benefit a lot of applications
• Today’s root: Sparse matrix indexing

• One can benefit from orthogonal concepts of other approaches
• BCSR’s blocking optimization has the potential to improve SMASH even 

further
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Questions?
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Discussion

• How does the distribution of non-zero elements affect SMASH?

• How can we reduce the overhead of zero element computations?

• How can we use SMASH to accelerate parallelized matrix computations?

• Where should we employ approximation to reduce the indexing overhead? 
• Directly in the compression format?
• Approximate memory? 
• Other methods?

• Which concepts from previous presentations can be used to reduce the indexing 
overhead?

• Can you think of any other applications that can benefit from the use of 
hierarchical bitmaps?
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Reducing Overhead of Zero Element Computations

Page Overlays: 
An Enhanced Virtual Memory Framework to Enable Fine-grained Memory 
Management
[Seshadri et al., 2015]

• Can significantly boost system performance and efficiency while largely 
retaining the structure of the existing virtual memory framework

• Enables the mapping of virtual pages to overlays which only contain a few 
cache lines

• With overlays the fetching of and the computation with zero-only cache 
lines of SMASH’s non-zero blocks can be avoided

• Can be used to enable more efficient sparse matrix updates
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https://dl.acm.org/doi/10.1145/2749469.2750379


Reducing Overhead with Approximate Memory 

EDEN: 
Enabling Energy-Efficient, High-Performance Deep Neural Network 
Inference Using Approximate DRAM
[Koppula et al., 2019]

• Nina Richter will present this paper next week, so I will not spoil her 
presentation today ☺
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https://dl.acm.org/doi/10.1145/3352460.3358280

