
SMASH
Co-Designing Software Compression

and Hardware-Accelerated Indexing

for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula,

Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi,

Taha Shahroodi, Juan Gomez Luna, Onur Mutlu

MICRO 2019

Reviewed by Tuan Pham Huu

Executive Summary

• Many applications heavily rely on sparse linear algebra

• They require effective compression formats to mitigate computational
and storage overheads

• Existing formats suffer from the expensive cost of finding the position of
non-zero elements

• SMASH: Hardware/Software cooperative mechanism for efficient
non-zero elements discovery and sparse matrix operations
• Software: Efficient compression with a hierarchy of bitmaps
• Hardware: Scans bitmaps to find indices of non-zero elements

• 38 - 44 % faster than the state-of-the-art for SpMV and SpMM

• SMASH is highly effective, low cost, and widely applicable

2

Outline

• Definition and Applications of a Sparse Matrix

• Properties of an Effective Compression Format

• State-of-the-art: CSR and BCSR

• Indexing Overhead of CSR and BCSR

• SMASH: Effective Mechanism for Sparse Matrix Compression

• Evaluation Methodology and Key Results

• Conclusion

• Critique and Discussion

3

Definition: Sparse Matrix

• Majority of its values are 0

• Widely used in modern
applications

• Vary in size and sparsity

• Computations with zeros are
unnecessary

• Storing zeros is wasteful and/or
infeasible

4https://en.wikipedia.org/wiki/Sparse_matrix#/media/File:Finite_element_sparse_matrix.png

Definition: Sparse Matrix

Need
sparse matrix
compression

to avoid
overheads

4

Application: Graph Analytics For Social Networks

6https://www.semanticscholar.org/paper/Topics-in-social-network-analysis-and-network-O'Malley-Onnela/61ede53272f795e1115badd45f28164e34b98a37/figure/0

Application: Graph Analytics For Social Networks

7https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

over 2.5 billion active users, Ø connections/user = 340

Application: Sparse Weights in DNN with Dropout

8https://dimensionless.in/what-is-neural-network/neural-network-schematic/

Application: Sparse Weights in DNN with Dropout

9

Application: Diagonal Matrix Computation

10

Exploiting the structure of A → From quadratic to linear complexity

Properties of an Effective Compression Format

11

3. General Applicability

1. Storage Efficiency

2. Computational Efficiency

Compressed Sparse Row (CSR)

• Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)

• Compressed Sparse Column (CSC) follows the same concept

12

Compressed Sparse Row (CSR)

• Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)

• Compressed Sparse Column (CSC) follows the same concept

13

Compressed Sparse Row (CSR)

• Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)

• Compressed Sparse Column (CSC) follows the same concept

14

Compressed Sparse Row (CSR)

• Most widely used (Intel MKL, OpenBLAS, Eigen, etc.)

• Compressed Sparse Column (CSC) follows the same concept

15

Compressed Sparse Row (CSR)

Advantages

• Enables spatial locality

• Only stores non-zero values
(ignoring meta-data)

Disadvantages

• Costly insertion of non-zero
values

• Difficult to obtain temporal
locality

16

Block Compressed Sparse Row (BCSR)

• Modification of CSR

17

Block Compressed Sparse Row (BCSR)

Advantages

• Reduced storage for indices

• Enables blocking
optimization in matrix
operations

Disadvantages

• Storage of zeros

• Computational overhead

18

Indexing Overhead of CSR and BCSR

• Multiple memory instructions to get position of non-zero value or
block

• Comparison of indices

19

Zero-cost Indexing for CSR and BCSR

Zero-cost indexing indicates room for improvement

20

2.21 2.13

2.81

0.00

0.50

1.00

1.50

2.00

2.50

3.00

SpMatAdd SpMV SpMM

Sp
ee

d
u

p

CSR ZERO-COST INDEXING

SMASH: A Novel Compression Approach

Hardware/Software Cooperative Mechanism

• Enables highly efficient sparse matrix compression and computation

• Works effectively for a diverse set of sparse matrices

21
Software Compression Hardware-accelerated Indexing

SMASH: Software Compression Scheme

Single Bitmap

• Bit encodes the existence of a
non-zero value in a region

• A lot of zero bits

Hierarchy of Bitmaps

• Idea: Apply encoding recursively
to reduce the number of zero
bits (bottom-up)

