SMASH

Co-Designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez Luna, Onur Mutlu

MICRO 2019

Reviewed by Tuan Pham Huu

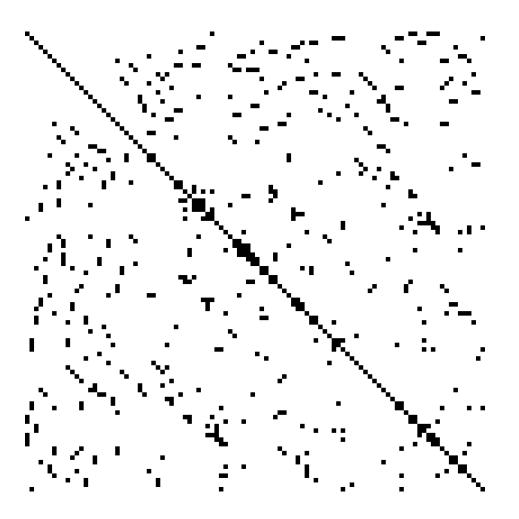
Executive Summary

- Many applications heavily rely on sparse linear algebra
- They require effective compression formats to mitigate computational and storage overheads
- Existing formats suffer from the expensive cost of finding the position of non-zero elements
- SMASH: Hardware/Software cooperative mechanism for efficient non-zero elements discovery and sparse matrix operations
 - Software: Efficient compression with a hierarchy of bitmaps
 - Hardware: Scans bitmaps to find indices of non-zero elements
- 38 44 % faster than the state-of-the-art for SpMV and SpMM
- SMASH is highly effective, low cost, and widely applicable

Outline

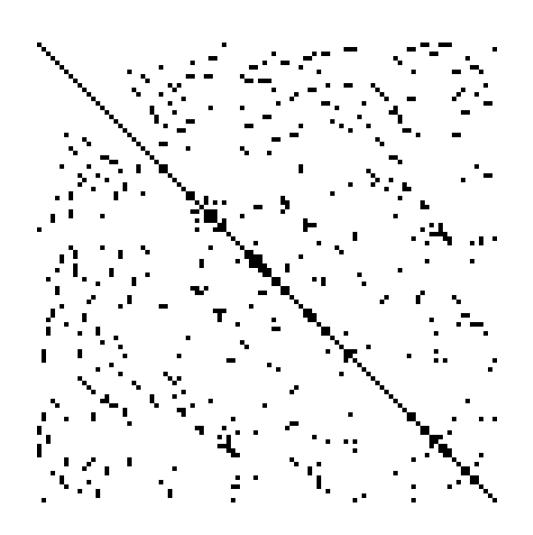
- Definition and Applications of a Sparse Matrix
- Properties of an Effective Compression Format
- State-of-the-art: CSR and BCSR
- Indexing Overhead of CSR and BCSR
- SMASH: Effective Mechanism for Sparse Matrix Compression
- Evaluation Methodology and Key Results
- Conclusion
- Critique and Discussion

Definition: Sparse Matrix



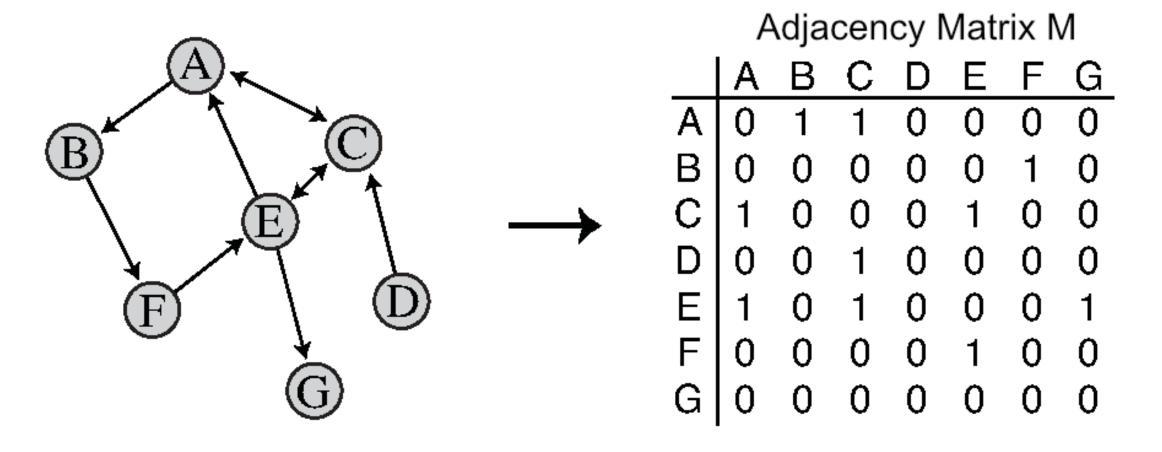
- Majority of its values are 0
- Widely used in modern applications
- Vary in size and sparsity
- Computations with zeros are unnecessary
- Storing zeros is wasteful and/or infeasible

Definition: Sparse Matrix



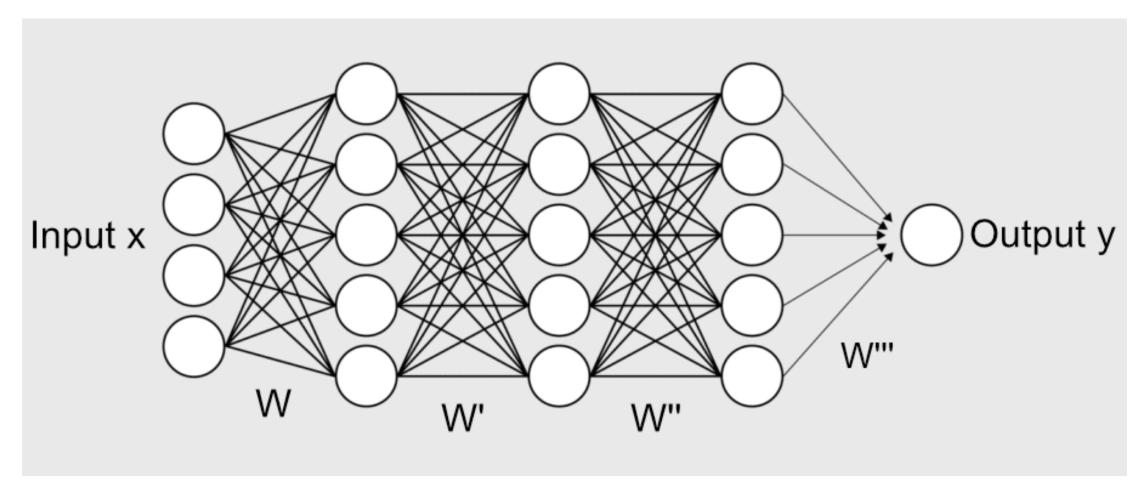
Need sparse matrix compression to avoid overheads

Application: Graph Analytics For Social Networks

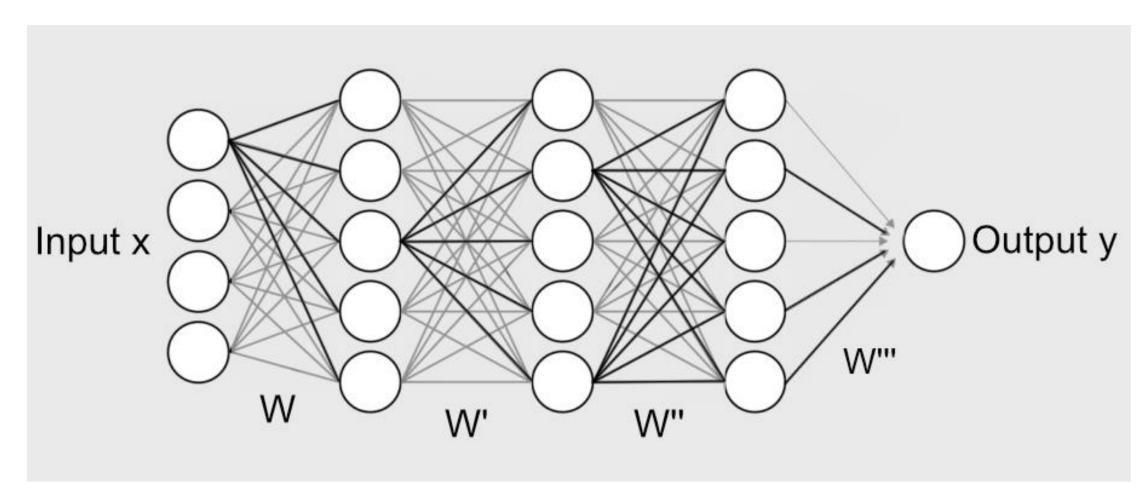


Application: Graph Analytics For Social Networks

Application: Sparse Weights in DNN with Dropout



Application: Sparse Weights in DNN with Dropout



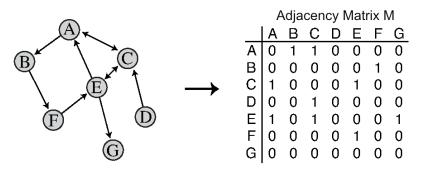
Application: Diagonal Matrix Computation

$$\begin{pmatrix} d_1 & 0 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 & 0 \\ 0 & 0 & d_3 & 0 & 0 \\ 0 & 0 & 0 & d_4 & 0 \\ 0 & 0 & 0 & 0 & d_5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = diag(A) \underset{cwise}{*} x = \begin{pmatrix} d_1 * x_1 \\ d_2 * x_2 \\ d_3 * x_3 \\ d_4 * x_4 \\ d_5 * x_5 \end{pmatrix}$$

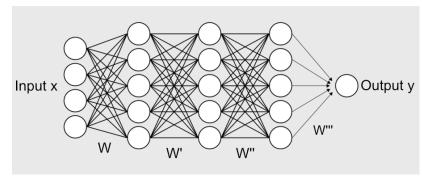
$$A \qquad x \qquad y$$

Exploiting the structure of A \rightarrow From quadratic to linear complexity

Properties of an Effective Compression Format



1. Storage Efficiency

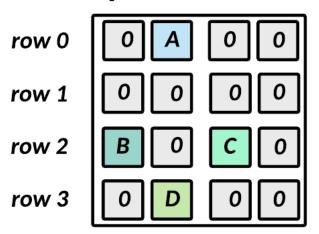


$$\begin{pmatrix} d_1 & 0 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 & 0 \\ 0 & 0 & d_3 & 0 & 0 \\ 0 & 0 & 0 & d_4 & 0 \\ 0 & 0 & 0 & 0 & d_5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = diag(A) \underset{cwise}{*} x = \begin{pmatrix} d_1 * x_1 \\ d_2 * x_2 \\ d_3 * x_3 \\ d_4 * x_4 \\ d_5 * x_5 \end{pmatrix}$$