22

Non-zero blocks

SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values

with different granularity

23

SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values

with different granularity

Compression Ratios
• Configurable, determine change in

granularity between levels

24

SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values

with different granularity

Compression Ratios
• Configurable, determine change in

granularity between levels

Non-zero Array (NZA)
• Stores non-zero blocks of matrix

25

SMASH: Software Compression Scheme

Levels
• Indicate presence of non-zero values

with different granularity

Compression Ratios
• Configurable, determine change in

granularity between levels

Non-zero Array (NZA)
• Stores non-zero blocks of matrix

Representation in Memory
• Only store necessary information

26

SMASH: Software Compression Scheme

Efficient storage
• Each non-zero block has only a few

bits (= #levels) of meta-data

Fast indexing
• Traverse bitmap hierarchy in a depth-

first manner to compute the index
• Index is a simple sum of products

Enables hardware acceleration
• Little amount of data to transfer
• Facilitated by hierarchical structure

27

SMASH: Hardware Acceleration Scheme

28

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

29

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

30

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

• One buffer per bitmap level

31

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

• One buffer per bitmap level

• Hardware logic:

32

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

• One buffer per bitmap level

• Hardware logic:
• Reads parameters

33

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

• One buffer per bitmap level

• Hardware logic:
• Reads parameters

• Scans bitmaps for set bits

34

SMASH: Hardware Acceleration Scheme

• Communication over
SMASH ISA

• Matrix size and compression
ratios as parameters

• One buffer per bitmap level

• Hardware logic:
• Reads parameters

• Scans bitmaps for set bits

• Computes index of next non-zero
block and stores it into registers

35

Evaluation Methodology

Simulator: ZSim Simulator

Workloads:
• SpMV & SpMM

• 15 matrices

• Varied sparsity levels and non-zero distributions

• Sparsity level from 0.01% to 8.79%

• PageRank & Betweenness Centrality
• 4 graphs

• Number of edges from 1M to 3.3M

36

Evaluation Result: Storage Efficiency

1. Storage Efficiency

• CSR is better for
very sparse matrices

• SMASH is better for
denser matrices

• Cost of storing zeros vs.
Cost of storing indices

37

Evaluation Result: Computational Efficiency

1. Storage Efficiency

2. Computational Efficiency

• Sparse Matrix Kernels

• 40 % speedup compared to CSR

• 30% speedup compared to BCSR

• Lower speedup for graph
computations

38

1.00 1.00 1.00 1.001.04 1.10
1.19 1.26

1.38 1.44
1.27 1.31

0.00

0.50

1.00

1.50

2.00

SpMV SpMM PageRank BC

Sp
e

e
d

u
p

 o
ve

r
TA

C
O

-C
SR

TACO-CSR TACO-BCSR SMASH

Evaluation Result: Computational Efficiency

1. Storage Efficiency

2. Computational Efficiency

• SMASH requires fewer
instructions compared to
CSR and BCSR

39

1.00 1.00 1.00 1.00

0.89

0.81 0.82
0.78

0.63
0.54

0.75 0.70

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SpMV SpMM PageRank BC

N
o

rm
al

iz
e

d
 N

u
m

b
e

r
o

f
In

st
ru

ct
io

n
s

TACO-CSR TACO-BCSR SMASH

Evaluation Result: General Applicability

1. Storage Efficiency

2. Computational Efficiency

3. General Applicability
• Matrices with varied size, structure,

and sparsity

• Increasing the density of a matrix
leads to higher indexing overhead

40

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Sp
e

e
d

u
p

 S
p

M
V

0.01%  sparsity → 8.8%

TACO-CSR TACO-BCSR SMASH

Evaluation Result: Die Area Overhead

41

BMU
• Support 4 matrices

• 3 bitmap buffers per matrix,
each with 256 bytes of storage

• 140 bytes for registers & counters

0.076% area overhead over an
Intel Xeon E5-2698 CPU core

Conclusion

• Many applications heavily rely on sparse linear algebra

• They require effective compression formats to mitigate computational
and storage overheads

• Existing formats suffer from the expensive cost of finding the position of
non-zero elements

• SMASH: Hardware/Software cooperative mechanism for efficient
non-zero elements discovery to accelerate sparse matrix operations
• Software: Efficient compression with a hierarchy of bitmaps
• Hardware: Scans bitmaps to find indices of non-zero elements

• 38 - 44 % faster than the state-of-the-art for SpMV and SpMM

• SMASH is highly effective, low cost, and widely applicable

42

Strengths

• Identifies indexing as a key bottleneck in sparse matrix compression schemes

• Among the first to propose a hardware/software cooperative scheme to
accelerate sparse matrix indexing

• General applicable
• CPU, GPU, other hardware accelerators etc.
• Any sparse operation like Sparse LU, Sparse QR, etc.