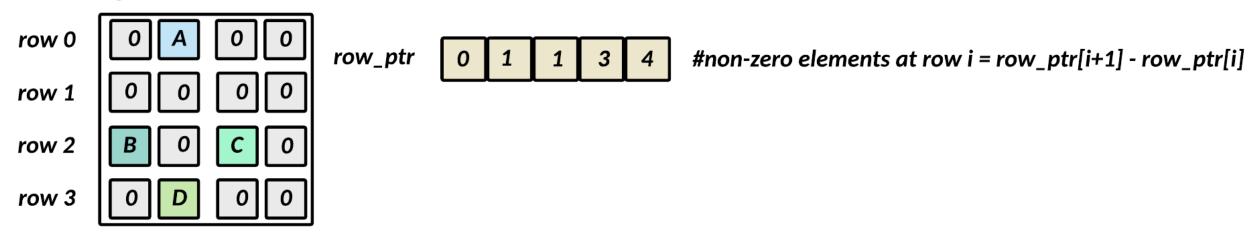
$$A \qquad x \qquad y$$

3. General Applicability

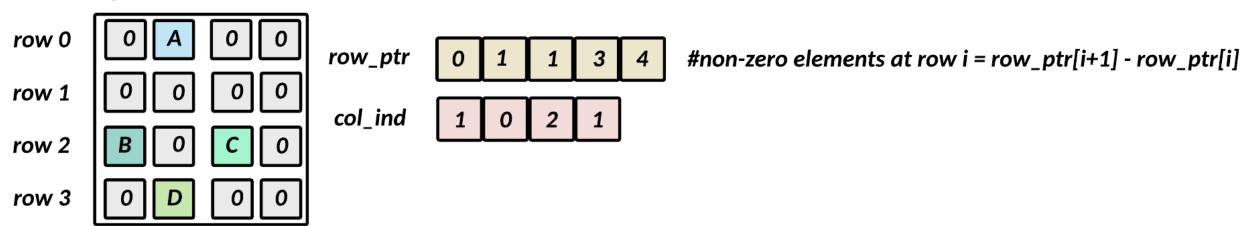
- Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)
- Compressed Sparse Column (CSC) follows the same concept



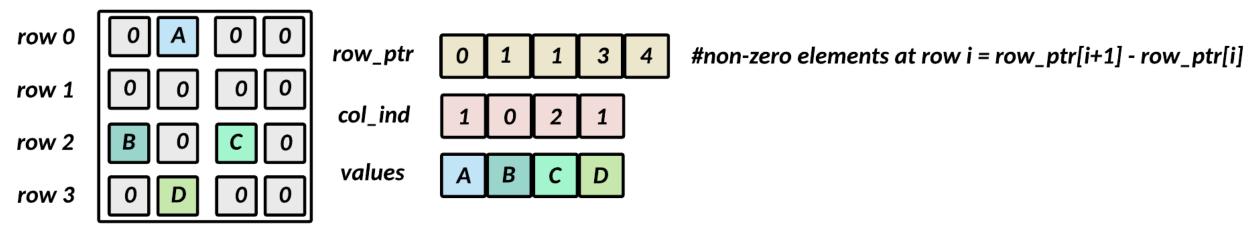
- Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)
- Compressed Sparse Column (CSC) follows the same concept



- Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)
- Compressed Sparse Column (CSC) follows the same concept



- Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)
- Compressed Sparse Column (CSC) follows the same concept

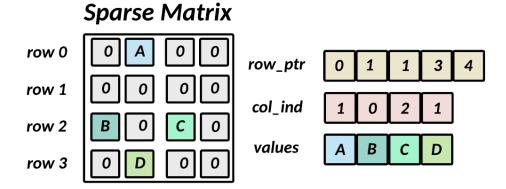


Advantages

- Enables spatial locality
- Only stores non-zero values (ignoring meta-data)

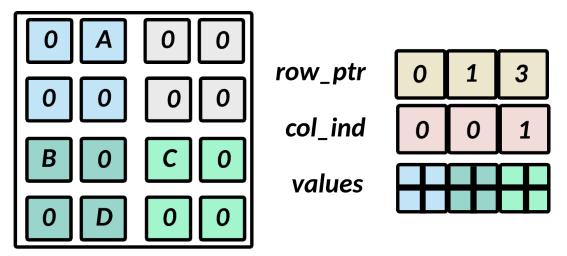
Disadvantages

- Costly insertion of non-zero values
- Difficult to obtain temporal locality



Block Compressed Sparse Row (BCSR)

Modification of CSR



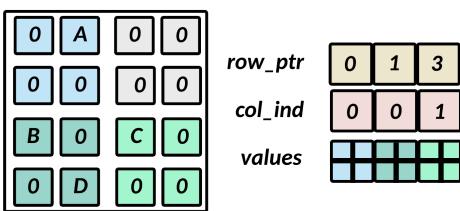
Block Compressed Sparse Row (BCSR)