• Extensive evaluation from many perspectives
• Impact of compression ratio, sparsity levels, non-zero distribution, conversion overhead,

software-only approach, die area overhead, etc.

• SMASH’s implementation of the matrix kernels is open source

• Well written
• Little prior knowledge required
• Structure feels very familiar…

43

Weaknesses

• Finding of optimal compression ratios might be complicated

• Selection of number of bitmap levels is not explained

• Evaluation of hardware-accelerated SMASH only in a simulator

• Dynamic updates of sparse matrix is expensive
• Requires reload of bitmaps into BMU to avoid coherency issues

• Dynamic insertion of a non-zero value might require a large copy operation on
the non-zero array

44

Thoughts, Ideas and Alternatives

• SMASH stores zero-containing blocks like BCSR, but only as 1D arrays
• Partitioning of matrix into 2D regions would enable blocking optimization

• Lossy compression formats that approximate matrix values to reduce the
memory footprint
• CSR: Merge integer index (4 bytes) and float value (4 bytes) into a single value (4 bytes)
• Value stores index in the leftmost bits and value in the remaining bits
• Loss of precision for floating points values
• Loss of range for integer indices

45

Thoughts, Ideas and Alternatives

SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks
[Gondimalla et al., 2019]

• Acceleration of sparse dot products which are heavily used in CNN

• Representation of sparse vectors with bit masks to indicate position of
non-zero values

• Fast computation of the intersection between non-zero value indices

• Authors note that sparsity in machine learning models is lower than in
other applications (10% sparsity and more).

• They provide an analysis on when bitmasks are more efficient than
conventional formats like CSR.

46

https://dl.acm.org/doi/10.1145/3352460.3358291

Thoughts, Ideas and Alternatives

ExTensor: An Accelerator for Sparse Tensor Algebra
[Hegde et al., 2019]

• Acceleration of sparse linear algebra

• Representation of sparse operands as hierarchical trees

• Fast computation of the intersection between non-zero element nodes
or non-zero region subtrees to avoid unnecessary scalar multiplications
or even dot products

47

https://dl.acm.org/doi/10.1145/3352460.3358275

Thoughts, Ideas and Alternatives

SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training
[Qin et al., 2020]

• Acceleration of sparse matrix-matrix
multiplications in DNN

• Showcase of the importance of matrix-matrix
multiplications in deep learning

• Explanation on why GPUs and TPUs
cannot exploit sparsity effectively

• As part of their architecture, they use a bitmap
format to store operands

• Constant meta-data overhead
by using one bit per element

• For denser matrices, bitmaps have lower
overhead compared to conventional formats

48

https://synergy.ece.gatech.edu/wp-content/uploads/sites/332/2020/01/sigma_hpca2020.pdf

Key Takeaways

• It is essential to take the sparsity of matrix operands into account, if
one wants to enable applications that operate on very large and
sparse matrices

• While it takes more time to detect the root of a problem, resolving a
problem at that level can benefit a lot of applications
• Today’s root: Sparse matrix indexing

• One can benefit from orthogonal concepts of other approaches
• BCSR’s blocking optimization has the potential to improve SMASH even

further

49

Questions?

50

Discussion

• How does the distribution of non-zero elements affect SMASH?

• How can we reduce the overhead of zero element computations?

• How can we use SMASH to accelerate parallelized matrix computations?

• Where should we employ approximation to reduce the indexing overhead?
• Directly in the compression format?
• Approximate memory?
• Other methods?

• Which concepts from previous presentations can be used to reduce the indexing
overhead?

• Can you think of any other applications that can benefit from the use of
hierarchical bitmaps?

51

Reducing Overhead of Zero Element Computations

Page Overlays:
An Enhanced Virtual Memory Framework to Enable Fine-grained Memory
Management
[Seshadri et al., 2015]

• Can significantly boost system performance and efficiency while largely
retaining the structure of the existing virtual memory framework

• Enables the mapping of virtual pages to overlays which only contain a few
cache lines

• With overlays the fetching of and the computation with zero-only cache
lines of SMASH’s non-zero blocks can be avoided

• Can be used to enable more efficient sparse matrix updates

52

https://dl.acm.org/doi/10.1145/2749469.2750379

Reducing Overhead with Approximate Memory

EDEN:
Enabling Energy-Efficient, High-Performance Deep Neural Network
Inference Using Approximate DRAM
[Koppula et al., 2019]

• Nina Richter will present this paper next week, so I will not spoil her
presentation today ☺

53

https://dl.acm.org/doi/10.1145/3352460.3358280