Advantages

- Reduced storage for indices

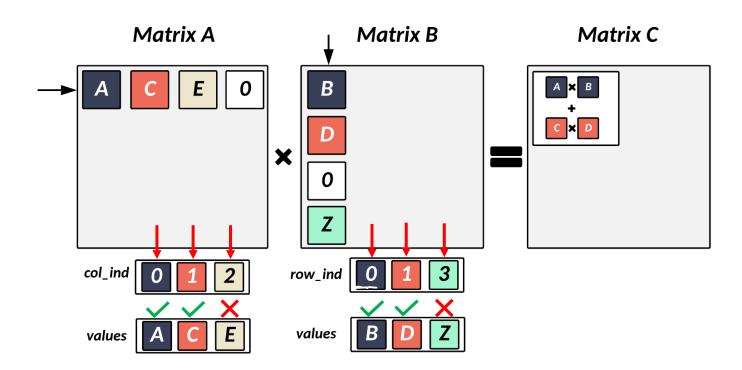
Disadvantages

- Storage of zeros
- Computational overhead



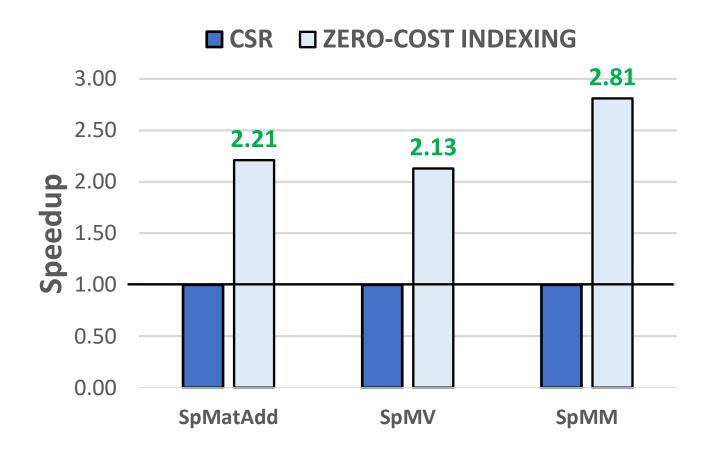
Indexing Overhead of CSR and BCSR

- Multiple memory instructions to get position of non-zero value or block
- Comparison of indices



Zero-cost Indexing for CSR and BCSR

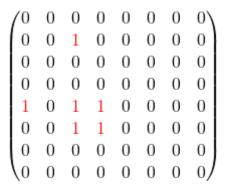
Zero-cost indexing indicates room for improvement

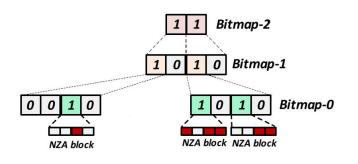


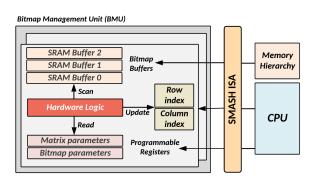
SMASH: A Novel Compression Approach

Hardware/Software Cooperative Mechanism

- Enables highly efficient sparse matrix compression and computation
- Works effectively for a diverse set of sparse matrices





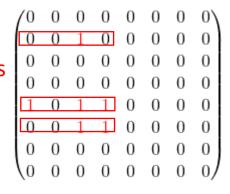


Software Compression

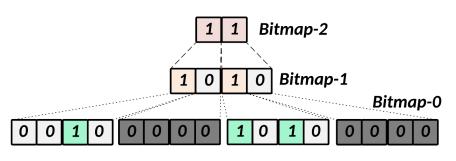
Hardware-accelerated Indexing

Single Bitmap

Non-zero blocks



Hierarchy of Bitmaps

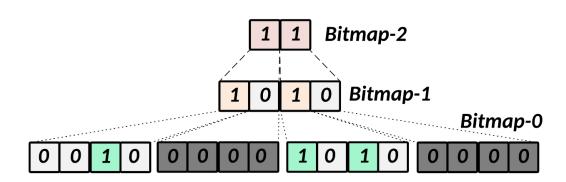


- Bit encodes the existence of a non-zero value in a region
- A lot of zero bits

• Idea: Apply encoding recursively to reduce the number of zero bits (bottom-up)

Levels

 Indicate presence of non-zero values with different granularity

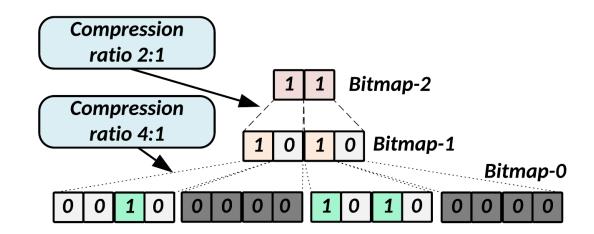


Levels

 Indicate presence of non-zero values with different granularity

Compression Ratios

• Configurable, determine change in granularity between levels



Levels

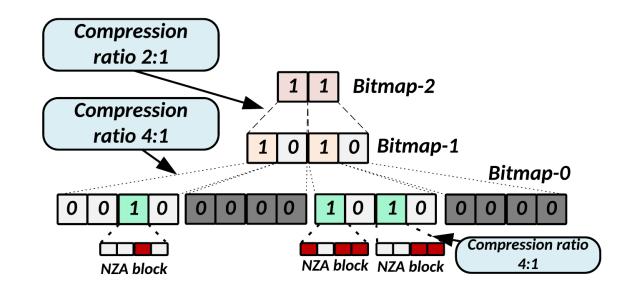
 Indicate presence of non-zero values with different granularity

Compression Ratios

• Configurable, determine change in granularity between levels

Non-zero Array (NZA)

• Stores **non-zero blocks** of matrix



Levels

 Indicate presence of non-zero values with different granularity

Compression Ratios

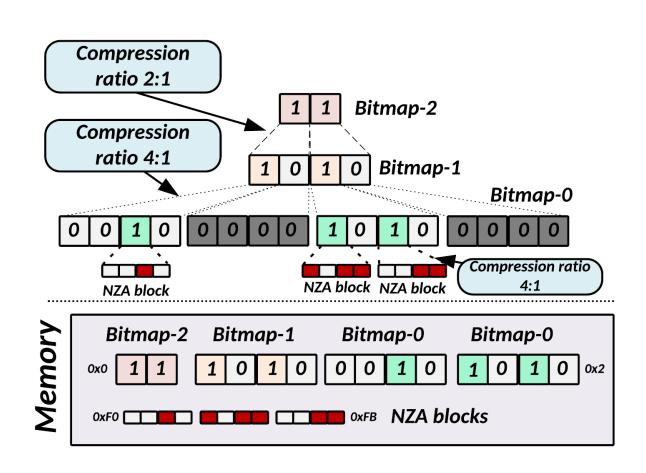
 Configurable, determine change in granularity between levels

Non-zero Array (NZA)

• Stores **non-zero blocks** of matrix

Representation in Memory

Only store necessary information



Efficient storage

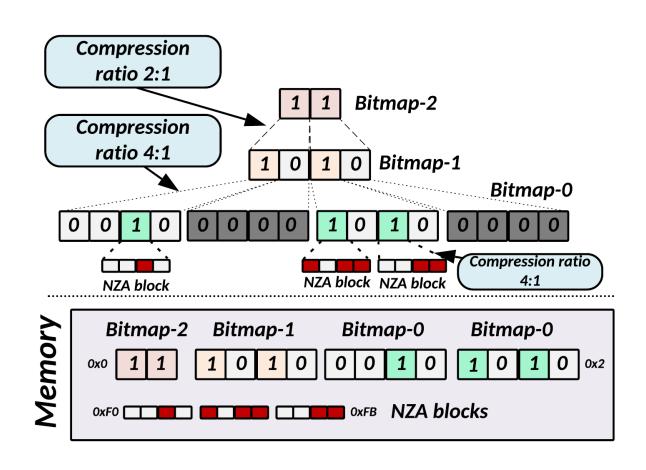
 Each non-zero block has only a few bits (= #levels) of meta-data

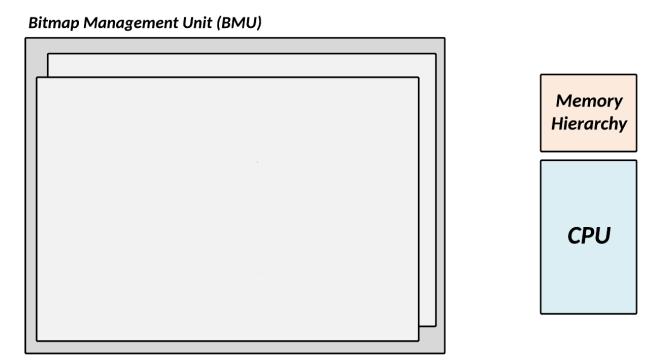
Fast indexing

- Traverse bitmap hierarchy in a depthfirst manner to compute the index
- Index is a simple sum of products

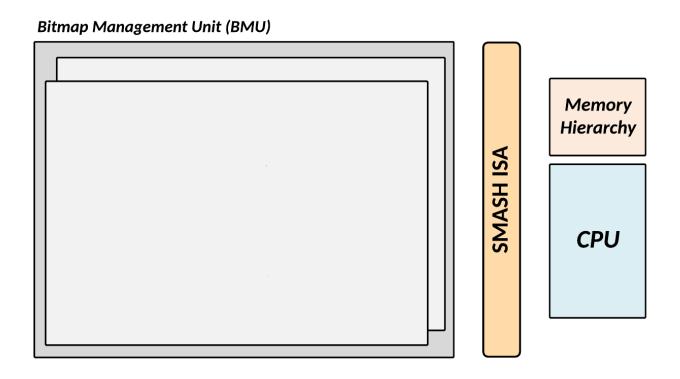
Enables hardware acceleration

- Little amount of data to transfer
- Facilitated by hierarchical structure

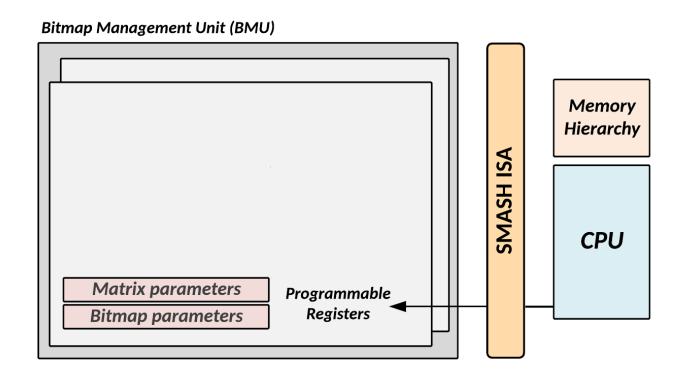




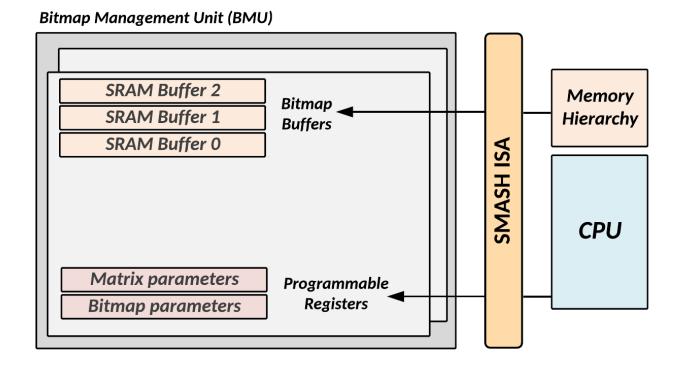
Communication over
 SMASH ISA



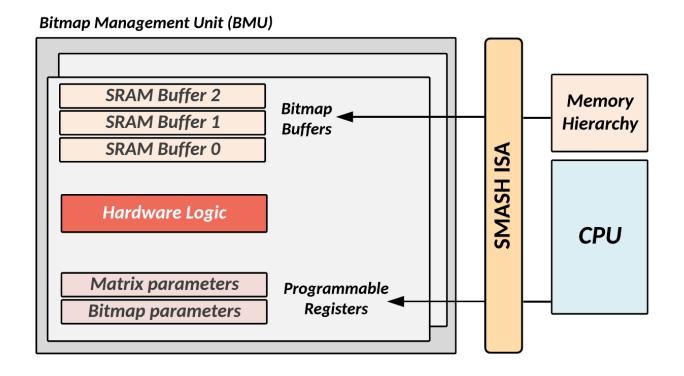
- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters



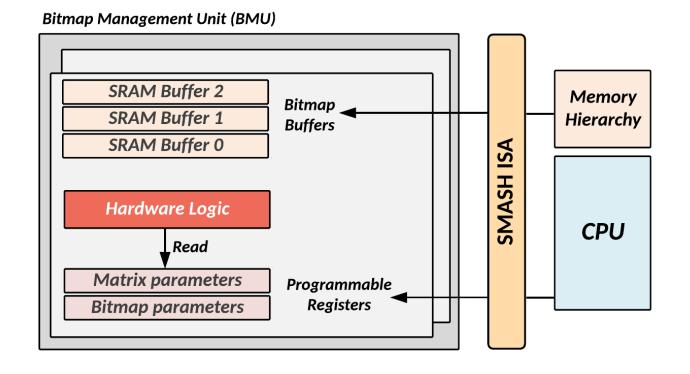
- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters
- One buffer per bitmap level



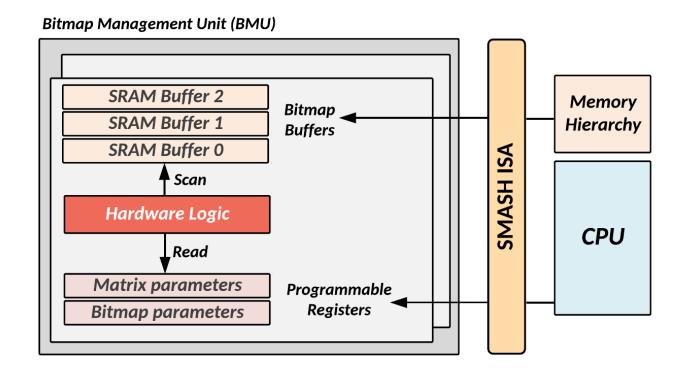
- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters
- One buffer per bitmap level
- Hardware logic:



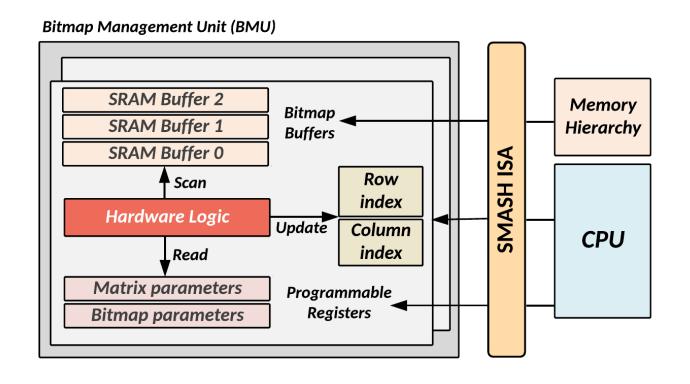
- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters
- One buffer per bitmap level
- Hardware logic:
 - **Reads** parameters



- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters
- One buffer per bitmap level
- Hardware logic:
 - **Reads** parameters
 - Scans bitmaps for set bits



- Communication over
 SMASH ISA
- Matrix size and compression ratios as parameters
- One buffer per bitmap level
- Hardware logic:
 - **Reads** parameters
 - **Scans** bitmaps for set bits
 - Computes index of next non-zero block and stores it into registers



Evaluation Methodology

Simulator: ZSim Simulator

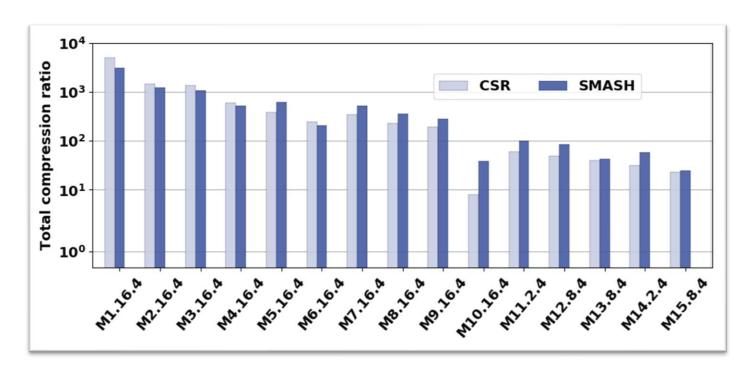
Workloads:

- SpMV & SpMM
 - 15 matrices
 - Varied sparsity levels and non-zero distributions
 - Sparsity level from 0.01% to 8.79%
- PageRank & Betweenness Centrality
 - 4 graphs
 - Number of edges from 1M to 3.3M

Evaluation Result: Storage Efficiency

1. Storage Efficiency

- CSR is better for very sparse matrices
- SMASH is better for denser matrices
- Cost of storing zeros vs.
 Cost of storing indices

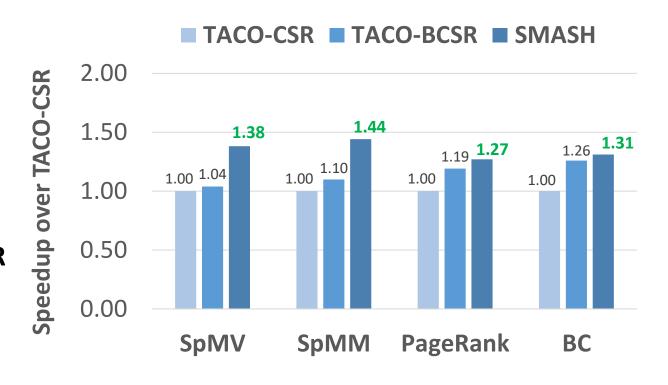


Evaluation Result: Computational Efficiency

1. Storage Efficiency

2. Computational Efficiency

- Sparse Matrix Kernels
 - 40 % speedup compared to CSR
 - 30% speedup compared to BCSR
- Lower speedup for graph computations

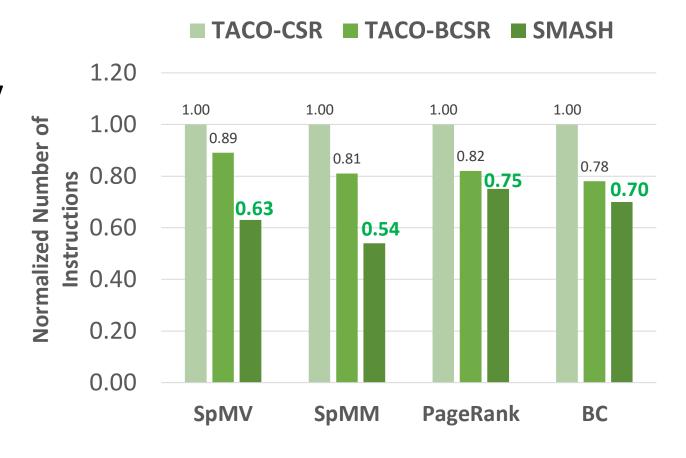


Evaluation Result: Computational Efficiency

1. Storage Efficiency

2. Computational Efficiency

 SMASH requires fewer instructions compared to CSR and BCSR

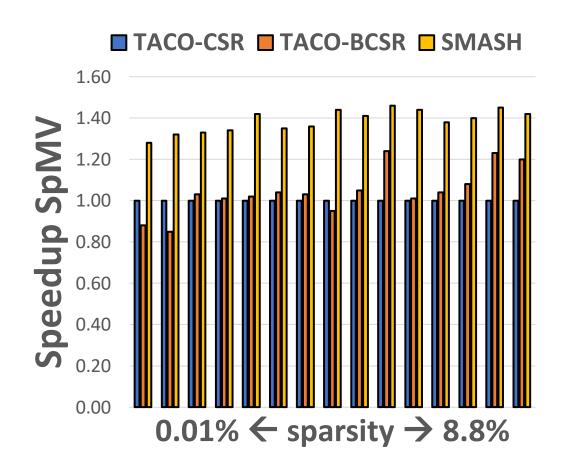


Evaluation Result: General Applicability

- 1. Storage Efficiency
- 2. Computational Efficiency

3. General Applicability

- Matrices with varied size, structure, and sparsity
- Increasing the density of a matrix leads to higher indexing overhead

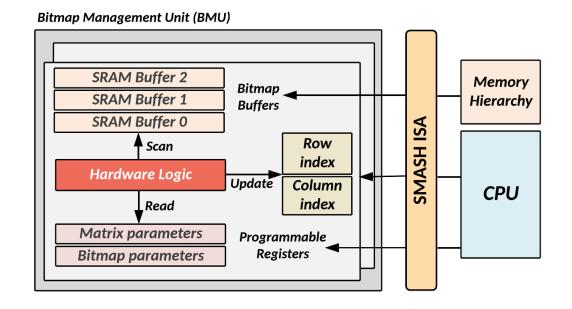


Evaluation Result: Die Area Overhead

BMU

- Support 4 matrices
- 3 bitmap buffers per matrix, each with 256 bytes of storage
- 140 bytes for **registers & counters**

0.076% area overhead over an Intel Xeon E5-2698 CPU core



Conclusion

- Many applications heavily rely on sparse linear algebra
- They require effective compression formats to mitigate computational and storage overheads
- Existing formats suffer from the expensive cost of finding the position of non-zero elements
- SMASH: Hardware/Software cooperative mechanism for efficient non-zero elements discovery to accelerate sparse matrix operations
 - Software: Efficient compression with a hierarchy of bitmaps
 - Hardware: Scans bitmaps to find indices of non-zero elements
- 38 44 % faster than the state-of-the-art for SpMV and SpMM
- SMASH is highly effective, low cost, and widely applicable

Strengths

- Identifies indexing as a key bottleneck in sparse matrix compression schemes
- Among the first to propose a hardware/software cooperative scheme to accelerate sparse matrix indexing
- General applicable
 - CPU, GPU, other hardware accelerators etc.
 - Any sparse operation like Sparse LU, Sparse QR, etc.
- Extensive evaluation from many perspectives
 - Impact of compression ratio, sparsity levels, non-zero distribution, conversion overhead, software-only approach, die area overhead, etc.
- SMASH's implementation of the matrix kernels is open source
- Well written
 - Little **prior knowledge** required
 - Structure feels very familiar...

Weaknesses

- Finding of optimal compression ratios might be complicated
- Selection of **number of bitmap levels** is not explained
- Evaluation of hardware-accelerated SMASH only in a simulator
- Dynamic updates of sparse matrix is expensive
 - Requires reload of bitmaps into BMU to avoid coherency issues
 - Dynamic insertion of a non-zero value might require a large copy operation on the non-zero array

- SMASH stores zero-containing blocks like BCSR, but only as 1D arrays
 - Partitioning of matrix into 2D regions would enable blocking optimization

0	0
1	0
0	0
0	0
1	0
1	0
0	0
0	0

/0	0	0	0	0	0	0	0\
0	0	1	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
1.0	0	0	0	0	0	0	0 I
0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0 0 0 0 0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0
\int_{0}^{∞}	0	0	0	0	0	0	0
10							-/

0	1	0	0
0	0	0	0
1	1	0	0
0	0	0	0

- Lossy compression formats that approximate matrix values to reduce the memory footprint
 - CSR: Merge integer index (4 bytes) and float value (4 bytes) into a single value (4 bytes)
 - Value stores index in the leftmost bits and value in the remaining bits
 - Loss of precision for floating points values
 - Loss of range for integer indices

SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks [Gondimalla et al., 2019]

- Acceleration of sparse dot products which are heavily used in CNN
- Representation of sparse vectors with bit masks to indicate position of non-zero values
- Fast computation of the intersection between non-zero value indices
- Authors note that sparsity in machine learning models is lower than in other applications (10% sparsity and more).
- They provide an analysis on when bitmasks are more efficient than conventional formats like CSR.

ExTensor: An Accelerator for Sparse Tensor Algebra [Hegde et al., 2019]

- Acceleration of sparse linear algebra
- Representation of sparse operands as hierarchical trees
- Fast computation of the intersection between non-zero element nodes or non-zero region subtrees to avoid unnecessary scalar multiplications or even dot products

SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training [Qin et al., 2020]

- Acceleration of sparse matrix-matrix multiplications in DNN
- Showcase of the importance of matrix-matrix multiplications in deep learning
- Explanation on why GPUs and TPUs cannot exploit sparsity effectively
- As part of their architecture, they use a bitmap format to store operands
 - Constant meta-data overhead by using one bit per element
 - For denser matrices, bitmaps have lower overhead compared to conventional formats

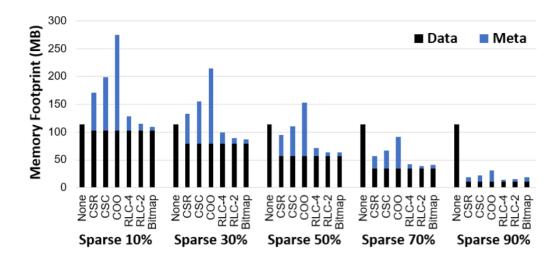


Figure 7: Matrix memory overhead with dimensions M=1632 and K=36548. Format comparisons include: None, CSR, CSC, COO, RLC-4, RLC-2, and Bitmap in the following order.

Key Takeaways

- It is essential to take the sparsity of matrix operands into account, if one wants to enable applications that operate on very large and sparse matrices
- While it takes more time to detect the root of a problem, resolving a problem at that level can benefit a lot of applications
 - Today's root: Sparse matrix indexing
- One can benefit from orthogonal concepts of other approaches
 - BCSR's blocking optimization has the potential to improve SMASH even further

Questions?

Discussion

- How does the distribution of non-zero elements affect SMASH?
- How can we reduce the overhead of zero element computations?
- How can we use SMASH to accelerate parallelized matrix computations?
- Where should we employ approximation to reduce the indexing overhead?
 - Directly in the compression format?
 - Approximate memory?
 - Other methods?
- Which concepts from previous presentations can be used to reduce the indexing overhead?
- Can you think of any other applications that can benefit from the use of hierarchical bitmaps?

Reducing Overhead of Zero Element Computations

Page Overlays:

An Enhanced Virtual Memory Framework to Enable Fine-grained Memory Management

[Seshadri et al., 2015]

- Can significantly boost system performance and efficiency while largely retaining the structure of the existing virtual memory framework
- Enables the mapping of virtual pages to overlays which only contain a few cache lines
- With overlays the fetching of and the computation with zero-only cache lines of SMASH's non-zero blocks can be avoided
- Can be used to enable more efficient sparse matrix updates

Reducing Overhead with Approximate Memory

EDEN:

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

[Koppula et al., 2019]

• Nina Richter will present this paper next week, so I will not spoil her presentation today ©